imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CY8C20110, CY8C20180, CY8C20160 CY8C20140, CY8C20142

CapSense[®] Express[™] Button Capacitive Controllers

Features

- 10/8/6/4 capacitive button input
 - Robust sensing algorithm
 - High sensitivity, low noise
 - Immunity to RF and AC noise
 - Low radiated EMC noise
 - Supports wide range of input capacitance, sensor shapes, and sizes
- Target applications
 - Printers
 - Cellular handsets
 - LCD monitors
 - Portable DVD players
- Low operating current
 - D Active current: continuous sensor scan: 1.5 mA
 - Deep sleep current: 4 μA

Industry's best configurability

- D Custom sensor tuning, one optional capacitor
- Output supports strong drive for LED
- Output state can be controlled through I²C or directly from CapSense[®] input state
- □ Run time reconfigurable over I²C
- Advanced features
 - □ All GPIOs support LED dimming with configurable delay option in CY8C20110
 - Interrupt outputs
 - User defined inputs
 - Wake on interrupt input
 - □ Sleep control pin
 - Nonvolatile storage of custom settings
 - Easy integration into existing products configure output to match system
 - No external components required
- World-class free configuration tool
- Wide range of operating voltages
 - □ 2.4 V to 2.9 V □ 3.10 V to 3.6 V
 - □ 4.75 V to 5.25 V
- I²C communication
 - Supported from 1.8 V
 - Internal pull-up resistor support option
 - Data rate up to 400 kbps
 - Configurable I²C addressing
- Industrial temperature range: -40 °C to +85 °C
- Available in 16-pin QFN, 8-pin, and 16-pin SOIC packages

Errata: For information on silicon errata, see "Errata" on page 40. Details include trigger conditions, devices affected, and proposed workaround.

San Jose, CA 95134-1709 • 408-943-2600 Revised May 19, 2016

These CapSense Express[™] controllers support four to ten capacitive sensing (CapSense) buttons. The device functionality is configured through an I²C port and can be stored in onboard nonvolatile memory for automatic loading at power-on. The CY8C20110 is optimized for dimming LEDs in 15 selectable duty cycles for back light applications. The device can be configured to have up to 10 GPIOs connected to the PWM output. The PWM duty cycle is programmable for variable LED intensities.

Overview

The four key blocks that make up these devices are: a robust capacitive sensing core with high immunity against radiated and conductive noise, control registers with nonvolatile storage, configurable outputs, and I^2C communications. The user can configure registers with parameters needed to adjust the operation and sensitivity of the CapSense buttons and outputs and permanently store the settings. The standard I^2C serial communication interface enables the host to configure the device and read sensor information in real time. The I^2C address is fully configurable without any external hardware strapping.

CY8C20110, CY8C20180, CY8C20160 CY8C20140, CY8C20142

Contents

Pinouts -16-Pin QFN3
Pin Definitions3
Pinouts - 16-Pin SOIC4
Pin Definitions4
Pinouts - 8-pin SOIC5
Pin Definitions5
Typical Circuits6
I2C Interface8
I2C Device Addressing8
I2C Clock Stretching8
Format for Register Write and Read9
Operating Modes of I2C Commands10
Normal Mode10
Setup Mode10
Device Operation Modes10
Active Mode10
Periodic Sleep Mode10
Deep Sleep Mode
Sleep Control Pin
Interrupt Pin to Master
LED Dimming
CN/OFF Putter Status
UN/OFF Button Status
ON Button Status
UN BUILOIT Status
ON/OFE Putten Transition
LED Dimming Mode 4: Toggle Intensity on
ON/OFE or OFE/ON Button Transitions
Registers
Begister Man 13
Device IDs 17
CapSense Express Commands 17
Register Conventions
Lavout Guidelines and Best Practices
CapSense Button Shapes
\mathbf{N}

Button Layout Design	
Recommended via Hole Placement	18
Example PCB Layout Design with Two	
CapSense Buttons and Two LEDs	
Operating Voltages	
CapSense Constraints	
Absolute Maximum Ratings	
Operating Temperature	
Electrical Specifications	
DC Electrical Specifications	
CapSense Electrical Characteristics	
AC Electrical Specifications	
Appendix	
Examples of Frequently Used I2C Commands	
Ordering Information	30
Ordering Code Definitions	
Thermal Impedances	
Solder Reflow Specifications	
Package Diagrams	
Acronyms	
Reference Documents	34
Document Conventions	
Units of Measure	
Numeric Conventions	
Glossary	
Errata	40
CY8C20110	40
CY8C20140/142/160/180/1A0	
Document History Page	
Sales, Solutions, and Legal Information	45
Worldwide Sales and Design Support	45
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	45

Pinouts -16-Pin QFN

Pin Definitions

Pin No.	Pin Name	Description
1	GP0[0]	Configurable as CapSense or GPIO
2	GP0[1]	Configurable as CapSense or GPIO
3	I ² C SCL	I ² C clock
4	I ² C SDA	I ² C data
5	GP1[0]	Configurable as CapSense or GPIO
6	GP1[1] ^[3]	Configurable as CapSense or GPIO
7	VSS	Ground connection
8	GP1[2] ^[3]	Configurable as CapSense or GPIO
9	GP1[3]	Configurable as CapSense or GPIO
10	GP1[4]	Configurable as CapSense or GPIO
11	XRES	Active high external reset with internal pull-down
12	GP0[2]	Configurable as CapSense or GPIO
13	VDD	Supply voltage
14	GP0[3]	Configurable as CapSense or GPIO
15	CSInt	Integrating capacitor Input. The external capacitance is required only if 5:1 SNR cannot be achieved. Typical range is 1 nF to 4.7 nF
16	GP0[4]	Configurable as CapSense or GPIO

Notes

CY8C20110 (10 Buttons) / CY8C20180 (8 Buttons) / CY8C20160 (6 Buttons) / CY8C20140 (4 Buttons) 1

^{8/6/4} available configurable IOs can be configured to any of the 10 IOs of the package. After any of the 8/6/4 IOs are chosen, the remaining 2/4/6 IOs of the package are not available for any functionality. 2.

Avoid using GP1[1] and GP1[2] for driving LEDs. These two pins have special functions during power-up which is used at factory. LEDs connected to these two pins blink during the power-up of the device. 3.

Pinouts - 16-Pin SOIC

Figure 2. 16-pin SOIC (150 Mils) Pinout^[4]

Notes

Avoid using GP1[1] and GP1[2] for driving LEDs. These two pins have special functions during power-up which is used at factory. LEDs connected to these two pins blink during the power-up of the device.

^{4.} CY8C20110 (10 Buttons) / CY8C20180 (8 Buttons) / CY8C20160 (6 Buttons) / CY8C20140 (4 Buttons)

^{5. 8/6/4} available configurable IOs can be configured to any of the 10 IOs of the package. After any of the 8/6/4 IOs are chosen, the remaining 2/4/6 IOs of the package are not available for any functionality.

Pinouts - 8-pin SOIC

Important Note For information on the preferred dimensions for mounting QFN packages, see the "Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages" available at http://www.amkor.com.

Note

7. Avoid using GP1[0] and GP1[1] for driving LED. These two pins have special functions during power up which is used at factory. LEDs connected to these two pins will blink during power up of the device.

Typical Circuits

Typical Circuits (continued)

Figure 6. Circuit 3 – Compatibility with 1.8 V I²C Signaling^[8, 9]

Notes

- 1.8 V \leq VDD_I2C \leq VDD_CE and 2.4 V \leq VDD_CE \leq 5.25 V. 8.
- 9. The I2C drive mode of the CapSense device should be configured properly before using in an I2C environment with external pull-ups. Please refer to I2C_ADDR_DM register and its factory setting.
- For low power requirements, if V_{DD} is to be turned off, this concept can be used. The requirement is that the V_{DDs} of CapSense Express, I²C pull-ups, and LEDs should be from the same source such that turning off the V_{DD} ensures that no signal is applied to the device while it is unpowered. The I²C signals should not be driven high by the master in this situation. If a port pin or group of port pins of the master can cater to the power supply requirements of the circuit, the LDO can be avoided.

I²C Interface

The CapSense Express devices support the industry-standard I²C protocol, which can be used for:

- Configuring the device
- Reading the status and data registers of the device
- Controlling device operation
- Executing commands

The I²C address can be modified during configuration.

I²C Device Addressing

The device uses a seven-bit addressing protocol. The I^2C data transfer is always initiated by the master sending a one-byte address: the first seven bits contain the address and the LSB indicates the data transfer direction. Zero in the LSB bit indicates the write transaction from master and one indicates the read transfer by the master. The following table shows examples for different I^2C addresses.

Table 1. I²C Address Examples

7-bit Slave Address	D7	D6	D5	D4	D3	D2	D1	D0	8-bit Slave Address
1	0	0	0	0	0	0		0(W)	02
1	0	0	0	0	0	0	1	1(R)	03
75	1	0	0	1	0	1	1	0(W)	96
75	1	0	0	1	0		1	1(W)	97

I²C Clock Stretching

'Clock stretching' or 'bus stalling' in I²C communication protocol is a state in which the slave holds the SCL line low to indicate that it is busy. In this condition, the master is expected to wait until the SCL is released by the slave.

When an I^2C master communicates with the CapSense Express device, the CapSense Express stalls the I^2C bus after the reception of each byte (that is, just before the ACK/NAK bit) until processing of the byte is complete and critical internal functions are executed. Use a fully I^2C compliant master to communicate with the CapSense Express device.

If the I²C master does not support clock stretching (a bit banged software I²C Master), the master must wait for a specific amount of time (as specified in Format for Register Write and Read on page 9) for each register write and read operation before the next

bit is transmitted. The I^2C master must check the SCL status (it should be high) before the I^2C master initiates any data transfer with CapSense Express. If the master fails to do so and continues to communicate, the communication is erroneous.

Also note that, while using CapSense Express Devices on an I^2C bus, I^2C master should not generate a start or stop condition in the I^2C bus before CapSense Express device generates an acknowledgement (ACK/NCK) for the previous transaction. An acknowledgement state produced by the CapSense Express Device for the previous data after the master generates a start condition or stop condition, may produce unexpected behavior from CapSense Express I^2C slave interface.

The following diagrams represent the ACK time delays shown in Format for Register Write and Read on page 9 for write and read.

Notes

11. Time to process the received data.

12. Time taken for the device to send next byte.

Operating Modes of I²C Commands

Normal Mode

In normal mode of operation, the acknowledgment time^[13] is optimized. The timings remain approximately the same for different configurations of the slave. To reduce the acknowledgment times in normal mode, the registers 0x06-0x09, 0x0C, 0x0D, 0x10-0x17, 0x50, 0x51, 0x57-0x60, 0x7E are given only read access. Write to these registers can be done only in setup mode.

Setup Mode

All registers have read and write access (except those which are read only) in this mode. The acknowledgment times^[14] are longer compared to normal mode. When CapSense scanning is disabled (command code 0x0A in command register 0xA0), the acknowledgment times can be improved to values similar to the normal mode of operation.

Device Operation Modes

CapSense Express devices are configured to operate in any of the following three modes to meet different power consumption requirements:

- Active Mode
- Periodic Sleep Mode
- Deep Sleep Mode

Active Mode

In the Active mode, all the device blocks including the CapSense subsystem are powered. Typical active current consumption of the device across the operating voltage range is 1.5 mA.

Periodic Sleep Mode

Sleep mode provides an intermediate power operation mode. It is enabled by configuring the corresponding device registers (0x7E, 0x7F). The device goes into sleep after there is no event for stay awake counter (Reg 0x80) number of sleep intervals. The device wakes up on sleep interval and scans the capacitive sensors before going back to sleep again. If any sensor is active, then the device wakes up. The device can also wake up from Sleep mode with a GPIO interrupt. The sleep interval is configured through registers. The following sleep intervals are supported in CapSense Express:

- 1.95 ms (512 Hz)
- 15.6 ms (64 Hz)
- 125 ms (8 Hz)
- 1 s (1 Hz)

The sleep interval should be 8 Hz or 1 Hz when using save to flash command. The configuration sequence should be:

- 1. Write configuration data to registers with sleep interval being 8 Hz or 1 Hz
- 2. Save the settings to flash
- 3. Change the sleep interval as per design.

Deep Sleep Mode

Deep Sleep mode provides the lowest power consumption because there is no operation running. All CapSense scanning is disabled during this mode. In this mode, the device wakes up only using an external GPIO interrupt. A sleep timer interrupt cannot wake up a device from deep sleep mode. This is treated as a continuous sleep mode without periodic wakeups. Refer to the application note "CapSense Express Power and Sleep Considerations" - AN44209 for details on different sleep modes. To get the lowest power during this mode the sleep timer frequency should be set to 1 Hz.

Sleep Control Pin

The devices require a dedicated sleep control pin to enable reliable I^2C communication in case any sleep mode is enabled. This is achieved by pulling the sleep control pin low to wake up the device and start I^2C communication. The sleep control pin can be configured on any GPIO.

Interrupt Pin to Master

To inform the master of any button press a GPIO can be configured as interrupt output and all CapSense buttons can be connected to this GPIO with an OR logic operator. This can be configured using the software tool.

LED Dimming

To change the brightness and intensity of the LEDs, the host master (MCU, MPU, DSP, and so on) must send I²C commands and program the PWM registers to enable output pins, set duty cycle, and mode configuration. The single PWM source is connected to all GPIO pins and has a common user defined duty cycle. Each PWM enabled pin has two possible outputs: PWM and 0/1 (depending on the configuration). Four different modes of LED^[15] dimming are possible, as shown in LED Dimming Mode 1: Change Intensity on ON/OFF Button Status on page 11 to LED Dimming Mode 4: Toggle Intensity on ON/OFF or OFF/ON Button Transitions on page 12. The operation mode and duty cycle of the PWM enabled pins is common. This means that one pin cannot behave as in Mode 1 and another pin as in Mode 2.

14. Errata: The CY8C20110 device acknowledges to host within 100 µs, but is not accessible for any other operation until configuration is successfully stored into flash memory and the device is ready to execute the next command. For more information, see "Errata" on page 40.

15. Errata: Applicable only for CY8C20110 device. For more information, see "Errata" on page 40.

Notes

^{13.} Errata: The worst case Acknowledgment time for all critical registers is 140 µs. For more information, see "Errata" on page 40.

LED Dimming Mode 3: Hold Intensity After ON/OFF Button Transition

LED Dimming Mode 4: Toggle Intensity on ON/OFF or OFF/ON Button Transitions

Registers

Register Map

Name	Register Address (in Hex)	Access	Writable Only in SETUP Mode ^[16]	Factory Default Values of Registers (in Hex)	I2C Max ACK Time in Normal Mode (ms) ^[17]	I2C Max ACK Time in Setup Mode (ms) ^[17]
INPUT_PORT0	00	R	-	00	0.1	_
INPUT_PORT1	01	R	_	00	0.1	-
STATUS_POR0	02	R	_	00	0.1	S-
STATUS_POR1	03	R	_	00	0.1	-
OUTPUT_PORT0	04	W	-	00	0.1 •	-
OUTPUT_PORT1	05	W	_	00	0.1	-
CS_ENABL0	06	RW	YES	00	0	11
CS_ENABLE	07	RW	YES	00		11
GPIO_ENABLE0	08	RW	YES	00	V -	11
GPIO_ENABLE1	09	RW	YES	00	-	11
INVERSION_MASK0	0A	RW	-	00	0.11	-
INVERSION_MASK1	0B	RW	-	00	0.11	-
INT_MASK0	0C	RW	YES	00	-	11
INT_MASK1	0D	RW	YES	00	-	11
STATUS_HOLD_MSK0	0E	RW	-	03/1F ^[18]	0.11	-
STATUS_HOLD_MSK1	0F	RW	-	03/1F ^[18]	0.11	-
DM_PULL_UP0	10	RW	YES	00	-	11
DM_STRONG0	11	RW	YES	00	-	11
DM_HIGHZ0	12	RW	YES	00	_	11
DM_OD_LOW0	13	RW	YES	00	_	11
DM_PULL_UP1	14	RW	YES	00	-	11
DM_STRONG1	15	RW	YES	00	_	11
DM_HIGHZ1	16	RW	YES	00	_	11
DM_OD_LOW1	17	RW	YES	00	-	11
PWM_ENABLE0 ^[19]	18	RW	_	00	0.1	1
PWM_ENABLE1 ^[19]	19	RŴ	_	00	0.1	1
PWM_MODE_DC ^[19]	1A	RW	_	00	0.1	1
PWM_DELAY ^[19]	1B	RW	_	00	0.1	_
OP_SEL_00	10	RW	_	00	0.12	11
OPR1_PRT0_00	1D	RW	_	00	0.12	11
OPR1_PRT1_00	1E	RW	_	00	0.12	11
OPR2_PRT0_00	1F	RW	_	00	0.12	11
OPR2_PRT1_00	20	RW	_	00	0.12	11
OP_SEL_01	21	RW	-]	00	0.12	11
OPR1_PRT0_01	22	RW	_	00	0.12	11
OPR1_PRT1_01	23	RW	_	00	0.12	11
OPR2_PRT0_01	24	RW	_	00	0.12	11
OPR2_PRT1_01	25	RW	_	00	0.12	11
OP_SEL_02	26	RW	_	00	0.12	11

Notes

16. These registers are writable only after entering into setup mode. All the other registers available for read and write in Normal as well as in Setup mode.
17. The "I2C Max ACK Time" values mentioned in this table are for 3.3-V and 5-V operation; the timing values for 2.7-V operation are 4x the values provided in this table. Refer to Operating Voltages on page 21.
18. The factory defaults of Reg 0x0E and 0x0F is 0x03 for 20142 device and 0x1F for 20140/60/80/10 devices.

19. Errata: These registers are available only in CY8C20110. For more information, see "Errata" on page 40.

Register Map (continued)

(in Hex) SETUP Mode ^[16] (in Hex) Mode (ms) ^[17] Mod	in Setup e (ms) ^[17]
OPR1_PRT0_02 27 RW - 00 0.12	11
OPR1_PRT1_02 28 RW - 00 0.12	11
OPR2 PRT0 02 29 RW - 00 0.12	11
OPR2 PRT1 02 2A RW - 00 0.12	11
OP SEL 03 2B RW - 00 0.12	11
OPR1 PRT0 03 2C RW - 00 0.12	11
OPR1 PRT1 03 2D RW - 00 0.12	11
OPR2 PRT0 03 2E RW - 00 0.12	11
OPR2 PRT1 03 2F RW - 00 0.12	11
OP SEL 04 30 RW - 00 0.12	11
OPR1 PRT0 04 31 RW - 00 0.12	11
OPR1 PRT1 04 32 RW - 00 0.12	11
OPR2 PRT0 04 33 RW - 00 0.12	11
OPR2 PRT1 04 34 RW - 00 0.12	11
OP SEL 10 35 RW - 00 0.12	11
OPR1 PRT0 10 36 RW - 00 0.12	11
OPR1 PRT1 10 37 RW - 00 0.12	11
OPR2 PRT0 10 38 RW - 00 0.12	11
OPR2 PRT1 10 39 RW - 00 0.12	11
OP SEL 11 3A RW - 00 0.12	11
OPR1 PRT0 11 3B RW 00 0.12	11
OPR1 PRT1 11 3C RW 00 0.12	11
OPR2 PRT0 11 3D RW - 00 0.12	11
OPR2 PRT1 11 3E RW - 00 0.12	11
OP SEL 12 3F RW - 00 0.12	11
OPR1 PRT0 12 40 RW - 00 0.12	11
OPR1 PRT1 12 41 RW - 00 0.12	11
OPB2 PBT0 12 42 BW - 00 0.12	11
OPR2 PRT1 12 43 RW - 00 0.12	11
OP SEL 13 44 RW - 00 0.12	11
OPR1 PRT0 13 45 RW - 00 0.12	11
OPR1 PRT1 13 46 RW - 00 0.12	11
OPR2 PRT0 13 47 RW - 00 0.12	11
OPR2 PRT1 13 48 RW - 00 0.12	11
OP SEL 14 49 BW - 00 0.12	11
OPR1 PRT0 14 4A BW - 00 0.12	11
OPR1 PRT1 14 4B BW - 00 0.12	11
OPB2 PBT0 14 4C BW - 00 0.12	11
OPR2 PRT1 14 4D RW - 00 0.12	11
CS NOISE TH 4E RW - 28 0.11	11
CS BL UPD TH 4F RW - 64 0.11	11
CS SETL TIME 50 RW YFS A0 -	35
CS OTH SET 51 BW YFS 00 -	35
CS HYSTERISIS 52 RW - 0A 0 11	11
CS DEBOUNCE 53 RW – 03 0.11	11

Register Map (continued)

Name	Register Address (in Hex)	Access	Writable Only in SETUP Mode ^[16]	Factory Default Values of Registers (in Hex)	I2C Max ACK Time in Normal Mode (ms) ^[17]	I2C Max ACK Time in Setup Mode (ms) ^[17]
CS_NEG_NOISE_TH	54	RW	-	14	0.11	11
CS_LOW_BL_RST	55	RW	-	14	0.11	11
CS_FILTERING ^[20,21]	56	RW	-	20	0.11	11
CS_SCAN_POS_00	57	RW	YES	FF	-	11
CS_SCAN_POS_01	58	RW	YES	FF	_	S 11
CS_SCAN_POS_02	59	RW	YES	FF	-	11
CS_SCAN_POS_03	5A	RW	YES	FF		11
CS_SCAN_POS_04	5B	RW	YES	FF	-	11
CS_SCAN_POS_10	5C	RW	YES	FF	Ś	11
CS_SCAN_POS_11	5D	RW	YES	FF		11
CS_SCAN_POS_12	5E	RW	YES	FF		11
CS_SCAN_POS_13	5F	RW	YES	FF	-	11
CS_SCAN_POS_14	60	RW	YES	FF	-	11
CS_FINGER_TH_00	61	RW	-	64	0.14	11
CS_FINGER_TH_01	62	RW	-	64	0.14	11
CS_FINGER_TH_02	63	RW	-	64	0.14	11
CS_FINGER_TH_03	64	RW	-	64	0.14	11
CS_FINGER_TH_04	65	RW	-	64	0.14	11
CS_FINGER_TH_10	66	RW	-	64	0.14	11
CS_FINGER_TH_11	67	RW	- (64	0.14	11
CS_FINGER_TH_12	68	RW	- 0	64	0.14	11
CS_FINGER_TH_13	69	RW		64	0.14	11
CS_FINGER_TH_14	6A	RW	Š.	64	0.14	11
CS_IDAC_00	6B	RW	<u> </u>	0A	0.14	11
CS_IDAC_01	6C	RW	<u> </u>	0A	0.14	11
CS_IDAC_02	6D	RW	-	0A	0.14	11
CS_IDAC_03	6E	RW	_	0A	0.14	11
CS_IDAC_04	6F	RW	-	0A	0.14	11
CS_IDAC_10	70	ŔW		0A	0.14	11
CS_IDAC_11	71	RW	_	0A	0.14	11
CS_IDAC_12	72	RW	-	0A	0.14	11
CS_IDAC_13	73	RW		0A	0.14	11
CS_IDAC_14	74	RW	-	0A	0.14	11
	75 ^[22]					
	76 ^[22]					
	77 ^[22]					
	78 ^[22]					
I2C_ADDR_LOCK	79	RW	_	01	0.11	11
DEVICE_ID	7A	R	_	42/40/60/80/10 ^[23]	0.11	11
DEVICE_STATUS	7B	R	_	03	0.11	11
I2C_ADDR_DM	7C	RW	_	00	0.11	11

Notes

20. Errata: Added two on-chip filtering algorithms for improved CapSense performance and better noise immunity.
21. Errata: If a finger is on the sensor, during power-up the sensor triggers and the baseline gets stuck. Baseline is stuck only when Averaging Filter is enabled. For more information, see "Errata" on page 40.
22. The register 0x75–0x78, 0x7,D and 0x8A–0x8D are reserved.

23. The Device ID for different devices are tabulated in Device IDs on page 17.

Register Map (continued)

Name	Register Address (in Hex)	Access	Writable Only in SETUP Mode ^[16]	Factory Default Values of Registers (in Hex)	I2C Max ACK Time in Normal Mode (ms) ^[17]	I2C Max ACK Time in Setup Mode (ms) ^[17]	
	7D ^[25]						
SLEEP_PIN	7E	RW	YES	00	0.1	11	
SLEEP_CTRL	7F	RW	_	00	0.1	11	
SLEEP_SA_CNTR	80	RW	_	00	0.1	11	
CS_READ_BUTTON	81	RW	_	00	0.12	11	
CS_READ_BLM	82	R	_	00	0.12	11	
CS_READ_BLL	83	R	_	00	0.12	11	
CS_READ_DIFFM	84	R	_	00	0.12	11	
CS_READ_DIFFL	85	R	_	00	0.12	11	
CS_READ_RAWM	86	R	_	00	0.12	11	
CS_READ_RAWL	87	R	_	00	0.12	11	
CS_READ_STATUSM	88	R	-	00	0.12	11	
CS_READ_STATUSL	89	R	_	00	0.12	11	
	8A ^[25]			10			
	8B ^[25]			~			
	8C ^[25]						
	8D ^[25]						
COMMAND REG	A0	W	-	00	0.1	11	
command_reg ao w - to oo o.1 11							

Notes

24. These registers are writable only after entering into setup mode. All the other registers available for read and write in Normal as well as in Setup mode. 25. The register 0x75–0x78, 0x7D and 0x8A–0x8D are reserved.

Device IDs

Part Number	Device ID
CY8C20142	42
CY8C20140	40
CY8C20160	60
CY8C20180	80
CY8C20110	10

Note All the Ack times specified are maximum values with all buttons enabled and filer enabled, with maximum order for 5-V and 3.3-V operation. The timing values for 2.7-V operation will be 4x these values.

CapSense Express Commands

Command ^[26]	Description	Executable Mode	Duration the Device is not accessible after ACK (in ms) ^[27]
W 00 A0 00	Get firmware revision	Setup/Normal	0
W 00 A0 01 ^[28]	Store current configuration to NVM	Setup/Normal	120
W 00 A0 02	Restore factory configuration	Setup/Normal	120
W 00 A0 03	Write NVM POR defaults	Setup/Normal	120
W 00 A0 04	Read NVM POR defaults	Setup/Normal	5
W 00 A0 05	Read current configurations (RAM)	Setup/Normal	5
W 00 A0 06	Reconfigure device (POR)	Setup	5
W 00 A0 07	Set normal mode of operation	Setup/Normal	0
W 00 A0 08	Set setup mode of operation	Setup/Normal	1.2*(loop time ^[29] + 1 ms)
W 00 A0 09	Start scan	Setup/Normal	10
W 00 A0 0A	Stop scan	Setup/Normal	5
W 00 A0 0B	Get CapSense scan status	Setup/Normal	0

Register Conventions

This table lists the register conventions that are specific to this section.

Convention	Description
RW	Register has both read and write access
R	Register has only read access
40,	

Notes

- 26. The 'W' indicates the write transfer. The next byte of data represents the 7-bit I2C address.
- 27. The "not accessible" timing values are the maximum values for 5-V and 3.3-V operation. The timing values for 2.7-V operation will be 4x the values provided in this table. Refer to Operating Voltages on page 21.
 28. Errata: Save to flash command fails when the sleep interval is set to 512 or 64 Hz. For more information, see "Errata" on page 40.
 29. Loop time can be measured by probing any sensor using an oscilloscope and measuring the time between two consecutive scans.

Layout Guidelines and Best Practices

This section provides a set of high level rules for board design. Cypress also provides an extensive set of design guidelines for CapSense board designs. Refer to the *"Getting Started with CapSense Design Guide"* for complete system guidelines.

CapSense Button Shapes

S. No.	Category	Min	Max	Recommendations/Remarks
1	Button shape	-	_	Solid round pattern, round with LED hole, rectangle with round corners
2	Button size	5 mm	15 mm	10 mm
3	Button-button spacing	Equal to button ground clearance	Ι	8 mm [X]
4	Button ground clearance	0.5 mm	2 mm	Button ground clearance = Overlay thickness [Y]
5	Ground flood-top layer	-	-	Hatched ground 7-mil trace and 45-mil grid (15% filling)
6	Ground flood-bottom layer	-	-	Hatched ground 7-mil trace and 70-mil grid (10% filling)
7	Trace length from sensor to PSoC-buttons	-	200 mm	< 100 mm
8	Trace width	0.17 mm	0.20 mm	0.17 mm (7-mil)

Table 2. Recommended Layout Guidelines and Best Practices (continued)

S. No.	Category	Min	Max	Recommendations/Remarks
9	Trace routing	_	_	Traces should be routed on the non sensor side. If any non CapSense trace crosses CapSense trace, ensure that intersection is orthogonal.
10	Via position for the sensors	_	_	Via should be placed near the edge of the button/slider to reduce trace length thereby increasing sensitivity.
11	Via hole size for sensor traces	_	_	10-mil
12	Number of vias on sensor trace	1	2	1
13	CapSense series resistor placement	_	10 mm	Place CapSense series resistors close to PSoC for noise suppression. CapSense resistors have highest priority place them first.
14	Distance between any CapSense trace to ground flood	10-mil	20-mil	20-mil
15	Device placement	-	_	Mount the device on the layer opposite to sensor. The CapSense trace length between the device and sensors should be minimum
16	Placement of components in 2-layer PCB	_	_	Top layer – sensor pads and bottom layer – PSoC, other components, and traces.
17	Placement of components in 4-layer PCB	_	- \$	Top layer – sensor pads, second layer – CapSense traces, third layer – hatched ground, bottom layer – PSoC, other components, and non CapSense traces
18	Overlay material	- ~	0-	Should to be non conductive material. Glass, ABS plastic, Formica
19	Overlay adhesives		-	Adhesive should be non conductive and dielectrically homogenous. 467MP and 468MP adhesives made by 3M are recommended.
20	LED back lighting		-	Cut a hole in the sensor pad and use rear mountable LEDs. Refer the PCB layout below.
21	Board thickness	-	_	Standard board thickness for CapSense FR4 based designs is 1.6 mm.

The recommended maximum overlay thickness is 5 mm (with external CSInt)/ 2 mm (without external CSInt). For more details refer to the section "The Integrating Capacitor (Cint)" in AN53490. Note Some device packages does not have CSInt pin and external capacitor cannot be connected.

Example PCB Layout Design with Two CapSense Buttons and Two LEDs

Figure 10. Top Layer

Operating Voltages

For details on I²C 1x ACK time, refer to Register Map on page 13 and CapSense Express Commands on page 17. I²C 4x ACK time is approximately four times the values mentioned in these tables.

CapSense Constraints

Parameter	Min	Тур	Max	Units	Notes
Parasitic capacitance (CP) of the CapSense sensor	-	-	30	pF	-
Supply voltage variation (V _{DD})	-	-	±5%	-	-
NotRe					

Absolute Maximum Ratings

Parameter	Description	Min	Тур	Max	Unit	Notes
T _{STG}	Storage temperature	-55	25	+100	°C	Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C ± 25 °C (0 °C to 50 °C). Extended duration storage temperatures above 65 °C degrade reliability
T _{BAKETEMP}	Bake temperature	Ι	125	See Package label	°C	
^t вакетіме	Bake time	See package label	_	72	Hours	03
T _A	Ambient temperature with power applied	-40	-	+85	°C	_
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5	-	+6.0	v	_
V _{IO}	DC input voltage	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V	-
V _{IOZ}	DC voltage applied to tristate	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V	-
I _{MIO}	Maximum current into any GPIO pin	-25	<u> </u>	+50	mA	_
ESD	Electro static discharge voltage	2000	\mathbf{A}	-	V	Human body model ESD
LU	Latch-up current	-	2	200	mA	-
Operating ⁻	Temperature	and o				

Operating Temperature

Parameter	Description	Min	Тур	Max	Unit	Notes
T _A	Ambient temperature	-40	-	+85	°C	_
TJ	Junction temperature	-40	-	+100	°C	_
Υ.	NotRecoi					

Electrical Specifications DC Electrical Specifications

DC Chip-Level Specifications

Table 3. DC Chip-Level Specifications

Parameter	Description	Min	Тур	Max	Unit	Notes
V _{DD}	Supply voltage	2.40	Ι	5.25	V	-6
I _{DD}	Supply current	-	1.5	2.5	mA	Conditions are $V_{DD} = 3.10 \text{ V}$, T _A = 25 °C
ISB	Deep sleep mode current with POR and LVD active	-	2.6	4	μA	V _{DD} = 2.55 V, 0 °C < T _A < 40 °C
ISB	Deep sleep mode current with POR and LVD active	-	2.8	5	μA	V _{DD} = 3.3 V, –40 °C < T _A < 85 °C
ISB	Deep sleep mode current with POR and LVD active	_	5.2	6.4	μĀ	V _{DD} = 5.25 V, –40 °C < T _A < 85 °C

DC GPIO Specifications

This table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 4. 5-V and 3.3-V DC GPIO Specifications

Parameter	Description	Min	Тур	Max	Unit	Notes
V _{OH1}	High output voltage on Port 0 pins	V _{DD} - 0.2	20	-	V	I_{OH} < 10 μ A, V _{DD} > 3.10 V, maximum of 20 mA source current in all I/Os.
V _{OH2}	High output voltage on Port 0 pins	V _{DD} - 0.9	-	_	V	I _{OH} = 1 mA, V _{DD} > 3.10 V, maximum of 20 mA source current in all I/Os.
V _{OH3}	High output voltage on Port 1 pins	V _{DD} - 0.2	-	-	V	I_{OH} < 10 μ A, V _{DD} > 3.10 V, maximum of 20 mA source current in all I/Os.
V _{OH4}	High output voltage on Port 1 pins	V _{DD} – 0.9	-	-	V	I _{OH} = 5 mA, V _{DD} > 3.10 V, maximum of 20 mA source current in all I/Os.
V _{OL}	Low output voltage	-	-	0.75	v	$I_{OL} = 20$ mA/pin, $V_{DD} > 3.10$, maximum of 40/60 mA sink current on even port pins and of 40/60 mA sink current on odd port pins. ^[30]
I _{OH1}	High output current on Port 0 pins	0.01	-	1	mA	$V_{DD} \supseteq 3.1 \text{ V}$, maximum of 20 mA source current in all IOs
I _{OH2}	High output current on Port 1 pins	0.01	-	5	mA	$V_{DD} \ge 3.1$ V, maximum of 20 mA source current in all IOs
I _{OL}	Low output current	-	-	20	mA	$V_{DD} \ge 3.1 \text{ V}$, maximum of 60 mA sink current on pins P0_2, P1_2, P1_3, P1_4 and 60 mA sink current on pins P0_0, P0_1, P0_3, P0_4, P1_0, P1_1
V _{IL}	Input low voltage	_	_	0.75	V	V _{DD} = 3.10 V to 3.6 V.
V _{IH}	Input high voltage	1.6	_	Ι	V	V _{DD} = 3.10 V to 3.6 V.
V _{IL}	Input low voltage	_	_	0.8	V	V _{DD} = 4.75 V to 5.25 V.
V _{IH}	Input high voltage	2.0	-	-	V	V _{DD} = 4.75 V to 5.25 V.

Note

30. The maximum sink current is 40 mA for 20140 and 20142 devices and for all other devices the maximum sink current is 60 mA.

Table 4. 5-V and 3.3-V DC GPIO Specifications (continued)

Parameter	Description	Min	Тур	Max	Unit	Notes
V _H	Input hysteresis voltage	-	140	Ι	mV	_
IIL	Input leakage	-	1	Ι	nA	Gross tested to 1 µA.
C _{IN}	Capacitive load on pins as input	0.5	1.7	5	pF	Package and pin dependent. Temp = 25 °C.
C _{OUT}	Capacitive load on pins as output	0.5	1.7	5	pF	Package and pin dependent. Temp = 25 °C.

This table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 2.4 V to 2.90 V and -40 °C < T_A < 85 °C, respectively. Typical parameters apply to 2.7 V at 25 °C and are for design guidance only.

Table 5. 2.7-V DC GPIO Specifications

Parameter	Description	Min	Тур	Max	Unit	Notes
V _{OH1}	High output voltage on Port 0 pins	V _{DD} - 0.2	-	-	N	I _{OH} <10 μA, maximum of 10 mA source current in all I/Os.
V _{OH2}	High output voltage on Port 0 pins	V _{DD} - 0.5	_	1	v	I _{OH} = 0.2 mA, maximum of 10 mA source current in all I/Os.
V _{OH3}	High output voltage on Port 1 pins	V _{DD} - 0.2	-		V	I _{OH} <10 μA, maximum of 10 mA source current in all I/Os.
V _{OH4}	High output voltage on Port 1 pins	V _{DD} – 0.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~) _	V	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os.
V _{OL1}	Low output voltage	6	<u>0</u>	0.75	v	I_{OL} = 10 mA/pin, V_{DD} > 3.10, maximum of 20/30 mA sink current on even port pins and of 20/30 mA sink current on odd port pins. ^[31]
I _{OH}	High output current	0.01	-	2	mA	$V_{DD} \le 2.9 V$, maximum of 10 mA source current in all I/Os
I _{OL1}	Low output current on Port 0 pins	_	_	10	mA	$V_{DD} \le 2.9 V$, maximum of 30 mA sink current on pins P0_2, P1_2, P1_3, P1_4 and 30 mA sink current on pins P0_0, P0_1, P0_3, P0_4, P1_0, P1_1
I _{OL2}	Low output current	_	_	20	mA	$V_{DD} \le 2.9$ V, maximum of 50 mA sink current on pins P0_2, P1_2, P1_3, P1_4 and 50 mA sink current on pins P0_0, P0_1, P0_3, P0_4, P1_0, P1_1
V _{IL}	Input low voltage	-	-	0.75	V	V _{DD} = 2.4 to 2.90 V and 3.10 V to 3.6 V.
V _{IH1}	Input high voltage	1.4	-	-	V	V _{DD} = 2.4 to 2.7 V.
V _{IH2}	Input high voltage	1.6	-	_	V	V _{DD} = 2.7 to 2.90 V and 3.10 V to 3.6 V.
V _H	Input hysteresis voltage	-	60	_	mV	
IIL	Input leakage	_	1	_	nA	Gross tested to 1 µA.
C _{IN}	Capacitive load on pins as input	0.5	1.7	5	pF	Package and pin dependent. Temp = 25 °C.
C _{OUT}	Capacitive load on pins as output	0.5	1.7	5	pF	Package and pin dependent. Temp = 25 °C

Note

31. The maximum sink current per port is 20 mA for 20140 and 20142 devices and for all other devices the maximum sink current is 30 mA.

DC POR and LVD Specifications

Table 6. DC POR and LVD Specifications

Parameter	Description	Min	Тур	Max	Unit	Notes
V _{PPOR0} V _{PPOR1}	V_{DD} value for PPOR trip $V_{DD} = 2.7 V$ $V_{DD} = 3.3 V, 5 V$		2.36 2.60	2.40 2.65	V V	V _{DD} must be greater than or equal to 2.5 V during startup or internal reset.
V _{LVD0} V _{LVD2} V _{LVD6}	$V_{DD} \text{ value for LVD trip} \\ V_{DD} = 2.7 \text{ V} \\ V_{DD} = 3.3 \text{ V} \\ V_{DD} = 5 \text{ V} \\ \end{cases}$	2.39 2.75 3.98	2.45 2.92 4.05	2.51 2.99 4.12	V V V	<u>I</u> S

DC Flash Write Specifications

This table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C < T_A < 85 \degree C$, 3.10 V to 3.6 V and $-40 \degree C < T_A < 85 \degree C$ or 2.4 V to 2.90 V and $-40 \degree C < T_A < 85 \degree C$, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only. Flash Endurance and Retention specifications are valid only within the range: 25 °C ± 20 °C during the flash write operation. It is at the user's own risk to operate out of this temperature range, the endurance and data retention reduces.

Table 7. DC Flash Write Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDIWRITE}	Supply voltage for flash write operations	2.7	-	1	V	-
I _{DDP}	Supply current for flash write operations	-	5, (25	mA	-
Flash _{ENPB}	Flash endurance	50,000 ^[32]	<u> </u>	_	-	Erase/write cycles
Flash _{DR}	Flash data retention	10	Ċ,	-	Years	_

DC I²C Specifications

This table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, 3.10 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$. Typical parameters apply to 5 V and 3.3 V at 25 $\degree C$ and are for design guidance only.

Table 8. DC I²C Specifications

Symbol ^[33]	Description	Min	Тур	Max	Units	Notes
V _{ILI2C}	Input low level	-	_	$0.3 \times V_{DD}$	V	$\begin{array}{l} 2.4 \ V \leq V_{DD} \leq 2.9 \ V \\ 3.1 \ V \leq V_{DD} \leq 3.6 \ V \end{array}$
		-	-	$0.25 \times V_{DD}$	V	$4.75~V \leq V_{DD} \leq 5.25~V$
V _{IHI2C}	Input high level	$0.7 \times V_{DD}$	-	-	V	$2.4~V \leq V_{DD} \leq 5.25~V$
V _{OLP}	Low output voltage	_	-	0.4	V	I _{OL} = 5 mA/pin
C _{I2C}	Capacitive load on I ² C pins	0.5	1.7	5	pF	Package and pin dependent. Temp = 25 °C
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	_

Notes

32. Commands involving flash writes (0x01, 0x02, 0x03) and flash read (0x04) must be executed only within the same V_{CC} voltage range detected at POR (power on, or command 0x06) and above 2.7 V.

33. All GPIOs meet the DC GPIO V_{IL} and V_{IH} specifications found in the DC GPIO Specifications sections. The I²C GPIO pins also meet the above specs.