imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CY8C20xx7/S

1.8 V CapSense[®] Controller with SmartSense[™] Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors

Features

- QuietZone™ Controller
 - □ Patented Capacitive Sigma Delta PLUS (CSD PLUS™) sensing algorithm for robust performance
 - High Sensitivity (0.1 pF) and best-in-class SNR performance to support:
 - Overlay thickness of 15 mm for glass and 5 mm plastic
 - Proximity Solutions
 - Superior noise immunity performance against conducted and radiated noise and ultra low radiated emissions
 - · Standardized user modules for overcoming noise
- Low power CapSense® block with SmartSense Auto-tuning Dow average power consumption –
 - 28 μA/sensor in run time (wake-up and scan once every 125 ms)
 - □ SmartSense EMC PLUS Auto-Tuning
 - Sets and maintains optimal sensor performance during run time
 - Eliminates system tuning during development and production
 - Compensates for variations in manufacturing process
- Driven shield available on five GPIO pins
 - Delivers best-in class water tolerant designs
 - □ Robust proximity sensing in the presence of metal objects
 - □ Supports longer trace lengths
 - Max load of 100 pF (3 MHz)
- Powerful Harvard-architecture processor
 M8C CPU with a max speed of 24 MHz
- Operating Range: 1.71 V to 5.5 V
 □ Standby Mode 1.1 µA (Typ)
 □ Deep Sleep 0.1 µA (Typ)
- Operating Temperature range: -40 °C to +85 °C
- Flexible on-chip memory
 - □ 8 KB flash, 1 KB SRAM
 - 16 KB flash, 2 KB SRAM
 - 32 KB flash, 2 KB SRAM
 - □ 50,000 flash erase/write cycles
 - □ Read while Write with EEPROM emulation
 - In-system programming simplifies manufacturing process

- 4 Clock Sources
 - □ Internal main oscillator (IMO): 6/12/24 MHz
 - Internal low-speed oscillator (ILO) at 32 kHz for watchdog and sleep timers
 - External 32 KHz Crystal Oscillator
 - External Clock Input
- Programmable pin configurations
 - □ Up to 34 general-purpose I/Os (GPIOs)
 - Dual mode GPIO (Analog and Digital)
 - □ High sink current of 25 mA per GPIO
 - Max sink current 120 mA for all I/Os combined
 - Source Current
 - 5 mA on ports 0 and 1
 - 1 mA on ports 2, 3 and 4
 - Configurable internal pull-up, high-Z and open drain modes
 Selectable, regulated digital I/O on port 1
 - Generative, regulated digital I/O on port
 Configurable input threshold on port 1
- Versatile Analog functions
 - Internal analog bus supports connection of multiple sensors to form ganged proximity sensor
 - Internal Low-Dropout voltage regulator for high power supply rejection ratio (PSRR)
- Additional system resources
 - □ I²C Slave:
 - Selectable to 50 kHz, 100 kHz, or 400 kHz
 - Selectable Clock stretch or Forced Nack Mode
 - I²C wake from sleep with Hardware address match
 - 12 MHz (Configurable) SPI master and slave
 - Three 16-bit timers
 - Watchdog and sleep timers
 - Integrated supervisory circuit
 - I0-bit incremental analog-to-digital converter (ADC) with internal voltage reference
 - Two general-purpose high speed, low power analog comparators
- Complete development tools
- □ Free development tool (PSoC Designer™)
- Sensor and Package options
- □ 10 Sensing Inputs 16-pin QFN, 16-pin SOIC
- □ 16 Sensing Inputs 24-pin QFN
- 24 Sensing Inputs 30-pin WLCSP
- □ 25 Sensing Inputs 32-pin QFN
- I 31 Sensing Inputs 48-pin QFN

Errata: For information on silicon errata, see "Errata" on page 37. Details include trigger conditions, devices affected, and proposed workaround.

Logic Block Diagram

CY8C20xx7/S

Contents

PSoC [®] Functional Overview	4
PSoC Core	4
CapSense System	4
Additional System Resources	5
Getting Started	5
Application Notes/Design Guides	5
Development Kits	5
Training	5
CYPros Consultants	5
Solutions Library	5
Technical Support	5
Designing with PSoC Designer	6
Select Components	6
Configure Components	6
Organize and Connect	6
Generate, Verify, and Debug	6
Pinouts	7
16-pin SOIC (10 Sensing Inputs)	7
16-pin QFN (10 Sensing Inputs)[9]	8
24-pin QFN (16 Sensing Inputs)[15]	9
30-ball WLCSP (24 Sensing Inputs)	. 10
32-pin QFN (25 Sensing Inputs)[26]	.11
48-pin QFN (31 Sensing Inputs)[32]	12
Electrical Specifications	.13
Absolute Maximum Ratings	.13
Operating Temperature	13
DC Chip-I evel Specifications	. 14
DC GPIO Specifications	15
DC Analog Mux Bus Specifications	17
DC Low Power Comparator Specifications	17
Comparator User Module Electrical Specifications	18
ADC Electrical Specifications	18
DC POR and LVD Specifications	10
DC Programming Specifications	10
DC 170gramming Opeonications	פו. חכ
Shield Driver DC Specifications	.∠∪ ^2
	. 20

DC IDAC Specifications	
AC Chip-Level Specifications	
AC General Purpose I/O Specifications	
AC Comparator Specifications	
AC External Clock Specifications	
AC Programming Specifications	
AC I2C Specifications	
Packaging Information	27
Thermal Impedances	
Capacitance on Crystal Pins	
Solder Reflow Peak Temperature	
Development Tool Selection	31
Software	31
Development Kits	31
Evaluation Tools	31
Device Programmers	
Third Party Tools	
Ordering Information	33
Ordering Code Definitions	
Acronyms	35
Reference Documents	35
Document Conventions	
Units of Measure	35
Numeric Naming	
Glossary	36
Errata	37
CY8C20xx7/S Qualification Status	
CY8C20xx7/S Errata Summary	
Document History Page	41
Sales, Solutions, and Legal Information	45
Worldwide Sales and Design Support	45
Products	45
PSoC® Solutions	45
Cypress Developer Community	45
Technical Support	45

PSoC[®] Functional Overview

The PSoC family consists of many devices with on-chip controllers. These devices are designed to replace multiple traditional MCU-based system components with one low-cost single-chip programmable component. A PSoC device includes configurable blocks of analog and digital logic, and programmable interconnect. This architecture makes it possible for you to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast central processing unit (CPU), flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The architecture for this device family, as shown in the "Logic Block Diagram" on page 2, consists of three main areas:

- The core
- CapSense analog system
- System resources

A common, versatile bus allows connection between I/O and the analog system.

Each CY8C20x37/47/67/S PSoC device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 34 GPIOs are also included. The GPIOs provide access to the MCU and analog mux.

PSoC Core

The PSoC core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO and ILO. The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-million instructions per second (MIPS), 8-bit Harvard-architecture microprocessor.

CapSense System

The analog system contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. The analog system is composed of the CapSense PSoC block and an internal 1 V or 1.2 V analog reference, which together support capacitive sensing of up to 31 inputs^[2]. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins is completed quickly and easily across multiple ports.

SmartSense™ Auto-tuning

SmartSense auto-tuning is an innovative solution from Cypress that removes manual tuning of CapSense applications. This solution is easy to use and provides robust noise immunity. It is the only auto-tuning solution that establishes, monitors, and maintains all required tuning parameters of each sensor during run time. SmartSense auto-tuning allows engineers to go from prototyping to mass production without retuning for manufacturing variations in PCB and/or overlay material properties.

Figure 1. CapSense System Block Diagram

Analog Multiplexer System

The analog mux bus can connect to every GPIO pin. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with the CapSense block comparator.

Switch-control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Complex capacitive sensing interfaces, such as sliders and touchpads.
- Chip-wide mux that allows analog input from any I/O pin.
- Crosspoint connection between any I/O pin combinations.

Note

2. 34 GPIOs = 31 pins for capacitive sensing+2 pins for $I^2C + 1$ pin for modulator capacitor.

Additional System Resources

System resources provide additional capability, such as configurable I^2C slave, SPI master/slave communication interface, three 16-bit programmable timers, various system resets supported by the M8C low voltage detection and power-on reset. The merits of each system resource are listed here:

- The I²C slave/SPI master-slave module provides 50/100/ 400 kHz communication over two wires. SPI communication over three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock).
- The I²C hardware address recognition feature reduces the already low power consumption by eliminating the need for CPU intervention until a packet addressed to the target device is received.
- The I²C enhanced slave interface appears as a 32-byte RAM buffer to the external I²C master. Using a simple predefined protocol, the master controls the read and write pointers into the RAM. When this method is enabled, the slave does not stall the bus when receiving data bytes in active mode. For more details, refer to the I2CSBUF User Module datasheet.
- Low-voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced poweron reset (POR) circuit eliminates the need for a system supervisor.
- An internal reference provides an absolute reference for capacitive sensing.
- A register-controlled bypass mode allows the user to disable the LDO regulator.

Getting Started

The quickest way to understand PSoC silicon is to read this datasheet and then use the PSoC Designer Integrated Development Environment (IDE). This datasheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming details, see the Technical Reference Manual for the CY8C20x37/ 47/67/S PSoC devices.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web at www.cypress.com/psoc.

Application Notes/Design Guides

Application notes and design guides are an excellent introduction to the wide variety of possible PSoC designs. They are located at www.cypress.com/gocapsense. Select Application Notes under the Related Documentation tab.

Development Kits

PSoC Development Kits are available online from Cypress at www.cypress.com/shop and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark. See "Development Kits" on page 31.

Training

Free PSoC and CapSense technical training (on demand, webinars, and workshops) is available online at www.cypress.com/training. The training covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to www.cypress.com/cypros.

Solutions Library

Visit our growing library of solution focused designs at www.cypress.com/solutions. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

For assistance with technical issues, search KnowledgeBase articles and forums at www.cypress.com/support. If you cannot find an answer to your question, create a technical support case or call technical support at 1-800-541-4736.

Designing with PSoC Designer

The PSoC development process can be summarized in the following four steps:

- 1. Select User Modules
- 2. Configure User Modules
- 3. Organize and Connect
- 4. Generate and Verify

Select Components

PSoC Designer provides a library of pre-built, pre-tested hardware peripheral components called "user modules". User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure Components

Each of the User Modules you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the User Module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in C, assembly language, or both.

Pinouts

The CY8C20x37/47/67/S PSoC device is available in a variety of packages, which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of digital I/O and connection to the common analog bus. However, V_{SS}, V_{DD}, and XRES are not capable of digital I/O.

16-pin SOIC (10 Sensing Inputs)

Pin	Ту	pe	Namo	Description
No.	Digital	Analog	Marine	Description
1	I/O	I	P0[3]	Integrating Input
2	I/O	I	P0[1]	Integrating Input
3	I/O	I	P2[5]	Crystal output (XOut)
4	I/O	I	P2[3]	Crystal input (XIn)
5	I/O	I	P1[7]	I2C SCL, SPI SS
6	I/O	I	P1[5]	I2C SDA, SPI MISO
7	I/O	I	P1[3]	
8	I/O	I	P1[1]	ISSP CLK ^[4] , I ² C SCL, SPI MOSI
9	Po	wer	V_{SS}	Ground connection ^[7]
10	I/O	I	P1[0]	ISSP DATA ^[4] , I ² C SDA, SPI CLK ^[5]
11	I/O	I	P1[2]	Driven Shield Output (optional)
12	I/O	I	P1[4]	Optional external clock (EXTCLK)
13	INPUT		XRES	Active high external reset with internal pull-down ^[6]
14	I/O	I	P0[4]	
15	Po	wer	V _{DD}	Supply voltage
16	I/O	I	P0[7]	

Table 1. Pin Definitions – CY8C20237-24SXI, CY8C20247/S-24SXI ^[3]

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

 Notes
 13 GPIOs = 10 pins for capacitive sensing+2 pins for I²C + 1 pin for modulator capacitor.
 On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use character area in the provide the state. alternate pins if you encounter issues.

5. Alternate SPI clock.

7. All VSS pins should be brought out to one common GND plane.

The internal pull down is 5KOhm. 6.

CY8C20xx7/S

16-pin QFN (10 Sensing Inputs)^[8]

Table 2. Pin Definitions – CY8C20237, CY8C20247/S^[9]

Pin	Ту	ре	Namo	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	I	P2[3]	Crystal input (XIn)
3	IOHR	I	P1[7]	I ² C SCL, SPI SS
4	IOHR	I	P1[5]	I ² C SDA, SPI MISO
5	IOHR	I	P1[3]	SPI CLK
6	IOHR	I	P1[1]	ISSP CLK ^[10] , I ² C SCL, SPI MOSI
7	Power		V_{SS}	Ground connection ^[13]
8	IOHR	IOHR I		ISSP DATA ^[10] , I ² C SDA, SPI CLK ^[11]
9	IOHR	I	P1[2]	Driven Shield Output (optional)
10	IOHR	I	P1[4]	Optional external clock (EXTCLK)
11	In	put	XRES	Active high external reset with internal pull-down ^[12]
12	IOH	Ι	P0[4]	
13	Po	wer	V_{DD}	Supply voltage
14	IOH	Ι	P0[7]	
15	IOH	Ι	P0[3]	Integrating input
16	IOH	I	P0[1]	Integrating input

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- No center pad.
 13 GPIOs = 10 pins for capacitive sensing+2 pins for I²C + 1 pin for modulator capacitor.
 On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use cloced prior to be added to be alternate pins if you encounter issues. 11. Alternate SPI clock.

^{12.} The internal pull down is 5KOhm.

^{13.} All VSS pins should be brought out to one common GND plane.

24-pin QFN (16 Sensing Inputs)^[14]

Table 3. Pin Definitions – CY8C20337, CY8C20347/S ^[15]

Pin	Ту	ре	Namo	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	Ι	P2[3]	Crystal input (XIn)
3	I/O	Ι	P2[1]	
4	IOHR	I	P1[7]	I ² C SCL, SPI SS
5	IOHR	I	P1[5]	I ² C SDA, SPI MISO
6	IOHR	Ι	P1[3]	SPI CLK
7	IOHR	I	P1[1]	ISSP CLK ^[16] , I ² C SCL, SPI MOSI
8			NC	No connection
9	Po	wer	V_{SS}	Ground connection ^[19]
10	IOHR	I	P1[0]	ISSP DATA ^[16] , I ² C SDA, SPI CLK ^[17]
11	IOHR	Ι	P1[2]	Driven Shield Output (optional)
12	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
13	IOHR	I	P1[6]	
14	Inj	out	XRES	Active high external reset with internal pull-down ^[18]
15	I/O	Ι	P2[2]	Driven Shield Output (optional)
16	I/O	I	P2[4]	Driven Shield Output (optional)
17	IOH	Ι	P0[0]	Driven Shield Output (optional)
18	IOH	Ι	P0[2]	Driven Shield Output (optional)
19	IOH	I	P0[4]	
20	Po	wer	V_{DD}	Supply voltage
21	IOH	I	P0[7]	
22	IOH	I	P0[3]	Integrating input
23	Po	wer	V_{SS}	Ground connection ^[19]
24	IOH	I	P0[1]	Integrating input
СР	Po	wer	V_{SS}	Center pad must be connected to ground

Figure 4. CY8C20337, CY8C20347/S Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- 14. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal. 15. 19 GPIOs = 16 pins for capacitive sensing+2 pins for $I^2C + 1$ pin for modulator capacitor.
- 16. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use alternate pins if you encounter issues.

^{17.} Alternate SPI clock.

^{18.} The internal pull down is 5KOhm.

^{19.} All VSS pins should be brought out to one common GND plane.

30-ball WLCSP (24 Sensing Inputs)

Table 4. Pin Definitions – CY8C20767, CY8C20747 30-ball Part Pinout (WLCSP) ^[20]

	тур	e		
Pin No.	Digital	Analog	Name	Description
A1	IOH	I	P0[2]	Driven Shield Output (optional)
A2	IOH	I	P0[6]	
A3	Pow	er	V _{DD}	Supply voltage
A4	IOH	I	P0[1]	Integrating Input
A5	I/O	I	P2[7]	
B1	I/O	I	P4[2]	
B2	IOH	I	P0[0]	Driven Shield Output (optional)
B3	IOH	I	P0[4]	
B4	IOH	I	P0[3]	Integrating Input
B5	I/O	I	P2[5]	Crystal Output (Xout)
C1	I/O	I	P2[2]	Driven Shield Output (optional)
C2	I/O	I	P2[4]	Driven Shield Output (optional)
C3	I/O	I	P0[7]	
C4	IOH	I	P3[2]	
C5	I/O	I	P2[3]	Crystal Input (Xin)
D1	I/O	I	P2[0]	
D2	I/O	I	P3[0]	
D3	I/O	I	P3[1]	
D4	I/O	I	P3[3]	
D5	I/O	I	P2[1]	
E1	Inp	ut	XRES	Active high external reset with internal pull-down ^[21]
E2	IOHR	I	P1[6]	
E3	IOHR	I	P1[4]	Optional external clock input (EXT CLK)
E4	IOHR	I	P1[7]	I ² C SCL, SPI SS
E5	IOHR	I	P1[5]	I ² C SDA, SPI MISO
F1	IOHR	I	P1[2]	Driven Shield Output (optional)
F2	IOHR	Ι	P1[0]	ISSP DATA ^[22] , I ² C SDA, SPI CLK ^[23]
F3	Pow	er	V _{SS}	Supply ground ^[24]
F4	IOHR	Ι	P1[1]	ISSP CLK ^[22] , I ² C SCL, SPI MOSI
F5	IOHR	I	P1[3]	SPI CLK

LEGEND: A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output

Notes

20.27 GPIOs = 24 pins for capacitive sensing+2 pins for $I^2C + 1$ pin for modulator capacitor.

21. The internal pull down is 5KOhm.

On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use alternate pins if you encounter issues.

23. Alternate SPI clock.

24. All VSS pins should be brought out to one common GND plane.

P2[4], AI

P2[2], AI

P2[0], AI

P4[2], AI

P4[0], AI

P3[2], Al

P3[0], AI

XRES

24

23

22

21

20

19

18

32-pin QFN (25 Sensing Inputs)^[25] Table 5. Pin Definitions - CY8C20437, CY8C20447/S, CY8C20467/S [26]

Pin	Ту	/pe	Namo	Description
No.	Digital	Analog	Name	Description
1	IOH	I	P0[1]	Integrating input
2	I/O	I	P2[5]	Crystal output (XOut)
3	I/O	I	P2[3]	Crystal input (XIn)
4	I/O	I	P2[1]	
5	I/O	I	P4[3]	
6	I/O	I	P3[3]	
7	I/O	I	P3[1]	
8	IOHR	I	P1[7]	I ² C SCL, SPI SS
9	IOHR	I	P1[5]	I ² C SDA, SPI MISO
10	IOHR	I	P1[3]	SPI CLK.
11	IOHR	I	P1[1]	ISSP CLK ^[27] , I ² C SCL, SPI MOSI.
12	Po	wer	V _{SS}	Ground connection ^[30]
13	IOHR	I	P1[0]	ISSP DATA ^[27] , I ² C SDA, SPI CLK ^[28]
14	IOHR		P1[2]	Driven Shield Output (optional)
15	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
16	IOHR	I	P1[6]	
17	In	put	XRES	Active high external reset with internal pull-down ^[29]
18	I/O	I	P3[0]	
19	I/O	I	P3[2]	
20	I/O	I	P4[0]	
21	I/O	I	P4[2]	
22	I/O	I	P2[0]	
23	I/O	I	P2[2]	Driven Shield Output (optional)
24	I/O	I	P2[4]	Driven Shield Output (optional)
25	IOH	I	P0[0]	Driven Shield Output (optional)
26	IOH	I	P0[2]	Driven Shield Output (optional)
27	IOH	I	P0[4]	
28	IOH	I	P0[6]	
29	Po	wer	V_{DD}	
30	IOH	I	P0[7]	
31	IOH		P0[3]	Integrating input
32	Po	wer	V _{SS}	Ground connection ^[30]
СР	Po	wer	V _{SS}	Center pad must be connected to ground

Figure 6. CY8C20437, CY8C20447/S, CY8C20467/S Device

1

2

4

– 3

5

6

7

AI, 12C SDA, SPI MISO, P 1[5] AI, SPI CLK, P1[3] AI,ISSP CLK, I2C SCL, SPI MOSI, P1[1]

AI, P0[1]

AI, P2[1]

AI, P4[3]

AI, P3[3]

AI, P3[1]

AI, XOut, P2[5]

AI, I2C SCL, SPI SS,P1[7]

AI, XIn, P2[3]

ਵ ਵ

ৰ ৰ ৰ ৰ

Vss Po[3], Po[7], V_{DD} Po[6], Po[4], Po[2], Po[0],

QFN

(Top View)

Vss v, SPI CLK, P1[0] AI, P1[2]

ISSP DATA , I2C SDA,

Ā

, P 1[4]

ĒX

Ę

P 1[6] CLK, Ę

П. П. П.

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

25. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal. 26.28 GPIOs = 25 pins for capacitive sensing+2 pins for $l^2C + 1$ pin for modulator capacitor.

 On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the l²C bus. Use alternate pins if you encounter issues.

28. Alternate SPI clock.

29. The internal pull down is 5KOhm.

^{30.} All VSS pins should be brought out to one common GND plane.

48-pin QFN (31 Sensing Inputs)^[31] Table 6. Pin Definitions – CY8C20637, CY8C20647/S, CY8C20667/S [32]

Figure 7. CY8C20637, CY8C20647/S, CY8C20667/S Device Description ŝ Analog Name Digital P0(1), AI Vss P0(3), AI P0(7), AI NC NC NC P0(6), AI P0(6), AI P0(2), AI P0(2), AI P0(0), AI Ы. NC No connection 1/0 P2[7] 2 Т 3 I/O I P2[5] Crystal output (XOut) I/O P2[3] Crystal input (XIn) 4 I 1/0 P2[1] 5 Т P4[3] 6 1/0 Ι P4[1] I/O 7 Т I/O P3[7] 8 Т 1/0 P3[5] 9 Т 10 I/O P3[3] Т 11 1/0 P3[1] I

No connection				NC		44444	8883	NC
Crystal output (XOut)	-			AI ,P2[7]	a 2		35	P2[4],AI
Crystal input (XIn)	-		AI,	XOut,P2[5]	a 3		34	P2[2],AI
			A	Xln ,P2[3] ,	= 4		33=	P2[0],AI
				AI ,P2[1]	= 5		32	P4[2],AI
				AI ,P4[3]	– 6	QFN	31=	P4[0],AI
				AI ,P4[1]	9 7	(Top View)	30=	P3[6],AI
	-			AI ,P3[7]	9 8		29	P3[4], AI
	-			AI ,P3[5]	9		28	P3[2],AI
	-			AI ,P3[3]	1 0		27	P3[0],AI
I ² C SCL, SPI SS	•	AI ,12 C	SCL S	AI P3[1] [7] SPI SS,P1	■12 ⁰² 72 12 12 12 12 12 12 12 12 12 12 12 12 12	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26 27 23 23 25	XRES P1[6],Al
I ² C SDA, SPI MISO	1							
No connection	1				[] N C []	E S N N P	[4] [4] [5] [4] [5]	
No connection	1				<u>–</u> –	<u>م</u>	ж С. 	
SPI CLK	1				0, A 6, Al	SOV	C Z Z	
ISSP CLK ^[33] , I ² C SCL, SPI MOSI							EXT SP	
Ground connection ^[36]	1				SPI I	ਨ ਜ	A, A,	
No connection	1)A, 9	0 S O	SC	
No connection					S S C	, 120	Ξ.	
Supply voltage					120	OLK	DAT	
ISSP DATA ^[33] , I ² C SDA, SPI CLK ^[34]	1					SP	SPI	
Driven Shield Output (optional)						S S	ŝ	
Optional external clock input	1					A	A	
(EXTCLK)								
Active high external reset with								
internal pull-down ^[35]								
					•			
			_				u U	
	٩	ital	loc	a			ipti	
	in	Dig	Ana	Na			scr	
							Ď	
	40	IOH	I	P0[6]				
	41	Pov	ver	V _{DD}	Supply voltage	je		
	42			NC	No connectio	n		
	43			NC	No connectio	n		
Driven Shield Output (optional)	44	IOH	I	P0[7]				

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Notes

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

34

35

36

37

38

39

IOHR

IOHR

IOHR

IOHR

IOHR

IOHR

IOHR

IOHR

I/O

I/O

1/0

1/0

I/O

1/0

I/O

I/O

I/O

IOH

IOH

IOH

Power

Power

Input

Т

Т

T

Т

Τ

Τ

Т

Т

Т

Т

Т

Т

Т

Ι

P1[7]

P1[5]

NC

NC

P1[3]

P1[1]

 \overline{V}_{SS}

NC

NC

V_{DD} P1[0]

P1[2]

P1[4]

P1[6]

XRES

P3[0]

P3[2]

P3[4]

P3[6]

P4[0]

P4[2]

P2[0]

P2[2]

P2[4]

P0[0]

P0[2]

P0[4]

NC

Τ

Т

31. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal. 32.34 GPIOs = 31 pins for capacitive sensing+2 pins for $l^2C + 1$ pin for modulator capacitor.

IOH

IOH

Power

Power

1

NC

P0[3]

V_{SS} P0[1]

 V_{SS}

No connection

Integrating input

Integrating input

Ground connection[36

Center pad must be connected to ground

45

46

47

48

CP

Driven Shield Output (optional)

Driven Shield Output (optional)

Driven Shield Output (optional)

No connection

 On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use alternate pins if you encounter issues.

34. Alternate SPI clock.

35. The internal pull down is 5KOhm.

36. All VSS pins should be brought out to one common GND plane.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20x37/47/67/S PSoC devices. For the latest electrical specifications, confirm that you have the most recent datasheet by visiting the web at http://www.cypress.com/psoc.

Figure 8. Voltage versus CPU Frequency

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 7. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{STG}	Storage temperature	Higher storage temperatures reduce data retention time. Recommended Storage Temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85 °C degrades reliability.	-55	+25	+125	°C
V _{DD}	Supply voltage relative to V_{SS}	-	-0.5	-	+6.0	V
V _{IO}	DC input voltage	-	$V_{SS} - 0.5$	-	$V_{DD} + 0.5$	V
V _{IOZ}	DC voltage applied to tristate	-	$V_{SS} - 0.5$	-	$V_{DD} + 0.5$	V
I _{MIO}	Maximum current into any port pin	_	-25	_	+50	mA
ESD	Electro static discharge voltage	Human body model ESD	2000	_	-	V
LU	Latch up current	In accordance with JESD78 standard	-	_	200	mA

Operating Temperature

Table 8. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Max	Units
T _A	Ambient temperature	-	-40	-	+85	°C
Т _С	Commercial temperature range	-	0		70	°C
TJ	Operational die temperature	The temperature rise from ambient to junction is package specific. See the Thermal Imped- ances on page 30. The user must limit the power consumption to comply with this requirement.	-40	Ι	+100	°C

DC Chip-Level Specifications

Table 9 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 9. DC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{DD} ^[37, 38, 39]	Supply voltage	See Table 14 on page 17.	1.71	-	5.50	V
I _{DD24}	Supply current, IMO = 24 MHz	Conditions are V _{DD} \leq 3.0 V, T _A = 25 °C, CPU = 24 MHz. CapSense running at 12 MHz, no I/O sourcing current	_	2.88	4.00	mA
I _{DD12}	Supply current, IMO = 12 MHz	Conditions are $V_{DD} \le 3.0$ V, $T_A = 25$ °C, CPU = 12 MHz. CapSense running at 12 MHz, no I/O sourcing current	_	1.71	2.60	mA
I _{DD6}	Supply current, IMO = 6 MHz	Conditions are $V_{DD} \le 3.0$ V, $T_A = 25$ °C, CPU = 6 MHz. CapSense running at 6 MHz, no I/O sourcing current	-	1.16	1.80	mA
I _{SB0} ^[40, 41, 42, 43]	Deep sleep current	$V_{DD} \leq 3.0$ V, T_A = 25 °C, I/O regulator turned off	-	0.10	1.1	μΑ
I _{SB1} ^[40, 41, 42, 43]	Standby current with POR, LVD and sleep timer	$V_{DD}\!\leq\!3.0$ V, T_A = 25 °C, I/O regulator turned off	_	1.07	1.50	μA
I _{SBI2C} ^[40, 41, 42, 43]	Standby current with I ² C enabled	Conditions are V_{DD} = 3.3 V, T_A = 25 °C and CPU = 24 MHz	_	1.64	_	μA

Notes

Notes
37. When V_{DD} remains in the range from 1.71 V to 1.9 V for more than 50 µs, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be slower than 1 V/500 µs to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SR_{POWER_UP} parameter.
38. If powering down in standby sleep mode, to properly detect and recover from a V_{DD} brown out condition any of the following actions must be taken:

a. Bring the device out of sleep before powering down.
b. Assure that V_{DD} falls below 100 mV before powering back up.
c. Set the No Buzz bit in the OSC_CR0 register to keep the voltage monitoring circuit powered during sleep.
d. Increase the buzz rate to assure that the falling edge of V_{DD} is captured. The rate is configured through the PSSDC bits in the SLP_CFG register. For the referenced registers, refer to the Technical Reference Manual. In deep sleep/standby sleep mode, additional low power voltage monitoring circuitry allows V_{DD} brown out conditions to be detected and resets the device when V_{DD} goes lower than 1.1 V at edge rates slower than 1 V/ms.
39. For proper CapSense block functionality, if the drop in V_{DD} exceeds 5% of the base V_{DD}, the rate at which V_{DD} drops should not exceed 200 mV/s. Base V_{DD} can

39. For proper CapSense block functionality, if the drop in VDp exceeds 5% of the base VDp, the rate at which VDp drops should not exceed 200 mV/s. Base VDp can be between 1.8 V and 5.5 V.

40. Errata: When programmable timer 0 is used in "one-shot" mode by setting bit 1 of register 0,B0h (PT0_CFG), and the timer interrupt is used to wake the device from sleep, the interrupt service routine (ISR) may be executed twice. For more information, see the "Errata" on page 37.
41. Errata: When in sleep mode, if a GPIO interrupt happens simultaneously with a Timer0 or Sleep Timer interrupt, the GPIO interrupt may be missed, and the corresponding GPIO ISR not run. For more information, see the "Errata" on page 37.

42. Errata: If an interrupt is posted a short time (within 2.5 CPU cycles) before firmware commands the device to sleep, the interrupt will be missed. For more information, see the "Errata" on page 37.

43. Errata: Device wakes up from sleep when an analog interrupt is trigger. For more information, see the "Errata" on page 37.

DC GPIO Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and -40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 10. 3.0 V to 5.5 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	$I_{OH} \le 10 \ \mu$ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	-	V
V _{OH2}	High output voltage Port 2 or 3 Pins	I _{OH} = 1 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	_	-	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} = 5 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	_	_	V
V _{OH5}	High output voltage Port 1 Pins with LDO Regulator Enabled for 3 V out	I _{OH} < 10 μA, V _{DD} > 3.1 V, maximum of 4 I/Os all sourcing 5 mA	2.85	3.00	3.30	V
V _{OH6}	High output voltage Port 1 pins with LDO regulator enabled for 3 V out	I _{OH} = 5 mA, V _{DD} > 3.1 V, maximum of 20 mA source current in all I/Os	2.20	_	-	V
V _{OH7}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I _{OH} < 10 μA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	2.35	2.50	2.75	V
V _{OH8}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I _{OH} = 2 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.90	-	-	V
V _{OH9}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I _{OH} < 10 μA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.60	1.80	2.10	V
V _{OH10}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.20	-	_	V
V _{OL}	Low output voltage	I_{OL} = 25 mA, V_{DD} > 3.3 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	_	0.75	v
V _{IL}	Input low voltage	-	-	-	0.80	V
V _{IH}	Input high voltage	_	V _{DD} × 0.65	-	$V_{DD} + 0.7$	V
V _H	Input hysteresis voltage	_	-	80	-	mV
IIL	Input leakage (Absolute Value)	_	-	0.001	1	μA
C _{PIN}	Pin capacitance	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF
V _{ILLVT3.3}	Input Low Voltage with low threshold enable set, Enable for Port1 ^[44]	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.8	V	-	-
V _{IHLVT3.3}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.4	_	_	V
V _{ILLVT5.5}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.8	V	_	
V _{IHLVT5.5}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.7		_	V

Note

44. Errata: Pull-up resistor on port1 pins cannot be connected to a voltage that is greater than 0.7 V higher than CY8C20xx7/S VDD. For more information see item #7 in "Errata" on page 37.

Table 11. 2.4 V to 3.0 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} - 0.20	_	_	V
V _{OH2}	High output voltage Port 2 or 3 Pins	I _{OH} = 0.2 mA, maximum of 10 mA source current in all I/Os	V _{DD} - 0.40	_	_	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} - 0.20	_	-	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} - 0.50	_	_	V
V _{OH5A}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 μ A, V _{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.50	1.80	2.10	V
V _{OH6A}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I_{OH} = 1 mA, V_{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.20	_	-	V
V _{OL}	Low output voltage	I _{OL} = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	_	0.75	V
V _{IL}	Input low voltage	-	-	-	0.72	V
V _{IH}	Input high voltage	_	$V_{DD} \times 0.65$	1	V _{DD} + 0.7	V
V _H	Input hysteresis voltage	-	-	80	_	mV
IIL	Input leakage (absolute value)	_	_	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF
V _{ILLVT2.5}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.7	V	_	
V _{IHLVT2.5}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.2		_	V

|--|

Symbol	Description	Conditions	Min	Тур	Мах	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	I_{OH} = 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	_	V
V _{OH2}	High output voltage Port 2 or 3 pins	I _{OH} = 0.5 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	_	_	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1	I_{OH} = 100 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	Ι	-	V
V _{OH4}	High output voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	-	_	V

Table 12. 1.71 V to 2.4 V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{OL}	Low output voltage	I _{OL} = 5 mA, maximum of 20 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	_	0.40	v
V _{IL}	Input low voltage	_	-	1	$0.30 \times V_{DD}$	V
V _{IH}	Input high voltage	-	$0.65 \times V_{DD}$	-	-	V
V _H	Input hysteresis voltage	-	-	80	-	mV
IIL	Input leakage (absolute value)	-	-	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent temp = 25 °C	0.50	1.70	7	pF

Table 13. GPIO Current Sink and Source Specifications

Supply Voltage	Mode	Port 0/1 per I/O (max)	Port 2/3/4 per I/O (max)	Total Current Even Pins (max)	Total Current Odd Pins (max)	Units
171 24	Sink	5	5	20	30	mA
1.71-2.4	Source	2	0.5	10	[45]	mA
24.20	Sink	10	10	30	30	mA
2.4-3.0	Source	2	0.2	10	[45]	mA
30.50	Sink	25	25	60	60	mA
5.0-5.0	Source	5	1	20	[45]	mA

DC Analog Mux Bus Specifications

Table 14 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 14. DC Analog Mux Bus Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{SW}	Switch resistance to common analog bus	_	_	-	800	Ω
R _{GND}	Resistance of initialization switch to $V_{\rm SS}$	_	_	_	800	Ω

The maximum pin voltage for measuring $\rm R_{SW}$ and $\rm R_{GND}$ is 1.8 V

DC Low Power Comparator Specifications

Table 15 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 15. DC Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{LPC}	Low power comparator (LPC) common mode	Maximum voltage limited to V _{DD}	0.2	-	1.8	V
I _{LPC}	LPC supply current	_	-	10	80	μA
V _{OSLPC}	LPC voltage offset	-	-	2.5	30	mV

Comparator User Module Electrical Specifications

Table 16 lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: –40 °C \leq TA \leq 85 °C, 1.71 V \leq V_{DD} \leq 5.5 V.

Table 16. Comparator User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{COMP}	Comparator response time	50 mV overdrive	-	70	100	ns
Offset	_	Valid from 0.2 V to 1.5 V	-	2.5	30	mV
Current	-	Average DC current, 50 mV overdrive	_	20	80	μA
DSDD	Supply voltage > 2 V	Power supply rejection ratio	-	80	-	dB
PORK	Supply voltage < 2 V	Power supply rejection ratio	-	40	-	dB
Input range	-	-	0.2		1.5	V

ADC Electrical Specifications

Table 17. ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input						
V _{IN}	Input voltage range	-	0	-	VREFADC	V
C _{IIN}	Input capacitance	-	_	-	5	pF
R _{IN}	Input resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution	1/(500fF × data clock)	1/(400fF × data clock)	1/(300fF × data clock)	Ω
Reference						·
V _{REFADC}	ADC reference voltage	-	1.14	-	1.26	V
Conversion Rate			I	I		
F _{CLK}	Data clock	Source is chip's internal main oscillator. See AC Chip-Level Specifications on page 21 for accuracy	2.25	_	6	MHz
S8	8-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2^Resolution/Data Clock)	-	23.43	-	ksps
S10	10-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2^resolution/data clock)	-	5.85	-	ksps
DC Accuracy			I	I		
RES	Resolution	Can be set to 8, 9, or 10 bit	8	-	10	bits
DNL	Differential nonlinearity	-	–1	-	+2	LSB
INL	Integral nonlinearity	-	-2	_	+2	LSB
E	Offect error	8-bit resolution	0	3.20	19.20	LSB
FOFFSET	Oliset ento	10-bit resolution	0	12.80	76.80	LSB
E _{GAIN}	Gain error	For any resolution	-5	-	+5	%FSR
Power		·				
I _{ADC}	Operating current	-	-	2.10	2.60	mA
	Bower supply rejection ratio	PSRR (V _{DD} > 3.0 V)	-	24	-	dB
		PSRR (V _{DD} < 3.0 V)	-	30	-	dB

DC POR and LVD Specifications

Table 18 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 18. DC POR and LVD Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{POR0}	1.66 V selected in PSoC Designer		1.61	1.66	1.71	V
V _{POR1}	2.36 V selected in PSoC Designer	V _{DD} must be greater than or equal to 1.71 V during startup, reset from the XPES pin, or	_	2.36	2.41	V
V _{POR2}	2.60 V selected in PSoC Designer	reset from watchdog.	_	2.60	2.66	V
V _{POR3}	2.82 V selected in PSoC Designer		_	2.82	2.95	V
V _{LVD0}	2.45 V selected in PSoC Designer		2.40	2.45	2.51	V
V _{LVD1}	2.71 V selected in PSoC Designer		2.64 ^[46]	2.71	2.78	V
V _{LVD2}	2.92 V selected in PSoC Designer		2.85 ^[47]	2.92	2.99	V
V _{LVD3}	3.02 V selected in PSoC Designer		2.95 ^[48]	3.02	3.09	V
V _{LVD4}	3.13 V selected in PSoC Designer	_	3.06	3.13	3.20	V
V _{LVD5}	1.90 V selected in PSoC Designer	F	1.84	1.90	2.32	V
V _{LVD6}	1.80 V selected in PSoC Designer		1.75 ^[49]	1.80	1.84	V
V _{LVD7}	4.73 V selected in PSoC Designer		4.62	4.73	4.83	V

DC Programming Specifications

Table 19 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 19. DC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{DDIWRITE}	Supply voltage for flash write operations	_	1.71	-	5.25	V
I _{DDP}	Supply current during programming or verify	_	-	5	25	mA
V _{ILP}	Input low voltage during programming or verify	See appropriate "DC GPIO Specifica- tions" on page 15	-	-	V _{IL}	V
V _{IHP}	Input high voltage during programming or verify	See appropriate "DC GPIO Specifica- tions" on page 15	V _{IH}	_	-	V
I _{ILP}	Input current when Applying V _{ILP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	_	-	0.2	mA
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	_	1.5	mA
V _{OLP}	Output low voltage during programming or verify	_	-	-	V _{SS} + 0.75	V
V _{OHP}	Output high voltage during programming or verify	See appropriate "DC GPIO Specifica- tions" on page 15. For $V_{DD} > 3V$ use V_{OH4} in Table 10 on page 15.	V _{OH}	-	V _{DD}	V
Flash _{ENPB}	Flash write endurance	Erase/write cycles per block	50,000	-	-	-
Flash _{DR}	Flash data retention	Following maximum Flash write cycles; ambient temperature of 55 °C	20	-	-	Years

Notes

- 46. Always greater than 50 mV above V_{PPOR1} voltage for falling supply. 47. Always greater than 50 mV above V_{PPOR2} voltage for falling supply. 48. Always greater than 50 mV above V_{PPOR3} voltage for falling supply. 49. Always greater than 50 mV above V_{PPOR0} voltage for falling supply.

DC I²C Specifications

Table 20 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 20. DC I²C Specifications^[50]

Symbol	Description	Conditions	Min	Тур	Max	Units
		$3.1 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	-	-	$0.25 \times V_{DD}$	V
V _{ILI2C}	Input low level	$2.5 \text{ V} \le \text{V}_{\text{DD}} \le 3.0 \text{ V}$	-	-	$0.3 \times V_{DD}$	V
		$1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.4 \text{ V}$	-	-	$0.3 \times V_{DD}$	V
V _{IHI2C}	Input high level	1.71 V ≤ V _{DD} ≤ 5.5 V	0.65 × V _{DD}	-	V _{DD} + 0.7 V ^[51]	V

Shield Driver DC Specifications

Table 21 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 21. Shield Driver DC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{Ref}	Reference buffer output	$1.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0.942	-	1.106	V
V _{RefHi}	Reference buffer output	1.7 V ≤ V _{DD} ≤ 5.5 V	1.104	-	1.296	V

DC IDAC Specifications

Table 22 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 22. DC IDAC Specifications (8-bit IDAC)

Symbol	Description	Min	Тур	Max	Units	Notes
IDAC_DNL	Differential nonlinearity	–1	-	1	LSB	_
IDAC_DNL	Integral nonlinearity	-2	-	2	LSB	_
	Range = 4x	138	-	169	μA	DAC setting = 127 dec
	Range = 8x	138	-	169	μA	DAC setting = 64 dec

Table 23. DC IDAC Specifications (7-bit IDAC)

Symbol	Description	Min	Тур	Max	Units	Notes
IDAC_DNL	Differential nonlinearity	–1	-	1	LSB	_
IDAC_DNL	Integral nonlinearity	-2	-	2	LSB	-
	Range = 4x	137	-	168	μA	DAC setting = 127 dec
	Range = 8x	138	-	169	μA	DAC setting = 64 dec

Notes

51. Errata: For more information see item #6 in the "Errata" on page 37.

^{50.} Errata: Pull-up resistors on I2C interface cannot be connected to a supply voltage that is more than 0.7 V higher than the CY8C20xx7/S power supply. For more information see item #6 in the "Errata" on page 37.

AC Chip-Level Specifications

Table 24 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 24. AC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{IMO24}	IMO frequency at 24 MHz Setting	-	22.8	24	25.2	MHz
F _{IMO12}	IMO frequency at 12 MHz setting	-	11.4	12	12.6	MHz
F _{IMO6}	IMO frequency at 6 MHz setting	-	5.7	6.0	6.3	MHz
F _{CPU}	CPU frequency	-	0.75	-	25.20	MHz
F _{32K1}	ILO frequency	-	15	32	50	kHz
F _{32K_U}	ILO untrimmed frequency	-	-	32	-	kHz
DC _{IMO}	Duty cycle of IMO	-	40	50	60	%
DC _{ILO}	ILO duty cycle	-	40	50	60	%
SR _{POWER_UP}	Power supply slew rate	V _{DD} slew rate during power-up	-	-	250	V/ms
t _{XRST}	External reset pulse width at power-up	After supply voltage is valid	1	-	-	ms
t _{XRST2}	External reset pulse width after power-up ^[52]	Applies after part has booted	10	-	-	μS
	6 MHz IMO cycle-to-cycle jitter (RMS)	-	-	0.7	6.7	ns
	6 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32	_	_	4.3	29.3	ns
	6 MHz IMO period jitter (RMS)	-	-	0.7	3.3	ns
	12 MHz IMO cycle-to-cycle jitter (RMS)	-	-	0.5	5.2	ns
t _{JIT_IMO} ^[53]	12 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32	_		2.3	5.6	ns
	12 MHz IMO period jitter (RMS)	-	-	0.4	2.6	ns
	24 MHz IMO cycle-to-cycle jitter (RMS)	-	-	1.0	8.7	ns
	24 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32	_	_	1.4	6.0	ns
	24 MHz IMO period jitter (RMS)	-	_	0.6	4.0	ns

Note 52. The minimum required XRES pulse length is longer when programming the device (see Table 28 on page 23). 53. See the Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.

AC General Purpose I/O Specifications

Table 25 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 25. AC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
F		Normal strong mode Port 0, 1	0	_	6 MHz for 1.71 V <v<sub>DD < 2.40 V</v<sub>	MHz
' GPIO			0	_	12 MHz for 2.40 V < V _{DD} < 5.50 V	MHz
t _{RISE23}	Rise time, strong mode, Cload = 50 pF Ports 2 or 3	V _{DD} = 3.0 to 3.6 V, 10% to 90%	15	-	80	ns
t _{RISE23L}	Rise time, strong mode low supply, Cload = 50 pF, Ports 2 or 3	V _{DD} = 1.71 to 3.0 V, 10% to 90%	15	-	80	ns
t _{RISE01}	Rise time, strong mode, Cload = 50 pF Ports 0 or 1	V _{DD} = 3.0 to 3.6 V, 10% to 90% LDO enabled or disabled	10	-	50	ns
t _{RISE01L}	Rise time, strong mode low supply, Cload = 50 pF, Ports 0 or 1	V _{DD} = 1.71 to 3.0 V, 10% to 90% LDO enabled or disabled	10	-	80	ns
t _{FALL}	Fall time, strong mode, Cload = 50 pF all ports	V _{DD} = 3.0 to 3.6 V, 10% to 90%	10	-	50	ns
t _{FALLL}	Fall time, strong mode low supply, Cload = 50 pF, all ports	V _{DD} = 1.71 to 3.0 V, 10% to 90%	10	_	70	ns

Figure 9. GPIO Timing Diagram

AC Comparator Specifications

Table 26 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 26. AC Low Power Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{LPC}	Comparator response time, 50 mV overdrive	50 mV overdrive does not include offset voltage.	-	Ι	100	ns

AC External Clock Specifications

Table 27 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 27.	AC External	Clock Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
	Frequency (external oscillator frequency)	_	0.75	_	25.20	MHz
F _{OSCEXT}	High period	_	20.60	-	5300	ns
CCCLAT	Low period	_	20.60	_	-	ns
	Power-up IMO to switch	_	150	_	-	μS

AC Programming Specifications

Table 28 lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 28. AC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{RSCLK}	Rise time of SCLK	-	1	-	20	ns
t _{FSCLK}	Fall time of SCLK	-	1	-	20	ns
t _{SSCLK}	Data setup time to falling edge of SCLK	-	40	-	-	ns
t _{HSCLK}	Data hold time from falling edge of SCLK	-	40	-	-	ns
F _{SCLK}	Frequency of SCLK	-	0	-	8	MHz
t _{ERASEB}	Flash erase time (block)	-	-	-	18	ms
t _{WRITE}	Flash block write time	-	-	-	25	ms
t _{DSCLK}	Data out delay from falling edge of SCLK	3.6 < V _{DD}	-	-	60	ns
t _{DSCLK3}	Data out delay from falling edge of SCLK	$3.0 \le V_{DD} \le 3.6$	-	-	85	ns
t _{DSCLK2}	Data out delay from falling edge of SCLK	$1.71 \le V_{DD} \le 3.0$	-	-	130	ns
t _{XRST3}	External reset pulse width after power-up	Required to enter programming mode when coming out of sleep	300	-	-	μs
t _{XRES}	XRES pulse length	-	300	-	-	μS
t _{VDDWAIT} ^[54]	V _{DD} stable to wait-and-poll hold off	-	0.1	-	1	ms
t _{VDDXRES} ^[54]	V _{DD} stable to XRES assertion delay	-	14.27	-	-	ms
t _{POLL}	SDAT high pulse time	-	0.01	-	200	ms
t _{ACQ} ^[54]	"Key window" time after a V _{DD} ramp acquire event, based on 256 ILO clocks.	-	3.20	-	19.60	ms
t _{XRESINI} ^[54]	"Key window" time after an XRES event, based on 8 ILO clocks	_	98	-	615	μs

Note 54. Valid from 5 to 50 °C. See the spec, CY8C20X66, CY8C20X46, CY8C20X36, CY7C643XX, CY7C604XX, CY8CTST2XX, CY8CTMG2XX, CY8C20X67, CY8C20X47, CY8C20X37, Programming Spec for more details.

AC I²C Specifications

Table 29 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 29. AC Characteristics of the I²C SDA and SCL Pins

Symbol	Description	Standard Mode		Fast Mode		Units
-		Min	Max	Min	Max	
f _{SCL}	SCL clock frequency	0	100	0	400	kHz
t _{HD;STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated	4.0	-	0.6	-	μs
t _{LOW}	LOW period of the SCL clock	4.7	_	1.3	_	μs
t _{HIGH}	HIGH Period of the SCL clock	4.0	-	0.6	-	μs
t _{SU;STA}	Setup time for a repeated START condition	4.7	-	0.6	-	μs
t _{HD;DAT} ^[55]	Data hold time	20	3.45	20	0.90	μs
t _{SU;DAT}	Data setup time	250	-	100 ^[56]	-	ns
t _{SU;STO}	Setup time for STOP condition	4.0	-	0.6	-	μs
t _{BUF}	Bus free time between a STOP and START condition	4.7	-	1.3	_	μs
t _{SP}	Pulse width of spikes are suppressed by the input filter	-	-	0	50	ns

Notes

- 55. Errata: To wake up from sleep using I2C hardware address match event, I2C interface needs 20 ns hold time on SDA line with respect to falling edge of SCL. For more information see item #5 in the "Errata" on page 37.
 56. A Fast-Mode I²C-bus device can be used in a standard mode I²C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.

Table 30. SPI Master AC Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
F _{SCLK}	SCLK clock frequency	$\begin{array}{l} V_{DD} \geq 2.4 \ V \\ V_{DD} < 2.4 \ V \end{array}$		-	6 3	MHz MHz
DC	SCLK duty cycle	-	_	50	_	%
t _{SETUP}	MISO to SCLK setup time	V _{DD} ≥ 2.4 V V _{DD} < 2.4 V	60 100	-		ns ns
t _{HOLD}	SCLK to MISO hold time	-	40	_	_	ns
t _{OUT_VAL}	SCLK to MOSI valid time	-	-	_	40	ns
t _{оит_н}	MOSI high time	_	40	_	_	ns

Figure 12. SPI Master Mode 0 and 2

Figure 13. SPI Master Mode 1 and 3

