imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CY8C21x34B

PSoC[®] Programmable System-on-Chip[™] CapSense[®] Controller with SmartSense[™] Auto-tuning 1–21 Buttons, 0–4 Sliders, Proximity

Features

- Advanced CapSense[®] block with SmartSense[™] Auto-Tuning
 □ Patented CSD sensing algorithm
 - □ SmartSense_EMC Auto-Tuning
 - Sets and maintains optimal sensor performance during run time
 - Eliminates system tuning during development and production
 - · Compensates for variations in manufacturing process
- Driven shield
 - Delivers best-in class water tolerant designs
 - Robust proximity sensing in the presence of metal objects
 - Supports longer trace lengths
- Powerful Harvard-architecture processor
 - □ M8C processor speeds up to 24 MHz
 - Low power at high speed
 - Operating voltage: 2.4 V to 5.25 V
 - Operating voltages down to 1.0 V using on-chip switch mode pump (SMP)
 - Industrial temperature range: -40 °C to 85 °C
- Advanced peripherals (PSoC[®] blocks)
 - □ Four analog Type E PSoC blocks provide:
 - Two comparators with digital-to-analog converter (DAC) references
 - Single or dual 10-bit 28 channel analog-to-digital converters (ADC)
 - □ Four digital PSoC blocks provide:
 - 8- to 32-bit timers, counters, and pulse width modulators (PWMs) $% \left(\frac{1}{2}\right) =0$
 - Cyclical redundancy check (CRC) and pseudo random sequence (PRS) modules
 - Full-duplex universal asynchronous receiver transmitter (UART), serial peripheral interface (SPI) master or slave
 Connectable to all general purpose I/O (GPIO) pins
 - Implement a combination up to 21 buttons or 4 sliders using 4 analog blocks and 3 digital blocks
 - Complex peripherals by combining blocks

- Flexible on-chip memory
 - B-KB Flash /512-B SRAM
 - □ 50,000 erase/write cycles
 - In-system serial programming (ISSP)
 - □ Partial flash updates
 - □ Flexible protection modes
 - EEPROM emulation in flash
- Complete development tools
 - □ Free development software (PSoC Designer[™])
 - □ Full-featured, in-circuit emulator (ICE) and programmer
 - Full-speed emulation
 - Complex breakpoint structure
 - 128-KB trace memory
- Precision, programmable clocking
 Internal ±2.5% 24- / 48-MHz main oscillator^[1]
 Internal oscillator for watchdog and sleep
- Programmable pin configurations
 - □ 25-mA sink, 10-mA source on all GPIOs
 - Pull-up, pull-down, high-Z, strong, or open-drain drive modes on all GPIOs
 - Up to eight analog inputs on GPIOs
 - Configurable interrupt on all GPIOs
- Versatile analog mux
 - Common internal analog bus
 - Simultaneous connection of I/O combinations
 - Capacitive sensing application capability
- Additional system resources
 - □ I²C^[2] master, slave, and multi-master to 400 kHz
 - Watchdog and sleep timers
 - □ User-configurable low-voltage detection (LVD)
 - □ Integrated supervisory circuit
 - On-chip precision voltage reference
- Package options
 - □ 16-pin SOIC □ 20-pin, 28-pin, 56-pin SSOP
- □ 32-pin QFN

Errata: For information on silicon errata, see "Errata" on page 48. Details include trigger conditions, devices affected, and proposed workaround. Notes

- Errata: The worst case IMO frequency deviation when operated below 0 °C and above +70 °C and within the upper and lower datasheet temperature range is ±5%.
 Errata: The I²C block exhibits occasional data and bus corruption errors when the I²C master initiates transactions while the device is transitioning in to or out of sleep
- mode.

Cypress Semiconductor Corporation Document Number: 001-67345 Rev. *G 198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised February 3, 2017

Logic Block Diagram

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article "How to Design with PSoC[®] 1, PowerPSoC[®], and PLC – KBA88292". Following is an abbreviated list for PSoC 1:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP
- In addition, PSoC Designer includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 1 are:
 - □ Getting Started with PSoC[®] 1 AN75320
 - □ PSoC[®] 1 Getting Started with GPIO AN2094
 - □ PSoC[®] 1 Analog Structure and Configuration AN74170
 - □ PSoC[®] 1 Switched Capacitor Analog Blocks AN2041
 - Selecting Analog Ground and Reference AN2219

Note: For CY8C21x34B devices related Application note please click here.

- Development Kits:
 - CY3210-PSoCEval1 supports all PSoC 1 Mixed-Signal Array families, including automotive, except CY8C25/26xxx devices. The kit includes an LCD module, potentiometer, LEDs, and breadboarding space.
 - CY3214-PSoCEvalUSB features a development board for the CY8C24x94 PSoC device. Special features of the board include USB and CapSense development and debugging support.

Note: For CY8C21x34B devices related Development Kits please click here.

The MiniProg1 and MiniProg3 devices provide interfaces for flash programming and debug.

PSoC Designer

PSoC Designer is a free Windows-based Integrated Design Environment (IDE). Develop your applications using a library of pre-characterized analog and digital peripherals in a drag-and-drop design environment. Then, customize your design leveraging the dynamically generated API libraries of code. Figure 1 shows PSoC Designer windows. **Note:** This is not the default view.

- 1. Global Resources all device hardware settings.
- 2. **Parameters –** the parameters of the currently selected User Modules.
- 3. Pinout information related to device pins.
- 4. **Chip-Level Editor** a diagram of the resources available on the selected chip.
- 5. Datasheet the datasheet for the currently selected UM
- 6. User Modules all available User Modules for the selected device.
- 7. **Device Resource Meter** device resource usage for the current project configuration.
- 8. Workspace a tree level diagram of files associated with the project.
- 9. Output output from project build and debug operations.

Note: For detailed information on PSoC Designer, go to PSoC[®] Designer > Help > Documentation > Designer Specific Documents > IDE User Guide.

Figure 1. PSoC Designer Layout

CY8C21x34B

Contents

PSoC Functional Overview	5
The PSoC Core	5
The Digital System	5
The Analog System	6
Additional System Resources	6
PSoC Device Characteristics	7
Development Tools	8
PSoC Designer Software Subsystems	8
Designing with PSoC Designer	9
Select User Modules	9
Configure User Modules	9
Organize and Connect	9
Generate, Verify, and Debug	9
SmartSense	9
Pin Information	10
16-pin Part Pinout	10
20-pin Part Pinout	11
28-pin Part Pinout	12
32-pin Part Pinout	13
56-pin Part Pinout	15
Register Reference	17
Register Conventions	17
Register Mapping Tables	17
Electrical Specifications	20
Absolute Maximum Ratings	20
Operating Temperature	21
DC Electrical Characteristics	21

Packaging Information	
Thermal Impedances	
Solder Reflow Peak Temperature	
Development Tool Selection	
Software	
Development Kits	
Evaluation Tools	
Device Programmers	
Accessories (Emulation and Programming)	
Ordering Information	41
Ordering Code Definitions	41
Acronyms	
Reference Documents	
Document Conventions	
Units of Measure	
Numeric Conventions	
Glossary	
Errata	
Part Numbers Affected	
CY8C21X34 Qualification Status	
CY8C21X34 Errata Summary	
Document History Page	50
Sales, Solutions, and Legal Information	52
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	

PSoC Functional Overview

The PSoC family consists of many devices with on-chip controllers. These devices are designed to replace multiple traditional MCU-based system components with one low-cost single-chip programmable component. A PSoC device includes configurable blocks of analog and digital logic, and programmable interconnect. This architecture makes it possible for you to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast central processing unit (CPU), flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The PSoC architecture, shown in Figure 2, consists of four main areas: the core, the system resources, the digital system, and the analog system. Configurable global bus resources allow combining all of the device resources into a complete custom system. Each CY8C21x34B PSoC device includes four digital blocks and four analog blocks. Depending on the PSoC package, up to 28 GPIOs are also included. The GPIOs provide access to the global digital and analog interconnects.

The PSoC Core

The PSoC core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and internal main oscillator (IMO) and internal low speed oscillator (ILO). The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a four-million instructions per second (MIPS) 8-bit Harvard-architecture microprocessor.

System resources provide these additional capabilities:

- Digital clocks for increased flexibility
- I²C functionality to implement an I²C master and slave
- An internal voltage reference, multi-master, that provides an absolute value of 1.3 V to a number of PSoC subsystems
- A SMP that generates normal operating voltages from a single battery cell
- Various system resets supported by the M8C

The digital system consists of an array of digital PSoC blocks that may be configured into any number of digital peripherals. The digital blocks are connected to the GPIOs through a series of global buses. These buses can route any signal to any pin, freeing designs from the constraints of a fixed peripheral controller.

The analog system consists of four analog PSoC blocks, supporting comparators, and analog-to-digital conversion up to 10 bits of precision.

The Digital System

The digital system consists of four digital PSoC blocks. Each block is an 8-bit resource that is used alone or combined with other blocks to form 8-, 16-, 24-, and 32-bit peripherals, which are called user modules. Digital peripheral configurations include:

- PWMs (8- to 32-bit)
- PWMs with dead band (8- to 32-bit)
- Counters (8- to 32-bit)
- Timers (8- to 32-bit)
- UART 8- with selectable parity
- Serial peripheral interface (SPI) master and slave
- I²C slave and multi-master
- CRC/generator (8-bit)
- IrDA
- PRS generators (8-bit to 32-bit)

The digital blocks are connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This allows the optimum choice of system resources for your application. Family resources are shown in Table 1 on page 7.

Figure 2. Digital System Block Diagram

The Analog System

The analog system consists of four configurable blocks that allow for the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the common PSoC analog functions for this device (most available as user modules) are:

- ADCs (single or dual, with 8-bit or 10-bit resolution)
- Pin-to-pin comparator
- Single-ended comparators (up to two) with absolute (1.3 V) reference or 8-bit DAC reference
- 1.3-V reference (as a system resource)

In most PSoC devices, analog blocks are provided in columns of three, which includes one continuous time (CT) and two switched capacitor (SC) blocks. The CY8C21x34B devices provide limited functionality Type E analog blocks. Each column contains one CT Type E block and one SC Type E block. Refer to the *PSoC Technical Reference Manual* for detailed information on the CY8C21x34B's Type E analog blocks.

Figure 3. Analog System Block Diagram

The Analog Multiplexer System

The analog mux bus can connect to every GPIO pin. Pins may be connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with comparators and analog-to-digital converters. An additional 8:1 analog input multiplexer provides a second path to bring Port 0 pins to the analog array.

Switch-control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Track pad, finger sensing
- Chip-wide mux that allows analog input from any I/O pin
- Crosspoint connection between any I/O pin combinations

Additional System Resources

System resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include a switch-mode pump, low-voltage detection, and power-on-reset (POR).

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks may be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- The I²C module provides 100- and 400-kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- LVD interrupts can signal the application of falling voltage levels, while the advanced POR circuit eliminates the need for a system supervisor.
- An internal 1.3-V reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch-mode pump generates normal operating voltages from a single 1.2-V battery cell, providing a low cost boost converter.
- Versatile analog multiplexer system.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. Table 1 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is highlighted in Table 1.

Table 1.	PSoC	Device	Characteristics
----------	------	--------	-----------------

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size	SmartSense Enabled
CY8C29x66	up to 64	4	16	up to 12	4	4	12	2K	32K	_
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[3]	1K	16K	-
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16K	-
CY8C24x94	up to 56	1	4	up to 48	2	2	6	1K	16K	_
CY8C24x23A	up to 24	1	4	up to 12	2	2	6	256	4K	-
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8K	-
CY8C22x45	up to 38	2	8	up to 38	0	4	6 ^[3]	1 K	16K	_
CY8C21x45	up to 24	1	4	up to 24	0	4	6 ^[3]	512	8K	-
CY8C21x34	up to 28	1	4	up to 28	0	2	4 ^[3]	512	8K	-
CY8C21x34B	up to 28	1	4	up to 28	0	2	4 ^[3]	512	8K	Y
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[3]	256	4K	-
CY8C20x34	up to 28	0	0	up to 28	0	0	3 ^[3,4]	512	8K	-
CY8C20xx6A	up to 36	0	0	up to 36	0	0	3 ^[3,4]	up to 2K	up to 32K	Y

Notes

Limited analog functionality.
 Two analog blocks and one CapSense[®].

Development Tools

PSoC Designer[™] is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- Hardware and software I²C slaves and masters
- Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are ADCs, DACs, amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this allows you to use more than 100 percent of PSoC's resources for an application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and are linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an online support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is summarized in four steps:

- 1. Select User Modules.
- 2. Configure User Modules.
- 3. Organize and Connect.
- 4. Generate, Verify, and Debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run-time and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in either C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer and allows you to define complex breakpoint events. These include monitoring address and data bus values, memory locations, and external signals.

SmartSense

A key differentiation between the current offering of CY8C21x34 and CY8C21x34B, is the addition of the SmartSense user module in the 'B' version.

SmartSense is an innovative solution from Cypress that eliminates the manual tuning process from CapSense applications. This solution is easy to use and provides robust noise immunity. It is the only auto-tuning solution that establishes, monitors and maintains all required tuning parameters. SmartSense allows engineers to go from prototyping to mass production without re-tuning for manufacturing variations in PCB and/or overlay material properties.

Pin Information

The CY8C21x34B PSoC device is available in a variety of packages which are listed in the following tables. Every port pin (labeled with a "P") is capable of Digital I/O and connection to the common analog bus. However, V_{SS}, V_{DD}, SMP, and XRES are not capable of Digital I/O.

16-pin Part Pinout

Figure 4. CY8C21234B 16-pin PSoC Device

Table 2. Pin Definitions – CY8C21234B 16-pin (SOIC)

Din No	Т	уре	Namo	Description
FIII NO.	Digital	Analog	Name	Description
1	I/O	I, M	P0[7]	Analog column mux input
2	I/O	I, M	P0[5]	Analog column mux input
3	I/O	I, M	P0[3]	Analog column mux input, integrating input
4	I/O	I, M	P0[1]	Analog column mux input, integrating input
5	Power		SMP	Switch-mode pump (SMP) connection to required external components
6	Power		V _{SS}	Ground connection
7	I/O	М	P1[1]	I ² C serial clock (SCL), ISSP-SCLK ^[5]
8	Power		V _{SS}	Ground connection
9	I/O	М	P1[0]	I ² C serial data (SDA), ISSP-SDATA ^[5]
10	I/O	М	P1[2]	
11	I/O	М	P1[4]	Optional external clock input (EXTCLK)
12	I/O	I, M	P0[0]	Analog column mux input
13	I/O	I, M	P0[2]	Analog column mux input
14	I/O	I, M	P0[4]	Analog column mux input
15	I/O	I, M	P0[6]	Analog column mux input
16	Power		V _{DD}	Supply voltage

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.

Figure 5. CY8C21334B 20-pin PSoC Device

Table 3. Pin Definitions – CY8C21334B 20-pin (SSOP)

Din No	Туре		Namo	Description	
FIII NO.	Digital	Analog	Maine	Description	
1	I/O	I, M	P0[7]	Analog column mux input	
2	I/O	I, M	P0[5]	Analog column mux input	
3	I/O	I, M	P0[3]	Analog column mux input, integrating input	
4	I/O	I, M	P0[1]	Analog column mux input, integrating input	
5	Power		V _{SS}	Ground connection	
6	I/O	М	P1[7]	I ² C SCL	
7	I/O	М	P1[5]	I ² C SDA	
8	I/O	М	P1[3]		
9	I/O	М	P1[1]	I ² C SCL, ISSP-SCLK ^[6]	
10	Power	•	V _{SS}	Ground connection.	
11	I/O	М	P1[0]	I ² C SDA, ISSP-SDATA ^[6]	
12	I/O	М	P1[2]		
13	I/O	М	P1[4]	Optional external clock input (EXTCLK)	
14	I/O	М	P1[6]		
15	Input		XRES	Active high external reset with internal pull-down	
16	I/O	I, M	P0[0]	Analog column mux input	
17	I/O	I, M	P0[2]	Analog column mux input	
18	I/O	I, M	P0[4]	Analog column mux input	
19	I/O	I, M	P0[6]	Analog column mux input	
20	Power	•	V _{DD}	Supply voltage	

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.

Figure 6. CY8C21534B 28-pin PSoC Device

	- 1	A	\smile		
A, I, M, P0[7]	9	1		28	V _{DD}
A, I, M, P0[5]	4	2		27	P0[6], A, I, M
A, I, M, P0[3]		3		26	P0[4], A, I, M
A, I, M, P0[1]	4	4		25	P0[2], A, I, M
M, P2[7]		5		24	P0[0], A, I, M
M, P2[5]	4	6		23	P2[6], M
M, P2[3]		7	SSOB	22	P2[4], M
M, P2[1]	4	8	330F	21	P2[2], M
V _{SS}	4	9		20	P2[0], M
M, I2C SCL, P1[7]	H	10		19	XRES
M, I2C SDA, P1[5]	4	11		18	P1[6], M
M, P1[3]	9	12		17	P1[4], EXTCLK, M
M, I2C SCL, P1[1]	4	13		16	P1[2], M
V _{SS}	9	14		15	P1[0], I2C SDA, M
	l				

Table 4. Pin Definitions – CY8C21534B 28-pin (SSOP)

Din No	Туре		Namo	Description
FIII NO.	Digital	Analog	Name	Description
1	I/O	I, M	P0[7]	Analog column mux input
2	I/O	I, M	P0[5]	Analog column mux input and column output
3	I/O	I, M	P0[3]	Analog column mux input and column output, integrating input
4	I/O	I, M	P0[1]	Analog column mux input, integrating input
5	I/O	М	P2[7]	
6	I/O	М	P2[5]	
7	I/O	I, M	P2[3]	Direct switched capacitor block input
8	I/O	I, M	P2[1]	Direct switched capacitor block input
9	Power		V _{SS}	Ground connection
10	I/O	М	P1[7]	I ² C SCL
11	I/O	М	P1[5]	I ² C SDA
12	I/O	Μ	P1[3]	
13	I/O	М	P1[1]	I ² C SCL, ISSP-SCLK ^[7]
14	Power		V _{SS}	Ground connection
15	I/O	М	P1[0]	I ² C SDA, ISSP-SDATA ^[7]
16	I/O	М	P1[2]	
17	I/O	М	P1[4]	Optional external clock input (EXTCLK)
18	I/O	М	P1[6]	
19	Input		XRES	Active high external reset with internal pull-down
20	I/O	I, M	P2[0]	Direct switched capacitor block input
21	I/O	I, M	P2[2]	Direct switched capacitor block input
22	I/O	М	P2[4]	
23	I/O	М	P2[6]	
24	I/O	I, M	P0[0]	Analog column mux input
25	I/O	I, M	P0[2]	Analog column mux input
26	I/O	I, M	P0[4]	Analog column mux input
27	I/O	I, M	P0[6]	Analog column mux input
28	Power	•	V _{DD}	Supply voltage

LEGEND A: Analog, I: Input, O = Output, and M = Analog Mux Input.

Note
7. These are the ISSP pins, which are not high Z at POR. See the *PSoC Technical Reference Manual* for details.

Figure 8. CY8C21634B 32-pin PSoC Device

Figure 9. CY8C21434B 32-pin Sawn PSoC Device Sawn Figu

Figure 10. CY8C21634B 32-pin Sawn PSoC Device Sawn

Table 5. Pin Definitions - CY8C21434B/CY8C21634B 32-pin (QFN)^[8]

Din No	Туре		Nomo	Description		
PIN NO.	Digital	Analog	name	Description		
1	I/O	I, M	P0[1]	Analog column mux input, integrating input		
2	I/O	М	P2[7]			
3	I/O	М	P2[5]			
4	I/O	М	P2[3]			
5	I/O	М	P2[1]			
6	I/O	М	P3[3]	In CY8C21434B part		
6	Power		SMP	SMP connection to required external components in CY8C21634B part		
7	I/O	М	P3[1]	In CY8C21434B part		
7	Power		V _{SS}	Ground connection in CY8C21634B part		
8	I/O	М	P1[7]	I ² C SCL		
9	I/O	М	P1[5]	I ² C SDA		
10	I/O	М	P1[3]			
11	I/O	М	P1[1]	I ² C SCL, ISSP-SCLK ^[9]		
12	Power		V _{SS}	Ground connection		
13	I/O	М	P1[0]	I ² C SDA, ISSP-SDATA ^[9]		
14	I/O	М	P1[2]			
15	I/O	М	P1[4]	Optional external clock input (EXTCLK)		
16	I/O	М	P1[6]			
17	Input		XRES	Active high external reset with internal pull-down		
18	I/O	М	P3[0]			
19	I/O	М	P3[2]			
20	I/O	М	P2[0]			
21	I/O	М	P2[2]			
22	I/O	М	P2[4]			
23	I/O	М	P2[6]			
24	I/O	I, M	P0[0]	Analog column mux input		
25	I/O	I, M	P0[2]	Analog column mux input		
26	I/O	I, M	P0[4]	Analog column mux input		
27	I/O	I, M	P0[6]	Analog column mux input		
28	Power		V _{DD}	Supply voltage		
29	I/O	I, M	P0[7]	Analog column mux input		
30	I/O	I, M	P0[5]	Analog column mux input		
31	I/O	I, M	P0[3]	Analog column mux input, integrating input		
32	Power		V _{SS}	Ground connection		

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.

Notes

The center pad on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not high Z at POR. See the *PSoC Technical Reference Manual* for details.

The 56-Pin SSOP part is for the CY8C21001 on-chip debug (OCD) PSoC device. **Note** This part is only used for in-circuit debugging. It is NOT available for production.

Figure 11. CY8C21001 56-pin PSoC Device

Table 6. Pin Definitions - CY8C21001 56-pin (SSOP)

Din No	Тур	е	Din Nama	Description
FILLINO.	Digital	Analog		Description
1	Power		V _{SS}	Ground connection
2	I/O	1	P0[7]	Analog column mux input
3	I/O	I	P0[5]	Analog column mux input and column output
4	I/O	Ι	P0[3]	Analog column mux input and column output
5	I/O	Ι	P0[1]	Analog column mux input
6	I/O		P2[7]	
7	I/O		P2[5]	
8	I/O	Ι	P2[3]	Direct switched capacitor block input
9	I/O	Ι	P2[1]	Direct switched capacitor block input
10			NC	No connection
11			NC	No connection
12			NC	No connection
13			NC	No connection
14	OCD		OCDE	OCD even data I/O
15	OCD		OCDO	OCD odd data output
16	Power		SMP	SMP connection to required external components
17	Power		V _{SS}	Ground connection
18	Power		V _{SS}	Ground connection

Din No	Тур	be and the second se	Din Nomo	Description	
FILLINO.	Digital	Analog		Description	
19	I/O		P3[3]		
20	I/O		P3[1]		
21			NC	No connection	
22			NC	No connection	
23	I/O		P1[7]	I ² C SCL	
24	I/O		P1[5]	I ² C SDA	
25			NC	No connection	
26	I/O		P1[3]	I _{FMTEST}	
27	I/O		P1[1]	I ² C SCL, ISSP-SCLK ^[10]	
28	Power		V _{SS}	Ground connection	
29			NC	No connection	
30			NC	No connection	
31	I/O		P1[0]	I ² C SDA, ISSP-SDATA ^[10]	
32	I/O		P1[2]	V _{FMTEST}	
33	I/O		P1[4]	Optional external clock input (EXTCLK)	
34	I/O		P1[6]		
35			NC	No connection	
36			NC	No connection	
37			NC	No connection	
38			NC	No connection	
39			NC	No connection	
40			NC	No connection	
41	Input		XRES	Active high external reset with internal pull-down	
42	OCD		HCLK	OCD high-speed clock output	
43	OCD		CCLK	OCD CPU clock output	
44	I/O		P3[0]		
45	I/O		P3[2]		
46			NC	No connection	
47			NC	No connection	
48	I/O	I	P2[0]		
49	I/O	I	P2[2]		
50	I/O		P2[4]		
51	I/O		P2[6]		
52	I/O	I	P0[0]	Analog column mux input	
53	I/O	1	P0[2]	Analog column mux input and column output	
54	I/O	1	P0[4]	Analog column mux input and column output	
55	I/O	1	P0[6]	Analog column mux input	
56	Power		V _{DD}	Supply voltage	

Table 6. Pin Definitions - CY8C21001 56-pin (SSOP) (continued)

LEGEND: A = Analog, I = Input, O = Output, and OCD = On-Chip Debug.

Note 10. These are the ISSP pins, which are not High Z at POR. See the *PSoC Technical Reference Manual* for details.

Register Reference

This chapter lists the registers of the CY8C21x34B PSoC device. For detailed register information, see the *PSoC Technical Reference Manual*.

Register Conventions

The register conventions specific to this section are listed in Table 7.

Table 7. Register Conventions

Convention Description					
R	Read register or bit(s)				
W	Write register or bit(s)				
L	Logical register or bit(s)				
С	Clearable register or bit(s)				
#	Access is bit specific				

Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks, Bank 0 and Bank 1. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set to 1, the user is in Bank 1.

Note In the following register mapping tables, blank fields are reserved and must not be accessed.

Table 8. Register Map 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASE10CR0	80	RW		C0	
PRTOIE	01	RW		41			81			C1	
PRT0GS	02	RW		42			82			C2	
PRT0DM2	03	RW		43			83			C3	
PRT1DR	04	RW		44		ASE11CR0	84	RW		C4	
PRT1IE	05	RW		45			85			C5	
PRT1GS	06	RW		46			86			C6	
PRT1DM2	07	RW		47			87			C7	
PRT2DR	08	RW		48			88			C8	
PRT2IE	09	RW		49			89			C9	
PRI2GS	0A	RW		4A			8A			CA	
PRI2DM2	08	RW		4B			8B			СВ	
PRI3DR	00	RW		4C			8C			CC	
PRIJE	0D	RW		4D			8D			CD	
PRI3GS	0E	RW		4E			8E			CE	
PRI3DM2	UF	RW		4F			8F			CF	DW
	10			50			90		CUR_PP	DU	RW
	11			51			91		SIK_PP	D1	RW
	12			52			92			D2	
	13			53			93			D3	RW
	14			54			94		MVR_PP	D4	RW
	15			55			95			D5	RW
	10			50		-	96			D0	пvv #
	17			57		-	97		120_30h	D7	# DW/
	10			50		-	90			D0	пvv #
	19			59		-	99			D9	# DW/
				5A ED		-	9A		INT_CLRU		
	10			5D			90				nvv
	10			50			90 90				BW/
	1D 1E			5E			9D 9E		INT_OLIIS	DE	BW
	1E			SE SE			9E 9E			DE	11.00
DBB00DB0	20	#	AMX IN	60	BW		A0		INT MSKO	E0	BW
DBB00DB1	21	W		61	BW		A1		INT_MSK1	E0 F1	BW
DBB00DB2	22	BW	PWM CB	62	BW		A2		INT_WORK	E2	BC
DBB00CB0	23	#		63			A3		BES WDT	E3	W
DBB01DB0	24	#	CMP CR0	64	#	-	A4			E4	
DBB01DR1	25	W		65			A5		-	E5	
DBB01DR2	26	RW	CMP CR1	66	RW		A6		DEC CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC CR1	E7	RW
DCB02DR0	28	#	ADC0 CR	68	#		A8		_	E8	
DCB02DR1	29	W	ADC1 CR	69	#		A9			E9	
DCB02DR2	2A	RW		6A			AA			EA	
DCB02CR0	2B	#		6B			AB			EB	
DCB03DR0	2C	#	TMP_DR0	6C	RW		AC			EC	
DCB03DR1	2D	W	TMP_DR1	6D	RW		AD			ED	
DCB03DR2	2E	RW	TMP_DR2	6E	RW		AE			EE	
DCB03CR0	2F	#	TMP_DR3	6F	RW		AF			EF	
	30			70		RDI0RI	B0	RW		F0	
	31			71		RDI0SYN	B1	RW		F1	
	32		ACE00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACE00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34			74		RDI0LT1	B4	RW		F4	
	35		l	75		RDI0RO0	B5	RW		F5	
	36		ACE01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACE01CR2	77	RW		B7		CPU_F	F7	RL
	38			78			B8			F8	
	39			79			B9			F9	
	3A			7 A			BA			FA	
	3B			7B			BB			FB	
	3C			7C			BC			FC	
	3D			7D			BD		DAC_D	FD	RW
	3E			7E			BE		CPU_SCR1	FE	#
	3F			7F			BF		CPU_SCR0	FF	#

Blank fields are reserved and must not be accessed.

Access is bit specific.

Table 9. Register Map 1 Table: Configuration Space

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW		40		ASE10CR0	80	RW		C0	
PRT0DM1	01	RW		41			81			C1	
PRT0IC0	02	RW		42			82			C2	
PRT0IC1	03	RW		43			83			C3	
PRT1DM0	04	RW		44		ASE11CR0	84	RW		C4	
PRT1DM1	05	RW		45			85			C5	
PRT1IC0	06	RW		46			86			C6	
PRT1IC1	07	RW		47			87			C7	
PRT2DM0	08	RW		48			88			C8	
PRT2DM1	09	RW		49			89			C9	
PRT2IC0	0A	RW		4A			8A			CA	
PRT2IC1	0B	RW		4B			8B			СВ	
PRT3DM0	0C	RW		4C			8C			CC	
PRT3DM1	0D	RW		4D			8D			CD	
PRT3IC0	0E	RW		4E			8E			CE	
PBT3IC1	0F	RW		4F			8F			CF	<u> </u>
	10			50			90		GDL O IN	D0	BW
	11			51			91		GDLE IN	D1	BW
	12			52			92			D2	RW
	12			52			03			D2	RW/
	10			50			94		GDI_L_00	D0	11.00
	15			55			0 5			DF	
	10			55			90			D3	
	10			50			96			D6	
	17			57			97			D7	DIA
	18			58			98		MUX_CRU	D8	RW
	19			59			99		MUX_CR1	D9	RW
	1A			5A			9A		MUX_CR2	DA	RW
	1B			5B			9B		MUX_CR3	DB	RW
	10			5C			9C			DC	
	1D			5D			9D		OSC_GO_EN	DD	RW
	1E			5E			9E		OSC_CR4	DE	RW
	1F			5F			9F		OSC_CR3	DF	RW
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
	23		AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW	CMP_GO_EN	64	RW		A4		VLT_CMP	E4	R
DBB01IN	25	RW		65			A5		ADC0_TR	E5	RW
DBB01OU	26	RW	AMD_CR1	66	RW		A6		ADC1_TR	E6	RW
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW		68			A8		IMO_TR	E8	W
DCB02IN	29	RW		69			A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG TR	EA	RW
	2B		CLK CR3	6B	RW		AB		ECO TR	EB	W
DCB03FN	2C	RW	TMP_DR0	6C	RW		AC		_	EC	
DCB03IN	2D	RW	TMP_DR1	6D	RW		AD			ED	
DCB03OU	2E	RW	TMP_DR2	6E	RW		AE			EE	<u> </u>
	2F		TMP_DR3	6F	RW		AF			EF	├
	30			70		BDI0BI	BO	BW		 F0	┢────┤
	31			71		BDIOSYN	B1	RW		F1	┢────┤
	32		ACE00CB1	72	BW	BDIOIS	B2	BW		F2	<u> </u>
	22			72	DW/		D2 D2	DW/		F2	
	34			7.0	11.00		B/	RW/	-	F 4	┝───┤
	35			75		RDIAROA	B5	RW/		- E5	┟────┨
	33			70	DW/		D3 D6			F3 E6	
	30		ACEDICKI	70 77		וטחטועה		r'i VV			DI
	37		AGEUTUR2	//	нw		D/				пL
	38			/ð			88			Fŏ	
	39			/9			R9			F9	
	3A			7A			ВА		FLS_PR1	FA	RW
	3B			7B			BB			FB	
	3C			7C			BC			FC	
	3D			7D			BD		DAC_CR	FD	RW
	3E			7Ē			BE		CPU_SCR1	FE	#
	3F			7F			BF		CPU_SCR0	FF	#
Blank fields are re	served and mus	st not be a	ccessed.			# Access is bit spe	cific.				

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C21x34B PSoC device. For up-to-date electrical specifications, visit the Cypress web site at http://www.cypress.com.

Specifications are valid for –40 $^\circ C \le T_A \le 85 \ ^\circ C$ and $T_J \le 100 \ ^\circ C$ as specified, except where noted.

Refer to Table 23 on page 27 for the electrical specifications for the IMO using SLIMO mode.

Figure 13. IMO Frequency Trim Options

Absolute Maximum Ratings

Table 10. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	-55	25	+100	°C	Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 65 °C degrade reliability.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	
^t BAKETIME	Bake time	See package label	_	72	Hours	
T _A	Ambient temperature with power applied	-40	_	+85	°C	
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5	_	+6.0	V	
V _{IO}	DC input voltage	$V_{SS} - 0.5$	_	$V_{DD} + 0.5$	V	
V _{IOZ}	DC voltage applied to tri-state	$V_{SS} - 0.5$	_	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	_	+50	mA	
ESD	Electrostatic discharge voltage	2000	_	_	V	Human body model ESD.
LU	Latch-up current	—	_	200	mA	

Operating Temperature

Table 11. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient temperature	-40	-	+85	°C	
Τ _J	Junction temperature	-40	_	+100	°C	The temperature rise from ambient to junction is package specific. See Table 36 on page 38. You must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Chip-Level Specifications

Table 12 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 12. DC Chip-level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DD}	Supply voltage	2.40	-	5.25	V	See Table 20 on page 25
I _{DD}	Supply current, IMO = 24 MHz	_	3	4	mA	Conditions are $V_{DD} = 5.0 \text{ V}$, T _A = 25 °C, CPU = 3 MHz, 48 MHz disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 0.366 kHz
I _{DD3}	Supply current, IMO = 6 MHz using SLIMO mode.	_	1.2	2	mA	Conditions are $V_{DD} = 3.3 \text{ V}$, T _A = 25 °C, CPU = 3 MHz, clock doubler disabled. VC1 = 375 kHz, VC2 = 23.4 kHz, VC3 = 0.091 kHz
I _{DD27}	Supply current, IMO = 6 MHz using SLIMO mode.	_	1.1	1.5	mA	Conditions are $V_{DD} = 2.55 V$, T _A = 25 °C, CPU = 3 MHz, clock doubler disabled. VC1 = 375 kHz, VC2 = 23.4 kHz, VC3 = 0.091 kHz
I _{SB27}	Sleep (mode) current with POR, LVD, sleep timer, WDT, and internal slow oscillator active. Mid temperature range.	_	2.6	4	μA	V_{DD} = 2.55 V, 0 °C \leq T _A \leq 40 °C
I _{SB}	Sleep (mode) current with POR, LVD, Sleep Timer, WDT, and internal slow oscillator active.	_	2.8	5	μΑ	$V_{DD} = 3.3 \text{ V}, -40 \text{ °C} \leq T_A \leq 85 \text{ °C}$
V _{REF}	Reference voltage (Bandgap)	1.28	1.30	1.32	V	Trimmed for appropriate V_{DD} V_{DD} = 3.0 V to 5.25 V
V _{REF27}	Reference voltage (Bandgap)	1.16	1.30	1.33	V	Trimmed for appropriate V_{DD} V_{DD} = 2.4 V to 3.0 V
AGND	Analog ground	V _{REF} -0.003	V_{REF}	V _{REF} + 0.003	V	

DC General-Purpose I/O Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Table 13. 5 V and 3.3 V DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} – 1.0	_	-	V	$I_{OH} = 10$ mA, $V_{DD} = 4.75$ to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])
V _{OL}	Low output level	_	-	0.75	V	$I_{OL} = 25 \text{ mA}, V_{DD} = 4.75 \text{ to } 5.25 \text{ V}$ (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5]))
I _{OH}	High level source current	10	_	-	mA	$V_{OH} = V_{DD} - 1.0 V$, see the limitations of the total current in the note for V_{OH}
I _{OL}	Low level sink current	25	Ι	-	mA	$V_{OL} = 0.75$ V, see the limitations of the total current in the note for V_{OL}
V _{IL}	Input low level	-	-	0.8	V	V _{DD} = 3.0 to 5.25
V _{IH}	Input high level	2.1	-		V	V _{DD} = 3.0 to 5.25
V _H	Input hysteresis	-	60	-	mV	
IIL	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent Temp = 25 °C
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent Temp = 25 °C

Table 14. 2.7 V DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} – 0.4	-	_	V	I_{OH} = 2.5 mA (6.25 Typ), V_{DD} = 2.4 to 3.0 V (16 mA maximum, 50 mA Typ combined I_{OH} budget)
V _{OL}	Low output level	-	-	0.75	V	I_{OL} = 10 mA, V_{DD} = 2.4 to 3.0 V (90 mA maximum combined I_{OL} budget)
I _{OH}	High level source current	2.5	_	-	mA	$V_{OH} = V_{DD} - 0.4 V$, see the limitations of the total current in the note for V_{OH}
I _{OL}	Low level sink current	10	_	-	mA	$V_{OL} = 0.75$ V, see the limitations of the total current in the note for V_{OL}
V _{IL}	Input low level	-	-	0.75	V	V _{DD} = 2.4 to 3.0
V _{IH}	Input high level	2.0	_	-	V	V _{DD} = 2.4 to 3.0
V _H	Input hysteresis	-	90	-	mV	
IIL	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent Temp = 25 °C
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent Temp = 25 °C

DC Operational Amplifier Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 15.	5 V DC	Operational	Amplifier 3	Specifications
	3,000	operational	Ampiner	opecifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	μV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins 7-to-1)	Ι	200	-	pА	Gross tested to 1 µA
I _{EBOA00}	Input leakage current (Port 0, Pin 0 analog pin)	-	50	-	nA	Gross tested to 1 µA
C _{INOA}	Input capacitance (Port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0.0	-	V _{DD} -1.0	V	
G _{OLOA}	Open loop gain	-	80	-	dB	
I _{SOA}	Amplifier supply current	_	10	30	μA	

Table 16. 3.3 V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	_	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	_	10	-	μV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins)	_	200	-	pА	Gross tested to 1 µA
I _{EBOA00}	Input leakage current (Port 0, Pin 0 analog pin)	_	50	-	nA	Gross tested to 1 µA
C _{INOA}	Input capacitance (Port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0	-	V _{DD} – 1.0	V	
G _{OLOA}	Open loop gain	_	80	-	dB	
I _{SOA}	Amplifier supply current	_	10	30	μA	

Table 17. 2.7 V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	_	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	_	10	-	μV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins)	_	200	_	pА	Gross tested to 1 µA
I _{EBOA00}	Input leakage current (Port 0, Pin 0 analog pin)	_	50	-	nA	Gross tested to 1 µA
C _{INOA}	Input capacitance (Port 0 analog pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0	-	V _{DD} – 1.0	V	
G _{OLOA}	Open loop gain	_	80	-	dB	
I _{SOA}	Amplifier supply current	1	10	30	μA	

DC Switch Mode Pump Specifications

Table 18 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, or 2.4 V to 3.0 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Figure 14. Basic Switch Mode Pump Circuit

Table 18.	DC Switch	Mode Pump	(SMP)	Specifications
			(<u> </u>	

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PUMP5V}	5 V output voltage from pump	4.75	5.0	5.25	V	Configured as in Note 11 Average, neglecting ripple SMP trip voltage is set to 5.0 V
V _{PUMP3V}	3.3 V output voltage from pump	3.00	3.25	3.60	V	Configured as in Note 11 Average, neglecting ripple. SMP trip voltage is set to 3.25 V
V _{PUMP2V}	2.6 V output voltage from pump	2.45	2.55	2.80	V	Configured as in Note 11 Average, neglecting ripple. SMP trip voltage is set to 2.55 V
I _{PUMP}	Available output current $V_{BAT} = 1.8 V$, $V_{PUMP} = 5.0 V$ $V_{BAT} = 1.5 V$, $V_{PUMP} = 3.25 V$ $V_{BAT} = 1.3 V$, $V_{PUMP} = 2.55 V$	5 8 8	_ _ _	_ _ _	mA mA mA	Configured as in Note 11 SMP trip voltage is set to 5.0 V SMP trip voltage is set to 3.25 V SMP trip voltage is set to 2.55 V
V _{BAT5V}	Input voltage range from battery	1.8	-	5.0	V	Configured as in Note 11 SMP trip voltage is set to 5.0 V
V _{BAT3V}	Input voltage range from battery	1.0	-	3.3	V	Configured as in Note 11 SMP trip voltage is set to 3.25 V
V _{BAT2V}	Input voltage range from battery	1.0	-	2.8	V	Configured as in Note 11 SMP trip voltage is set to 2.55 V
V _{BATSTART}	Minimum input voltage from battery to start pump	1.2	-	-	V	Configured as in Note 11 0 °C \leq T _A \leq 100. 1.25 V at T _A = -40 °C
ΔV_{PUMP_Line}	Line regulation (over Vi range)	_	5	_	%V _O	Configured as in Note 11 V_O is the "V _{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 20 on page 25
ΔV_{PUMP_Load}	Load regulation	_	5	_	%V _O	Configured as in Note 11 V_O is the "V _{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 20 on page 25
ΔV_{PUMP} Ripple	Output voltage ripple (depends on cap/load)	_	100	-	mVpp	Configured as in Note 11 Load is 5 mA

Note

11. $L_1 = 2 \text{ mH}$ inductor, $C_1 = 10 \text{ mF}$ capacitor, $D_1 = \text{Schottky}$ diode. See Figure 14.

Table 18. DC Switch Mode Pump (SMP) Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
E ₃	Efficiency	35	50	-	%	Configured as in Note 11 Load is 5 mA. SMP trip voltage is set to 3.25 V
E ₂	Efficiency	35	80	-	%	For I load = 1mA, V_{PUMP} = 2.55 V, V_{BAT} = 1.3 V, 10 µH inductor, 1 µF capacitor, and Schottky diode
F _{PUMP}	Switching frequency	_	1.3	-	MHz	
DC _{PUMP}	Switching duty cycle	_	50	_	%	

DC Analog Mux Bus Specifications

Table 19 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 19. DC Analog Mux Bus Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{SW}	Switch resistance to common analog bus	-	-	400 800	Ω	$V_{DD} \ge 2.7 V$ 2.4 V $\le V_{DD} \le 2.7 V$
R _{VDD}	Resistance of initialization switch to V _{DD}	_	_	800	Ω	

DC POR and LVD Specifications

Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 20. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0} V _{PPOR1} V _{PPOR2}	V _{DD} value for PPOR trip PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_ _ _	2.36 2.82 4.55	2.40 2.95 4.70	V V V	V_{DD} must be greater than or equal to 2.5 V during startup, the reset from the XRES pin, or reset from watchdog
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	$\begin{array}{l} V_{DD} \mbox{ value for LVD trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 111b \\ VM[2:0] = 111b \end{array}$	2.40 2.85 2.95 3.06 4.37 4.50 4.62 4.71	2.45 2.92 3.02 3.13 4.48 4.64 4.73 4.81	2.51 ^[12] 2.99 ^[13] 3.09 3.20 4.55 4.75 4.83 4.95	> > > > > > > > >	
VPUMP0 VPUMP1 VPUMP2 VPUMP3 VPUMP4 VPUMP5 VPUMP6 VPUMP7	$\begin{array}{l} V_{DD} \ value \ for \ pump \ trip \\ VM[2:0] = \ 000b \\ VM[2:0] = \ 001b \\ VM[2:0] = \ 010b \\ VM[2:0] = \ 011b \\ VM[2:0] = \ 100b \\ VM[2:0] = \ 100b \\ VM[2:0] = \ 110b \\ VM[2:0] = \ 111b \\ \end{array}$	2.45 2.96 3.03 3.18 4.54 4.62 4.71 4.89	2.55 3.02 3.10 3.25 4.64 4.73 4.82 5.00	$\begin{array}{c} 2.62^{[14]}\\ 3.09\\ 3.16\\ 3.32^{[15]}\\ 4.74\\ 4.83\\ 4.92\\ 5.12 \end{array}$	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	

Notes

- 12. Always greater than 50 mV above V_{PPOR} (PORLEV = 00) for falling supply. 13. Always greater than 50 mV above V_{PPOR} (PORLEV = 01) for falling supply. 14. Always greater than 50 mV above V_{LVD0}.

15. Always greater than 50 mV above V_{LVD3}.