imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CY8C21345 CY8C22345 CY8C22545

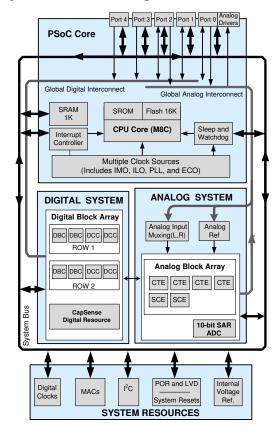
PSoC[®] Programmable System-on-Chip

Features

- Powerful Harvard-architecture processor:
 - M8C processor speeds up to 24 MHz
 - 8 × 8 multiply, 32-bit accumulate
 - Low power at high speed
 - □ 3.0 V to 5.25 V operating voltage
 - □ Industrial temperature range: -40 °C to +85 °C

■ Advanced peripherals (PSoC[®] Blocks)

- □ Six analog type "E" PSoC blocks provide:
 - · Single or dual 8-Bit ADC
 - · Comparators (up to four)
- □ Up to eight digital PSoC blocks provide:
 - 8- to 32-bit timers and counters, 8- and 16-bit pulse-width modulators (PWMs)
 - · One shot, multi-shot mode support in timers and PWMs
 - PWM with deadband support in one digital block
 - Shift register, CRC, and PRS modules
 - Full duplex UART
 - Multiple SPI masters or slaves, variable data length Support: 8- to 16-Bit
 - · Can be connected to all GPIO pins
- Complex peripherals by combining blocks
- Shift function support for FSK detection
- Powerful synchronize feature support. Analog module operations can be synchronized by digital blocks or external signals.
- High speed 10-bit SAR ADC with sample and hold optimized for embedded control
- Precision, programmable clocking:
 - Internal ± 5% ^[1] 24/48 MHz oscillator across the industrial temperature range
 - □ High accuracy 24 MHz with optional 32 kHz crystal and PLL
 - □ Optional external oscillator, up to 24 MHz
 - $\hfill\square$ Internal/external oscillator for watchdog and sleep
- Flexible on-chip memory:
 - Up to 16 KB flash program storage 50,000 erase/write cycles
 - □ Up to 1-KB SRAM data storage
 - □ In-system serial programming (ISSP)
 - Partial flash updates
 - Flexible protection modes
 - EEPROM emulation in flash
- Optimized CapSense[®] resource:
 - Two IDAC support up to 640 µA source current to replace external resistor
 - Two dedicated clock resources for CapSense:


Errata: For information on silicon errata, see "Errata" on page 35. Details include trigger conditions, devices affected, and proposed workaround. Note

Errata: When the device is operated within 0 °C to 70 °C, the frequency tolerance is reduced to ±2.5%, but if operated at extreme temperature (below 0 °C or above 70 °C), frequency tolerance deviates from ±2.5% to ±5%. For more information, see "Errata" on page 35.

Cypress Semiconductor Corporation • Document Number: 001-43084 Rev. *V 198 Champion Court

- CSD CLK: 1/2/4/8/16/32/128/256 derive from SYSCLK
- CNT_CLK: 1/2/4/8 Derive from CSD_CLK
- Dedicated 16-bit timers/counters for CapSense scanning
- □ Support dual CSD channels simultaneous scanning
- Programmable pin configurations:
 - □ 25 mA sink, 10 mA source on all GPIOs
 - Pull-up, pull-down, high Z, Strong, or open-drain drive modes on all GPIOs
 - Up to 38 analog inputs on GPIOs
 - Configurable interrupt on all GPIOs
- Additional system resources:
 - □ I²C[™] slave, master, and multimaster to 400 kHz
- Supports hardware addressing feature
- Watchdog and sleep timers
- □ User configurable low voltage detection
- Integrated supervisory circuit
- On-Chip precision voltage reference
- □ Supports RTC block into digital peripheral logic

Top Level Block Diagram

CY8C21345 CY8C22345 CY8C22545

Contents

PSoC Functional Overview	3
PSoC Core	
Digital System	
Analog System	
Additional System Resources	4
PSoC Device Characteristics	
Getting Started	
Application Notes	
Development Kits	
Training	5
CYPros Consultants	
Solutions Library	5
Technical Support	
Development Tools	6
PSoC Designer Software Subsystems	6
Designing with PSoC Designer	7
Select User Modules	7
Configure User Modules	7
Organize and Connect	7
Generate, Verify, and Debug	7
Pinouts	8
CY8C22345, CY8C21345 28-pin SOIC	8
CY8C22545 44-pin TQFP	9
Registers	
Register Conventions	10
Register Mapping Tables	10

Electrical Specifications	13
Absolute Maximum Ratings	14
Operating Temperature	
DC Electrical Characteristics	15
AC Electrical Characteristics	21
Packaging Information	27
Thermal Impedances	
Solder Reflow Specifications	
Ordering Information	
Ordering Code Definitions	
Acronyms	29
Reference Documents	29
Document Conventions	
Units of Measure	
Numeric Conventions	
Glossary	
Errata	
Part Numbers Affected	
CY8C21x45, CY8C22x45 Qualification Status	
Errata Summary	
Document History Page	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	40

PSoC Functional Overview

The PSoC family consists of many On-Chip Controller devices. These devices are designed to replace multiple traditional MCU-based system components with one low cost single-chip programmable device. PSoC devices include configurable blocks of analog and digital logic, and programmable interconnects. This architecture enables the user to create customized peripheral configurations that match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts and packages.

The PSoC architecture, shown in Figure 1, consists of four main areas: PSoC Core, Digital System, Analog System, and System Resources. Configurable global busing allows the combining of all the device resources into a complete custom system. The PSoC family can have up to five I/O ports connecting to the global digital and analog interconnects, providing access to eight digital blocks and six analog blocks.

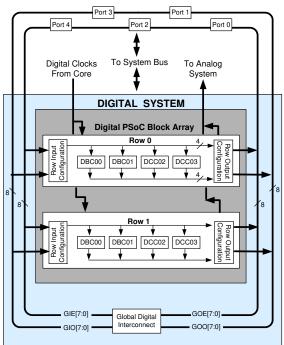
PSoC Core

The PSoC Core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable general-purpose I/O (GPIO).

The M8C CPU core is a powerful processor with speeds up to 24 MHz, providing a four MIPS 8-bit Harvard architecture microprocessor. The CPU uses an interrupt controller with 21 vectors, to simplify the programming of real time embedded events.

Program execution is timed and protected using the included Sleep and watchdog timers (WDT).

Memory encompasses 16 KB of Flash for program storage, 1 K bytes of SRAM for data storage, and up to 2 KB of EEPROM emulated using the Flash. Program Flash uses four protection levels on blocks of 64 bytes, allowing customized software IP protection.


The PSoC device incorporates flexible internal clock generators, including a 24 MHz IMO (internal main oscillator). The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32 kHz internal low-speed oscillator (ILO) is provided for the Sleep timer and WDT. If crystal accuracy is required, the ECO (32.768 kHz external crystal oscillator) is available for use as a Real Time Clock (RTC), and can optionally generate a crystal-accurate 24 MHz system clock using a PLL. The clocks, together with programmable clock dividers (as a System Resource), provide the flexibility to integrate almost any timing requirement into the PSoC device.

PSoC GPIOs provide connection to the CPU, digital, and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin can also generate a system interrupt on high level, low level, and change from last read.

Digital System

The Digital System is composed of eight digital PSoC blocks. Each block is an 8-bit resource that may be used alone or combined with other blocks to form 8, 16, 24, and 32-bit peripherals, which are called user module references.

Digital peripheral configurations are:

- PWMs (8- and 16-Bit)
- PWMs with Dead band (8- and 16-Bit)
- Counters (8 to 32-Bit)
- Timers (8 to 32-Bit)
- UART 8 Bit with Selectable Parity (Up to Two)
- SPI Master and Slave (Up to Two)
- Shift Register (1 to 32-Bit)
- I2C Slave and Master (One Available as a System Resource)
- Cyclical Redundancy Checker/Generator (8 to 32-Bit)
- IrDA (Up to Two)

■ Pseudo Random Sequence Generators (8 to 32-Bit)

The digital blocks may be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This provides a choice of system resources for your application. Family resources are shown in Table 1 on page 5.

Analog System

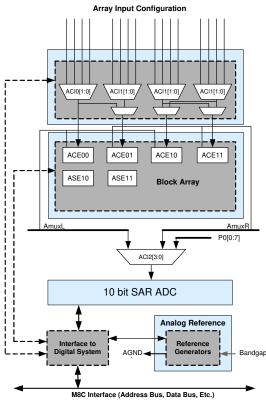
The Analog System consists of a 10-bit SAR ADC and six configurable blocks.

The programmable 10-bit SAR ADC is an optimized ADC that can be run up to 200 ksps with ± 1.5 LSB DNL and ± 2.5 LSB INL (true for $V_{DD} \ge 3.0$ V and Vref ≥ 3.0 V). External filters are required on ADC input channels for antialiasing. This ensures that any out-of-band content is not folded into the input signal band.

Reconfigurable analog resources allow creating complex analog signal flows. Analog peripherals are very flexible and may be customized to support specific application requirements. Some of the more common PSoC analog functions (most available as user modules) are:

- Analog-to-Digital converters (Single or Dual, with 8-bit resolution)
- Pin-to-pin Comparator
- Single ended comparators with absolute (1.3 V) reference or 5-bit DAC reference
- 1.3 V reference (as a System Resource)

Analog blocks are provided in columns of four, which include CT-E (Continuous Time) and SC-E (Switched Capacitor) blocks. These devices provide limited functionality Type "E" analog blocks.


Figure 2. Analog System Block Diagram

Array Input Configuration

Additional System Resources

System Resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include a MAC, low voltage detection, and power on reset. The merits of each system resource are:

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks may be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- Additional Digital resources and clocks optimized for CSD.
- Support "RTC" block into digital peripheral logic.
- A multiply accumulate (MAC) provides a fast 8-bit multiplier with 32-bit accumulate, to assist in both general math and digital filters.
- The I2C module provides 100 and 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low Voltage Detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (Power On Reset) circuit eliminates the need for a system supervisor.
- An internal 1.3 V reference provides an absolute reference for the analog system, including ADCs and DACs.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 3 analog blocks. The following table lists the resources available for specific PSoC device groups.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66 ^[2]	up to 64	4	16	up to 12	4	4	12	2 K	32 K
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[3]	1 K	16 K
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K
CY8C24x94 ^[2]	up to 56	1	4	up to 48	2	2	6	1 K	16 K
CY8C24x23A ^[2]	up to 24	1	4	up to 12	2	2	6	256	4 K
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K
CY8C22x45 ^[2]	up to 38	2	8	up to 38	0	4	6 ^[3]	1 K	16 K
CY8C21x45 ^[2]	up to 24	1	4	up to 24	0	4	6 ^[3]	512	8 K
CY8C21x34 ^[2]	up to 28	1	4	up to 28	0	2	4 ^[3]	512	8 K
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[3]	256	4 K
CY8C20x34 ^[2]	up to 28	0	0	up to 28	0	0	3 ^[3,4]	512	8 K
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[3,4]	up to 2 K	up to 32 K

Table 1. PSoC Device Characteristics

Getting Started

For in-depth information, along with detailed programming see the CY8C22x45, details, CY8C21345: PSoC Programmable System-on-Chip™ Technical Reference Manual.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs. Use PSoC 1 Application note finder to search application notes or example projects for a specific application and/or family.

Development Kits

PSoC 1 kits are available online from Cypress and also available through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark. The kit selector guide available in cypress website offers the list of all available development kits, programming and debugging kits for each PSoC 1 family.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support - including a searchable Knowledge Base articles and technical forums - is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Notes

- 2. Automotive qualified devices available in this group.
- 3
- Limited analog functionality. Two analog blocks and one CapSense[®] block. 4.

Development Tools

PSoC Designer[™] is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- Hardware and software I²C slaves and masters
- □ Full-speed USB 2.0
- Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are ADCs, DACs, amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run

time. In essence, this allows you to use more than 100 percent of PSoC's resources for an application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and are linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an online support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is summarized in four steps:

- 1. Select User Modules.
- 2. Configure User Modules.
- 3. Organize and Connect.
- 4. Generate, Verify, and Debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run-time and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in either C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer and allows you to define complex breakpoint events. These include monitoring address and data bus values, memory locations, and external signals.

Pinouts

This PSoC device family is available in a variety of packages that are listed in the following tables. Every port pin (labeled with a "P") is capable of Digital I/O. However, Vss, Vdd, and XRES are not capable of Digital I/O.

CY8C22345, CY8C21345 28-pin SOIC

Table 2. Pin Definitions

Pin No.	Ту	ре	Pin Name	Description
PIN NO.	Digital	Analog	Pin Name	Description
1	I/O	I, MR	P0[7]	Integration Capacitor for MR
2	I/O	I, ML	P0[5]	Integration Capacitor for ML
3	I/O	I, ML	P0[3]	
4	I/O	I, ML	P0[1]	
5	I/O	I, ML	P2[7]	To Compare Column 0
6	I/O	ML	P2[5]	Optional ADC External Vref
7	I/O	ML	P2[3]	
8	I/O	ML	P2[1]	
9	Po	wer	Vss	Ground Connection ^[5]
10	I/O	ML	P1[7]	I2C serial clock (SCL)
11	I/O	ML	P1[5]	I2C serial data (SDA)
12	I/O	ML	P1[3]	
13	I/O	ML	P1[1]	I2C serial clock (SCL), ISSP-SCLK ^[6]
14	Po	wer	Vss	Ground Connection ^[5]
15	I/O	MR	P1[0]	I2C serial Clock (SCL), ISSP-SDATA ^[6]
16	I/O	MR	P1[2]	
17	I/O	MR	P1[4]	Optional external clock input (EXT-CLK)
18	I/O	MR	P1[6]	
19	Inp	out	XRES	Active High Pin Reset with Internal Pull Down
20	I/O	MR	P2[0]	
21	I/O	MR	P2[2]	
22	I/O	MR	P2[4]	
23	I/O	I, MR	P2[6]	To Compare Column 1
24	I/O	I, MR	P0[0]	
25	I/O	I, MR	P0[2]	
26	I/O	I, MR	P0[4]	
27	I/O	I, MR	P0[6]	
28	Pov	wer	Vdd	Supply Voltage

Figure 3. Pin Diagram

AI, MR, P0[7] 🗖	1		28	Vdd
AI, ML, P0[5] 🗖	2		27	P0[6], MR, AI
AI, ML, P0[3] 🗖	3		26	P0[4], MR, AI
AI, ML, P0[1] 🗖	4		25	P0[2], MR, AI
AI, ML, P2[7] 🗖	5		24	P0[0], MR, AI
ADC_Ext_Vref, ML, P2[5]	6		23	P2[6], MR, AI
ML, P2[3] 🗖	7	SOIC	22	P2[4], MR
ML, P2[1] 🗖	8		21	P2[2], MR
Vss 🗖	9		20	P2[0], MR
I2C SCL, ML, P1[7] 🔳	10		19	XRES
I2C SDA, ML, P1[5] 🗖	11		18	P1[6], MR
ML, P1[3] =	12		17	P1[4], MR, EXTCLK
I2C SCL, ML, P1[1] =	13		16	■ P1[2], MR
Vss 🗖	14		15	P1[0], MR, I2C SDATA

LEGEND: A = Analog, I = Input, O = Output, M=Analog Mux input, MR= Analog Mux right input, ML= Analog Mux left input.

Notes

All V_{SS} pins should be brought out to one common GND plane.
 If ISSP is not used, pins P1[0] and P1[1] will respond differently to a POR or XRES event. After a POR or XRES event, both pins are pulled down to ground by going into the resistive zero Drive mode, before reaching the High Z Drive mode.

CY8C22545 44-pin TQFP

Table 3. Pin Definitions [7]

					Figure 4. Pin Diagram
Pin No.	-	pe Analog	Pin Name	Description	
	Digital	Analog ML	DOIET	Optional ADC External Vref	-
1	1/O 1/O	ML	P2[5] P2[3]	Optional ADC External Viel	
3	1/O	ML	P2[3] P2[1]		ML A ML A MR, A MR, A MR, A MR, A MR, A MR, A
4		wer	Vdd	Supply Voltage	<pre><< << <<</pre>
5	I/O	ML	P4[5]		P2[7], M P0[1], M P0[3], P P0[3], P P0[3], P P0[4], P P0[4], P P0[4], P P0[4], P P0[6], L
6	I/O	ML	P4[3]		8 2 3 3 3 3 3 4 4 4 4 4 4 9 4 4 9 4 9 4 9 4
7	I/O	ML	P4[1]		ADC_Ext_Vref, ML, P2[5] = 1 33 = P2[4], MR
8		wer	Vss	Ground Connection	ML, P2[3] = 2 32 = P2[2], MR ML, P2[1] = 3 31 = P2[0], MR
9	I/O	ML	P3[7]		Vdd = 4 30 = Vss
10	I/O	ML	P3[5]		ML, P4[5] = 5 29 = P4[4], MR ML, P4[3] = 6 TQFP 28 = P4[2], MR
11	I/O	ML	P3[3]		ML, P4[3] = 6 TQFP 28 = P4[2], MR ML, P4[1] = 7 27 = P4[0], MR
12	I/O	ML	P3[1]		Vss = 8 26 = XRES
13	I/O	ML	P1[7]	I2C serial clock (SCL)	ML, P3[7] = 9 25 = P3[6], MR ML, P3[5] = 10 24 = P3[4], MR
14	I/O	ML	P1[5]	I2C serial data (SDA)	MI P3[3] =11 23 = P3[2] MB
15	I/O	ML	P1[3]		11 12 13 14 14 15 16 17 18 17 17 18 19 11 12 13 14 15 16 17 17 18 19 110 110 111 111 112 113 114 115 116 117 118 119 110 110 111 111 112 113 114 115 115 116 117 118 119 110 110 110 110
16	I/O	ML	P1[1]	Crystal (XTALin), I2C SCL, ISSP SCLK ^[6]	P1[3] P1[3] P1[3] P1[3] P1[3] P1[3]
17	Po	wer	Vss	Ground Connection	
18	I/O	MR	P1[0]	Crystal (XTALout), I2C SDA, ISSP SDATA ^[6]	ML SCL ML SDA ML ALIN ML MR SDA ML MR SDA ML MR MR MR
19	I/O	MR	P1[2]		ML, P3[1] I2C SCL, ML, P1[7] I2C SOL, ML, P1[7] I2C SOL, XTALIn, ML, P1[3] I2C SOL, XTALIn, ML, P1[3] I2C SDA, XTALout, MR, P1[0] EXTCLK, MR, P1[0] MR, P3[0]
20	I/O	MR	P1[4]	Optional external clock input (EXTCLK)	
21	I/O	MR	P1[6]		
22	I/O	MR	P3[0]		
23	I/O	MR	P3[2]		
24	I/O	MR	P3[4]		
25	I/O	MR	P3[6]		
26		put	XRES	Active High Pin Reset with Internal Pull Down	
27	I/O	MR	P4[0]		
28	I/O	MR	P4[2]		
29	I/O	MR	P4[4]		
30	Po	wer	Vss	Ground Connection	
31	I/O	MR	P2[0]		
32	I/O	MR	P2[2]		
33	I/O	MR	P2[4]		
34	I/O	I, MR	P2[6]	To Compare Column 1	
35	I/O	I, MR	P0[0]		
36	I/O	I, MR	P0[2]		
37	I/O	I, MR	P0[4]		
38	I/O	I, MR	P0[6]		
39	Po	wer	Vdd	Supply Voltage	1
40	I/O	I, MR	P0[7]	Integration Capacitor for MR	1
41	I/O	I, ML	P0[5]	Integration Capacitor for ML	1
42	I/O	I, ML	P0[3]]
43	I/O	I, ML	P0[1]		
44	I/O	I, ML	P2[7]	To Compare Column 0	

LEGEND: A = Analog, I = Input, O = Output, M=Analog Mux input, MR= Analog Mux right input, ML= Analog Mux left input.

Note

7. All V_{SS} pins should be brought out to one common GND plane.

Registers

This section lists the registers of this PSoC device family by mapping tables. For detailed register information, refer the *PSoC Programmable System-on Chip Technical Reference Manual*.

Register Conventions

Table 4. Abbreviations

Convention	Description
RW	Read and write register or bit(s)
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

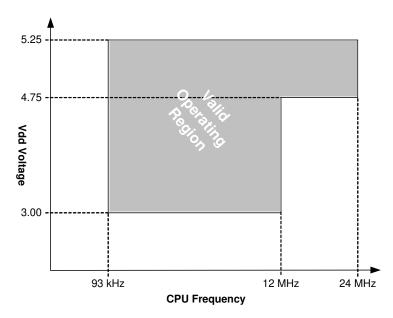
The PSoC device has a total register address space of 512 bytes. The register space is also referred to as I/O space and is broken into two parts. The XIO bit in the Flag register determines which bank the user is currently in. When the XIO bit is set, the user is said to be in the "extended" address space or the "configuration" registers.

Note In the following register mapping tables, blank fields are Reserved and must not be accessed.

Table 5. Register Map Bank 0 Table: User Space

Name	Addr (0,Hex)		Name	Addr (0,Hex)		Name	Addr (0,Hex)		Name	Addr (0,Hex)	Access
PRTODR	00	RW		40	#	ASC10CR0*	80*	RW		CO	RW
PRTOIE	01	RW		41	W		81	RW		C1	RW
PRT0GS	02	RW		42	RW		82	RW		C2	RW
PRT0DM2	03	RW		43	#		83	RW		C3	RW
PRT1DR	04	RW		44	#	ASD11CR0*	84*	RW		C4	RW
PRT1IE	05	RW		45	W		85	RW		C5	RW
PRT1GS	06	RW		46	RW		86	RW		C6	RW
PRT1DM2	07	RW		47	#		87	RW		C7	RW
PRT2DR	08	RW		48	#		88	RW	PWMVREF0	C8	#
PRT2IE	09	RW		49	w		89	RW	PWMVREF1	C9	#
PRT2GS	03	RW		43 4A	RW		8A	RW	IDAC MODE	CA	# RW
									_		
PRT2DM2	0B	RW		4B	#		8B	RW	PWM_SRC	СВ	#
PRT3DR	0C	RW		4C	#		8C	RW	TS_CR0	CC	RW
PRT3IE	00	RW		4D	W		8D	RW	TS_CMPH	CD	RW
PRT3GS	0E	RW		4E	RW		8E	RW	TS_CMPL	CE	RW
PRT3DM2	0F	RW		4F	#		8F	RW	TS_CR1	CF	RW
PRT4DR	10	RW	CSD0_DR0_L	50	R		90	RW	CUR PP	D0	RW
PRT4IE	11	RW	CSD0_DR1_L	51	W		91	RW	STK_PP	D1	RW
PRT4GS	12	RW	CSD0_CNT_L	52	R		92	RW	PRV PP	D2	RW
PRT4DM2	13	RW	CSD0 CR0	53	#		93	RW	IDX PP	D3	RW
	14	RW	CSD0 DR0 H	54	" R		94	RW	MVR PP	D4	RW
-	14	RW	CSD0_DR0_H	55	W		95	RW	MVN_PP	D4 D5	RW
	16	RW	CSD0_CNT_H	56	R		96	RW	I2C0_CFG	D6	RW
	17	RW	CSD0_CR1	57	RW		97	RW	I2C0_SCR	D7	#
	18	RW	CSD1_DR0_L	58	R		98	RW	12C0_DR	D8	RW
	19	RW	CSD1_DR1_L	59	W		99	RW	I2C0_MSCR	D9	#
	1A	RW	CSD1_CNT_L	5A	R		9A	RW	INT_CLR0	DA	RW
	1B	RW	CSD1_CR0	5B	#		9B	RW	INT_CLR1	DB	RW
-	1C	RW	CSD1 DR0 H	5C	R		90	RW	INT CLR2	DC	RW
	1D	RW	CSD1 DR1 H	5D	W		9D	RW	INT CLR3	DD	RW
	1E	RW	CSD1_CNT_H	5E	R		9E	RW	INT MSK3	DE	RW
	1F	RW	CSD_CR1	5F	RW		9F	RW	INT MSK2	DF	RW
DBC00DR0	20	#	AMX IN	60	RW		A0	1100	INT MSK0	E0	RW
			—						—		
DBC00DR1	21	W	AMUX_CFG	61	RW		A1		INT_MSK1	E1	RW
DBC00DR2	22	RW	PWM_CR	62	RW		A2		INT_VC	E2	RC
DBC00CR0	23	#	ARF_CR	63	RW		A3		RES_WDT	E3	W
DBC01DR0	24	#	CMP_CR0	64	#		A4		DEC_DH	E4	RW
DBC01DR1	25	W	ASY_CR	65	#		A5		DEC_DL	E5	RW
DBC01DR2	26	RW	CMP_CR1	66	RW		A6		DEC _CR0*	E6	RW
DBC01CR0	27	#		67	RW		A7		DEC_CR1*	E7	RW
DCC02DR0	28	#	ADC0 CR	68	#		A8	W	MULO X	E8	W
DCC02DR1	29	W	ADC1_CR	69	#		A9	w	MULO Y	E9	W
DCC02DR2	2A	RW	SADC DH	6A	" RW		AA	R	MULO DH	EA	R
DCC02CR0	28 28	#	—	6B	RW		AB	R	MULO DL	EB	R
			SADC_DL						_		
DCC03DR0	2C	#	TMP_DR0	6C	RW		AC	RW	ACC0_DR1	EC	RW
DCC03DR1	2D	W	TMP_DR1	6D	RW		AD	RW	ACC0_DR0	ED	RW
DCC03DR2	2E	RW	TMP_DR2	6E	RW		AE	RW	ACC0_DR3	EE	RW
DCC03CR0	2F	#	TMP_DR3	6F	RW		AF	RW	ACC0_DR2	EF	RW
DBC10DR0	30	#		70	RW	RDIORI	B0	RW	CPU A	F0	#
DBC10DR1	31	W		71	RW	RDIOSYN	B1	RW	CPU_T1	F1	#
DBC10DR2	32	RW	ACB00CR1*	72*	RW	RDI0IS	B2	RW	CPU T2	F2	#
DBC10CR0	33	#	ACB00CR2*	73*	RW	RDI0LT0	B3	RW	CPU X	F3	#
DBC11DR0	34	#		74	RW	RDI0LT1	B4	RW	CPU PCL	F4	#
DBC11DR1	35	W W		75	RW	RDIOROO	B5	RW	CPU PCH	F5	#
DBC11DR1 DBC11DR2									—		
	36	RW	ACB01CR1*	76* 77*	RW	RDI0RO1	B6	RW	CPU_SP	F6	#
DBC11CR0	37	#	ACB01CR2*	77*	RW	RDIODSM	B7	RW	CPU_F	F7	1
DCC12DR0	38	#		78	RW	RDI1RI	B8	RW	CPU_TST0	F8	RW
DCC12DR1	39	W		79	RW	RDI1SYN	B9	RW	CPU_TST1	F9	RW
DCC12DR2	3A	RW		7A	RW	RDI1IS	BA	RW	CPU_TST2	FA	RW
DCC12CR0	3B	#		7B	RW	RDI1LT0	BB	RW	CPU TST3	FB	#
DCC13DR0	3C	#		7C	RW	RDI1LT1	BC	RW	DAC1_D	FC	RW
DCC13DR1	3D	W		7D	RW	RDI1RO0	BD	RW	DAC0 D	FD	RW
DCC13DR2	3E	RW		76 7E	RW	RDI1RO1	BE	RW	CPU SCR1	FE	#
				7E 7F	RW	RDI1DSM	BF	RW	CPU_SCR0	FE FF	#
DCC13CR0	3F										

Table 6. Register Map Bank 1 Table: Configuration Space


Name	Addr (1,Hex)		Name	Addr (1,Hex)		Name	Addr (1,Hex)	Access	Name		Access
PRT0DM0	0	RW		40	RW	ASC10CR0*	80*	RW		CO	RW
PRI0DM1	1	RW		41	RW		81	RW		C1	RW
PRIOCO	2	RW		42	RW		82	RW		C2	RW
PRIOIC1 PRI1DM0	3	RW		43	1.11.07		83	RW		C3	RW
	4	RW		44	RW	ASD11CR0*	84*	RW		C4	RW
PRI1DM1	5	RW		45	RW		85	RW		C5	RW
PRT1IC0	6	RW		46	RW		86	RW		C6	RW
PRI 1IC1	7	RW		47			87	RW		C7	RW
PRI2DM0	8	RW		48	RW		88	RW		C8	#
PRI2DM1	9	RW		49	RW		89	RW		C9	RW
PR12IC0	0A	RW		4A	RW		8A	RW		CA	RW
PRT2IC1	08	RW		4B			8B	RW		СВ	RW
PRI3DM0	00	RW		4C	RW		80	RW		CC	#
PRI3DM1	0D	RW		4D	RW		8D	RW		CD	RW
PRI3IC0	0E	RW		4E	RW		8E	RW		CE	RW
PRT3IC1	0F	RW		4⊦			8F	RW		CF	RW
PRI4DM0	10	RW	CMP0CR1	50	RW		90	RW	GDI_O_IN	D0	RW
PRI4DM1	11	RW	CMP0CR2	51	RW		91	RW	GDI_E_IN	D1	RW
PRT4IC0	12	RW		52	RW		92	RW	GDI_O_OU	D2	RW
PRT4IC1	13	RW	VDAC50CR0	53	RW		93	RW	GDI_E_OU	D3	RW
	14	RW	CMP1CR1	54	RW		94	RW		D4	RW
	15	RW	CMP1CR2	55	RW		95	RW		D5	RW
	16	RW		56	RW		96	RW		D6	RW
	17	RW	VDAC51CR0	57	RW		97	RW		D7	RW
	18	RW	CSCMPCR0	58	#		98	RW	MUX_CR0	D8	RW
	19	RW	CSCMPGOEN	59	RW		99	RW	MUX_CR1	D9	RW
	1A	RW	CSLUTCR0	5A	RW		9A	RW	MUX_CR2	DA	RW
	1B	RW	CMPCOLMUX	5B	RW		9B	RW	MUX_CR3	DB	RW
	1C	RW	CMPPWMCR	5C	RW		9C	RW	DAC_CR1#	DC	RW
	10	RW	CMPFLICR	5D	RW		9D	RW	OSC_GO_EN	סט	RW
	1E	RW	CMPCLK1	5E	RW		9E	RW	OSC_CR4	DE	RW
	11-	RW	CMPCLK0	5F	RW		9F	RW	OSC_CR3	DF	RW
DBC00FN	20	RW	CLK_CR0	60	RW	GDI_O_IN_CR	A0	RW	OSC_CR0	E0	RW
DBC00IN	21	RW	CLK CR1	61	RW	GDI_E_IN_CR	A1	RW	OSC_CR1	E1	RW
DBC00OU	22	RW	ABF_CR0	62	RW	GDI_O_OU_CR	A2	RW	OSC_CR2	E2	RW
DBC00CR1	23	RW	AMD_CR0	63	RW	GDI_E_OU_CR	A3	RW	VLI_CR	E3	RW
DBC01FN	24	RW	CMP_GO_EN	64	RW	RIC_H	A4	RW	VLI_CMP	E4	К
DBC01IN	25	RW	CMP_GO_EN1	65	RW	RIC_M	A5	RW	ADC0_IR*	E5	RW
DBC01OU	26	RW	AMD_CR1	66	RW	RICS	A6	RW	ADC1_IR*	E6	RW
DBC01CR1	27	RW	ALT_CR0	67	RW	RTC_CR	A7	RW	V2BG_TR	E7	RW
DCC02FN	28	RW	ALI_CR1	68	RW	SADC_CR0	A8	RW	IMO_IR	E8	w
DCC02IN	29	RW	CLK_CR2	69	RW	SADC_CR1	A9	RW	ILO_IR	E9	W
DCC02OU	2A	RW	02.1_01.12	6A	RW	SADC_CR2	AA	RW	BDG_TR	EA	RW
DBC02CR1	28	RW	CLK_CR3	6B	RW	SADC_CR3TRIM	AB	RW	ECO_IR	EB	W
DCC03FN	20	RW	TMP_DR0	6C	RW	SADC_CR4	AC	RW	MUX_CR4	EC	RW
DCC03IN	20 2D	RW	TMP_DR1	60 6D	RW	12C0_AD	AD	RW	MUX_CR5	ED	RW
DCC03OU	2D 2E	RW	TMP_DR1	6E	RW	00_AD	AE	RW	MUX CR6	EE	RW
DBC03CR1	2E 2F	RW	TMP_DR3	6F	RW		AE	RW	MUX CR7	EF	RW
DBC10FN	30	RW	טרום_ ווארי	ог 70	RW	RDIORI	B0	RW	CPU A	F0	#
DBC10FN DBC10IN	30	RW			RW	RDIORI		RW	CPU A CPU 11	FU F1	
	31	RW		71	RW		B1 B2		CPU_11 CPU_12		#
DBC10OU			ACB00CR1*	72		RDIOIS		RW	—	F2	#
DBC10CR1	33	RW	ACB00CR2*	73	RW	RDIOL10	B3	RW	CPU_X	F3	#
DBC11FN	34	RW		74	RW	RDIOLI 1	B4	RW	CPU_PCL	F4	#
DBC11IN	35	RW		75	RW	RDIORO0	B5	RW	CPU_PCH	F5	#
DBC11OU	36	RW	ACB01CR1*	76*	RW	RDI0RO1	B6	RW	CPU_SP	F6	#
DBC11CR1	37	RW	ACB01CR2*	77*	RW	RDIODSM	B7	RW	CPU_F	F7	1
DCC12FN	38	RW		78	RW	RDI1RI	88	RW	FLS_PR0	F8	RW
DCC12IN	39	RW		79	RW	RDITSYN	89	RW	FLS IR	F9	W
DCC12OU	3A	RW		7A	RW	RDITIS	ВА	RW	FLS_PR1	FA	RW
DBC12CR1	3B	RW		7B	RW	RDI1LT0	BB	RW		FB	
DCC13FN	3C	RW		7C	RW	RDI1LI1	BC	RW	FAC_CR0	FC	SW
DCC13IN	3D	RW		7D	RW	RDI1RO0	BD	RW	DAC_CR0#	FD	RW
DCC13OU	3E	RW		7E	RW	RDI1RO1	BE	RW	CPU_SCR1	FE	#
DBC13CR1	3F	RW		7F	RW	RDIIDSM	BF	RW	CPU_SCR0	FF	#
	ire Reserved an	d must not	be accessed.	1	1	# Access is bit s	pecific. * has a	different n	_	1	I

Electrical Specifications

This section presents the DC and AC electrical specifications of this PSoC device family. For the latest electrical specifications, check the most recent data sheet by visiting http://www.cypress.com.

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications for devices running at greater than 12 MHz are valid for –40 °C \leq T_A \leq 70 °C and T_J \leq 82 °C.

Figure 5. Voltage versus Operating Frequency

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 7. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	-55	_	+100	°C	Higher storage temperatures reduce data retention time
T _{BAKETEMP}	Bake temperature	-	125	See Package label	°C	
TBAKETIME	Bake time	See package label	-	72	Hours	
T _A	Ambient temperature with power applied	-40	_	+85	°C	
Vdd	Supply voltage on Vdd relative to Vss	-0.5	-	+6.0	V	
V _{IO}	DC input voltage	Vss - 0.5	-	Vdd + 0.5	V	
V _{IOz}	DC voltage applied to tristate	Vss - 0.5	-	Vdd + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	-	+50	mA	
ESD	Electr static discharge voltage	2000	-	-	V	Human Body Model ESD
LU	Latch up current	-	-	200	mA	

Operating Temperature

Table 8. Operating Temperature

Symbol	Description	Min	Тур	Мах	Units	Notes
T _A	Ambient temperature	-40	-	+85	°C	
Τ _J	Junction temperature	-40	_	+100	°C	The temperature rise from ambient to junction is package specific. See Table 30 on page 28. The user must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Chip Level Specifications

Table 9 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, or 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C, and are for design guidance only, unless specified otherwise.

Table 9.	DC Chir	l evel S	pecifications
Table 5.			pecifications

Symbol	Description	Min	Тур	Max	Units	Notes
Vdd	Supply voltage	3.0	-	5.25	V	See Table 17 on page 19
I _{DD}	Supply current	-	7	12	mA	Conditions are Vdd = 5.0 V, 25°C, CPU = 3 MHz, 48 MHz disabled. VC1 = 1.5 MHz VC2 = 93.75 kHz VC3 = 93.75 kHz
I _{DD3}	Supply current	_	4	7	mA	Conditions are Vdd = 3.3 V T _A = 25 °C , CPU = 3 MHz 48 MHz = Disabled VC1 = 1.5 MHz , VC2 = 93.75 kHz VC3 = 93.75 kHz
I _{SB}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT ^[8]	_	3	6.5	μΑ	Conditions are with internal slow speed oscillator, Vdd = $3.3 V$ -40°C <= T _A <= $55°C$
I _{SBH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT at high temperature ^[8]	_	4	25	μA	Conditions are with internal slow speed oscillator, Vdd = 3.3 V $55 ^{\circ}\text{C} < \text{T}_{\text{A}} <= 85 ^{\circ}\text{C}$
I _{SBXTL}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and external crystal ^[8]	_	4	7.5	μA	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. Vdd = 3.3 V, -40 °C <= T _A <= 55 °C
I _{SBXTLH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and external crystal at high temperature ^[8]	_	5	26	μΑ	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. Vdd = 3.3 V, 55 °C < T _A <= 85 °C
V _{REF}	Reference Voltage (Bandgap)	1.275	1.3	1.325	V	Trimmed for appropriate Vdd

Note

Standby current includes all functions (POR, LVD, WDT, Sleep Time) needed for reliable system operation. This must be compared with devices that have similar functions enabled.

DC GPIO Specifications

Table 10 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only, unless otherwise specified.

Table 10. DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD} ^[9]	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	Vdd – 1.0		_	V	$\begin{split} I_{OH} &= 10 \text{ mA}, \text{ Vdd} = 4.75 \text{ to } 5.25 \text{ V} \\ (8 \text{ total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). \\ 80 \text{ mA maximum combined } I_{OH} \text{ budget} \end{split}$
V _{OL}	Low output level	_	_	0.75	V	$\begin{split} &I_{OL} = 25 \text{ mA}, \text{ Vdd} = 4.75 \text{ to } 5.25 \text{ V} \\ &(8 \text{ total loads}, 4 \text{ on even port pins (for example, P0[2], P1[4]), 4 \text{ on odd port pins (for example, P0[3], P1[5])).} \\ &150 \text{ mA maximum combined }I_{OL} \text{ budget.} \end{split}$
I _{ОН}	High level source current	10	-	-	mA	$V_{OH} = Vdd - 1.0 V$, see the limitations of the total current in the note for V_{OH} .
I _{OL}	Low level sink current	25	-	_	mA	V_{OL} = 0.75 V, see the limitations of the total current in the note for V_{OL} .
V _{IL} ^[9]	Input Low level	-	_	0.8	V	Vdd = 3.0 to 5.25
V _{IH} ^[9]	Input High level	2.1	-		V	Vdd = 3.0 to 5.25
V _H ^[9]	Input hysterisis	-	60	-	mV	
I _{IL} ^[9]	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA
C _{IN} ^[9]	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent. Temp = 25 °C
C _{OUT}	Capacitive load on pins as output	_	3.5	10	pF	Package and pin dependent. Temp = 25 °C

^{9.} The DC GPIO specifications apply to the XRES pin as well.

DC Operational Amplifier Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are for design guidance only.

Table 11. 5 V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	_	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	_	10	-	μV/°C	
I _{EBOA} ^[10]	Input leakage current (Port 0 Analog Pins)	-	200	_	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (Port 0 Analog Pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode Voltage Range	0.0	—	Vdd - 1	V	

Table 12. 3.3 V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	_	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	_	10	-	μV/°C	
I _{EBOA} ^[10]	Input leakage current (Port 0 Analog Pins)	_	200	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (Port 0 Analog Pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0	-	Vdd – 1	V	

DC IDAC Specifications

The following table lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 13. DC IDAC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
IDAC _{GAIN}	IDAC gain	_	75.4	218	nA/bit	IDAC gain at 1x current gain
		_	335	693	nA/bit	IDAC gain at 4x current gain
		_	1160	2410	nA/bit	IDAC gain at 16x current gain
		_	2340	5700	nA/bit	IDAC gain at 32x current gain
	Monotonicity	No	-	-	-	IDAC gain is non-monotonous at step intervals of (0x10)
IDAC _{GAIN_VAR}	GAIN_VAR IDAC gain variation over – 3.22 –		-	nA	at 1x current gain	
	temperature -40 °C to 85 °C	_	18.1	-	nA	at 4x current gain
		_	59.9	_	nA	at 16x current gain
		_	120	_	nA	at 32x current gain
I _{IDAC}	IDAC current at maximum code	_	19.2	_	μΑ	at 1x current gain
	(0xFF)	_	85.4	_	μΑ	at 4x current gain
		_	295	_	μA	at 16x current gain
		_	596	_	μA	at 32x current gain

Note

10. Atypical behavior: IEBOA of Port 0 Pin 0 is below 1 nA at 25 °C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA.

DC Low Power Comparator Specifications

Table 14 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C respectively. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 14. DC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{REFLPC}	Low power comparator (LPC) reference voltage range	0.2	-	Vdd – 1	V	
V _{OSLPC}	LPC voltage offset	-	2.5	30	mV	

SAR10 ADC DC Specifications

Table 15 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are for design guidance only.

Table 15. SAR10 ADC DC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Vadcvref	Reference voltage at pin P2[5] when configured as ADC reference voltage	3.0	_	5.25	V	When V_{REF} is buffered inside ADC, the voltage level at P2[5] (when configured as ADC reference voltage) must be always maintained to be at least 300 mV less than the chip supply voltage level on Vdd pin. ($V_{adcvref} < Vdd$)
I _{adcvref}	Current when P2[5] is configured as ADC V_{REF}	_	-	0.5	mA	Disables the internal voltage reference buffer
INL at 10 bits	Integral Nonlinearity	-2.5	-	2.5	LSB	For $V_{DD} \geq 3.0$ V and Vref ≥ 3.0 V
		-5.0	-	5.0	LSB	For V_{DD} < 3.0 V or Vref < 3.0 V
DNL at 10 bits	Differential Nonlinearity	-1.5	—	1.5	LSB	For $V_{DD} {\geq} 3.0$ V and Vref ${\geq} 3.0$ V
		-4.0	—	4.0	LSB	For V_{DD} < 3.0 V or Vref < 3.0 V
SPS [11]	Sample per second	_	—	150	ksps	Resolution 10 bits

Note

^{11.} Errata: When ADC is operated in free running mode, for a constant input voltage output of ADC can have a variation of up to 7LSB. This can be resolved by using the averaging technique or by disabling the free running mode before reading the data and enabling again after reading the data. For more information, see "Errata" on page 35.

DC Analog Mux Bus Specifications

Table 16 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are for design guidance only.

Table 16. DC Analog Mux Bus Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{SW}	Switch Resistance to Common Analog Bus	-	-	400	Ω	$Vdd \ge 3.00$
R _{gnd}	Resistance of Initialization Switch to gnd	-	-	800	Ω	

DC POR and LVD Specifications

Table 17 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are for design guidance only.

Table 17. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR1} V _{PPOR2}	Vdd Value for PPOR Trip PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_	2.82 4.55	2.95 4.70	V V	Vdd must be greater than or equal to 3.0 V during startup, reset from the XRES pin, or reset from Watchdog.
$\begin{array}{c} V_{LVD2} \\ V_{LVD3} \\ V_{LVD4} \\ V_{LVD5} \\ V_{LVD6} \\ V_{LVD7} \end{array}$	Vdd Value for LVD Trip VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b	2.95 3.06 4.37 4.50 4.62 4.71	3.02 3.13 4.48 4.64 4.73 4.81	3.09 3.20 4.55 4.75 4.83 4.95	V V V V V V	

DC Programming Specifications

Table 18 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are for design guidance only.

Table 18. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V_{DD} for programming and erase	4.5	5.0	5.5	V	This specification applies to the functional requirements of external programmer tools
V _{DDLV}	Low V _{DD} for verify	3.0	3.1	3.2	V	This specification applies to the functional requirements of external programmer tools
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operation	3.0	-	5.25	V	This specification applies to this device when it is executing internal flash writes
I _{DDP}	Supply Current during Programming or Verify	_	5	25	mA	
V _{ILP}	Input Low Voltage during Programming or Verify	-	Ι	0.8	V	
V _{IHP}	Input High Voltage during Programming or Verify	2.2	_	-	V	
I _{ILP}	Input Current when Applying V _{ILP} to P1[0] or P1[1] during Programming or Verify	-	_	0.2	mA	Driving internal pull down resistor
I _{IHP}	Input Current when Applying V _{IHP} to P1[0] or P1[1] during Programming or Verify	-	_	1.5	mA	Driving internal pull down resistor
V _{OLV}	Output Low Voltage during Programming or Verify	-	_	Vss + 0.75	V	
V _{OHV}	Output High Voltage during Programming or Verify	Vdd - 1.0		Vdd	V	
Flash _{ENPB}	Flash Endurance (per block) ^[13]	50,000	-	-	_	Erase/write cycles per block
Flash _{ENT}	Flash Endurance (total) ^[12]	1,800,000	-	-	_	Erase/write cycles
Flash _{DR}	Flash Data Retention	10	-	-	Years	

DC I²C Specifications

Table 19 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C $\leq T_A \leq 85$ °C or 3.0 V to 3.6 V and -40 °C $\leq T_A \leq 85$ °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are for design guidance only.

Table 19. DC I²C Specifications

Parameter	Description	Min	Тур	Max	Units	Notes
V _{ILI2C} ^[14]	Input low level	-	-	$0.3 \times V_{DD}$	V	$3.0~V \leq V_{DD} \leq 3.6~V$
		-	-	$0.25 \times V_{DD}$	V	$4.75~V \leq V_{DD} \leq 5.25~V$
V _{IHI2C} ^[14]	Input high level	$0.7 \times V_{DD}$	-	_	V	$3.0~V \leq V_{DD} \leq 5.25~V$

Note

12. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles).

ever sees more than 50,000 cycles). For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.

13. The 50,000 cycle Flash endurance per block is guaranteed only if the Flash operates within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to 5.25 V 14. All GPIOs meet the DC GPIO V_{IL} and V_{IH} specifications found in the DC GPIO specifications sections. The I²C GPIO pins also meet the above specs.

AC Electrical Characteristics

AC Chip Level Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are for design guidance only.

Table 20. 5 V and 3.3 V AC Chip-Level Specifications

Symbol	Description	Min	Min(%)	Тур	Мах	Max(%)	Units	Notes
F _{IMO24} ^[15]	Internal Main Oscillator Frequency for 24 MHz	22.8	-	24	25.2 ^[16, 17, 18]	-	MHz	Trimmed for 5 V or 3.3 V operation using factory trim values. See Figure 5 on page 13. SLIMO mode = 0 < 85.
F _{IMO6}	Internal Main Oscillator Frequency for 6 MHz	5.5	8	6	6.5 ^[16, 17, 18]	8	MHz	Trimmed for 5 V or 3.3 V operation using factory trim values. See Figure 5 on page 13. SLIMO mode = 0 < 85.
F _{CPU1}	CPU Frequency (5 V Nominal)	0.089	-	24	24.6 ^[16, 17]	-	MHz	24 MHz only for SLIMO mode = 0.
F _{CPU2}	CPU Frequency (3.3 V Nominal)	0.089	-	12	12.3 ^[17, 18]	-	MHz	SLIMO mode = 0.
F _{BLK5}	Digital PSoC Block Frequency (5 V Nominal)	0	-	48	49.2 ^[16, 17, 19]	-	MHz	Refer to Table 24 on page 23.
F _{BLK33}	Digital PSoC Block Frequency (3.3 V Nominal)	0	_	24	24.6 ^[17, 19]	-	MHz	
F _{32K1}	Internal Low Speed Oscillator Frequency	15	-	32	85	-	kHz	
F _{32КU}	Untrimmed Internal Low Speed Oscillator Frequency	5	_	-	100	_	kHz	The ILO is not adjusted with the factory trim values until after the CPU starts running. See the "System Resets" section in the Technical Reference Manual.
T _{XRES}	External Reset Pulse Width	10	_	Ι	_	_	μs	This specification refers to the minimum pulse width required to achieve complete device Reset. Shorter pulse widths may cause undefined chip behavior.
DC24M	24 MHz Duty Cycle	40	-	50	60	-	%	
DC _{ILO}	Internal Low Speed Oscillator Duty Cycle	20	-	50	80	-	%	
F _{MAX}	Maximum frequency of signal on row input or row output	-	-	-	12.3	-	MHz	
SR _{POWERUP}	Power supply slew rate	-	-	-	250	-	V/ms	Vdd slew rate during power up.
T _{POWERUP}	Time from end of POR to CPU executing code	-	_	-	100	-	ms	
tjit_IMO ^[20]	24 MHz IMO cycle-to-cycle jitter (RMS)	-	_	200	700	-	ps	
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	_	300	900	-	ps	N = 32
	24 MHz IMO period jitter (RMS)	-	-	100	400	-	ps	
tjit_PLL ^[20]	24 MHz IMO cycle-to-cycle jitter (RMS)	-	_	200	800	-	ps	
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	-	300	1200	-	ps	N = 32
	24 MHz IMO period jitter (RMS)	-	_	100	700	_	ps	

Notes

17. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.

18.3.0 V < Vdd < 3.6 V.

19. Refer to the individual user module data sheets for information on maximum frequencies for user modules.

20. Refer to Cypress Jitter Specifications, Understanding Datasheet Jitter Specifications for Cypress Timing Products for more information.

^{15.} Errata: When the device is operated within 0 °C to 70 °C, the frequency tolerance is reduced to $\pm 2.5\%$, but if operated at extreme temperature (below 0 °C or above 70 °C), frequency tolerance deviates from $\pm 2.5\%$ to $\pm 5\%$. For more information, see "Errata" on page 35. 16. Valid only for 4.75 V < Vdd < 5.25 V.

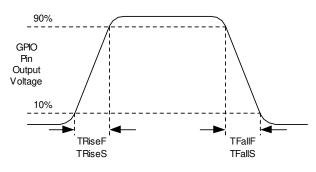

AC GPIO Specifications

Table 21 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C $\leq T_A \leq 85$ °C or 3.0 V to 3.6 V and -40 °C $\leq T_A \leq 85$ °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are for design guidance only.

Table 21.	5 V	and 3.3	۷	AC	GPIO	Specifications
-----------	-----	---------	---	----	------	----------------

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	12	MHz	Normal Strong Mode
TRiseF	Rise time, normal strong mode, Cload = 50 pF	3	-	18	ns	Vdd = 4.5 to 5.25 V, 10% to 90%
TFallF	Fall time, normal strong mode, Cload = 50 pF	2	-	18	ns	Vdd = 4.5 to 5.25 V, 10% to 90%
TRiseS	Rise time, slow strong mode, Cload = 50 pF	7	27	-	ns	Vdd = 3 to 5.25 V, 10% to 90%
TFallS	Fall time, slow strong mode, Cload = 50 pF	7	22	-	ns	Vdd = 3 to 5.25 V, 10% to 90%

Figure 6. GPIO Timing Diagram

AC Operational Amplifier Specifications

Table 22 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$ or 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are for design guidance only.

Table 22. AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{COMP}	Comparator Mode Response Time, 50 mV			100	ns	$Vdd \ge 3.0 V$

AC Low Power Comparator Specifications

Table 23 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 23. AC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RLPC}	LPC response time	_	-	50		\geq 50 mV overdrive comparator reference set within V _{REFLPC}

AC Digital Block Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V, at 25 °C and are for design guidance only.

Table 24.	AC Digital	Block Specifications
-----------	------------	----------------------

Function	Description	Min	Тур	Max	Units	Notes
All functions	Block Input Clock Frequency					
	$Vdd \ge 4.75 V$	_	-	50.4 ^[21]	MHz	
	Vdd < 4.75 V	_	_	25.2 ^[21]	MHz	
Timer	Input Clock Frequency					
	No Capture, Vdd \geq 4.75 V	—	-	50.4 ^[21]	MHz	
	No Capture, Vdd < 4.75 V	_	_	25.2 ^[21]	MHz	
	With Capture	_	_	25.2 ^[21]	MHz	
	Capture Pulse Width	50 ^[22]	_	-	ns	
Counter	Input Clock Frequency					
	No Enable Input, Vdd ≥ 4.75 V	_	-	50.4 ^[21]	MHz	
	No Enable Input, Vdd < 4.75 V	_	_	25.2 ^[21]	MHz	
	With Enable Input	_	_	25.2 ^[21]	MHz	
	Enable Input Pulse Width	50 ^[22]	_	_	ns	
Dead Band	Kill Pulse Width					
	Asynchronous Restart Mode	20	-	-	ns	-
	Synchronous Restart Mode	50 ^[22]	_	-	ns	
	Disable Mode	50 ^[22]	_	-	ns	
	Input Clock Frequency					
	$Vdd \ge 4.75 V$	_	-	50.4 ^[21]	MHz	-
	Vdd < 4.75 V	_	-	25.2 ^[21]	MHz	-
CRCPRS	Input Clock Frequency					
(PRS Mode)	$Vdd \ge 4.75 V$	_	-	50.4 ^[21]	MHz	
	Vdd < 4.75 V	_	_	25.2 ^[21]	MHz	
CRCPRS (CRC Mode)	Input Clock Frequency	_	_	25.2 ^[21]	MHz	
SPIM	Input Clock Frequency	-	-	8.4 ^[21]	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input Clock (SCLK) Frequency	_	-	4.2 ^[21]	MHz	The input clock is the SPI SCLK in SPIS mode.
	Width of SS_Negated Between Transmissions	50 ^[22]	-	_	ns	
Transmitter	Input Clock Frequency			1		The baud rate is equal to the input
	Vdd \ge 4.75 V, 2 Stop Bits	_	-	50.4 ^[21]	MHz	clock frequency divided by 8.
	Vdd ≥ 4.75 V, 1 Stop Bit	-	-	25.2 ^[21]	MHz	
	Vdd < 4.75 V	-	_	25.2 ^[21]	MHz	
Receiver	Input Clock Frequency			I		The baud rate is equal to the input
	$Vdd \ge 4.75 V, 2 Stop Bits$	_	_	50.4 ^[21]	MHz	clock frequency divided by 8.
	Vdd ≥ 4.75 V, 1 Stop Bit	_	_	25.2 ^[21]	MHz	1
	Vdd < 4.75 V	_	_	25.2 ^[21]	MHz	1

Notes

Accuracy derived from IMO with appropriate trim for V_{DD} range.
 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

AC External Clock Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are for design guidance only.

Table 25. 5 V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency	0.093	-	24.6	MHz	
-	High Period	20.6	-	5300	ns	
-	Low Period	20.6	-	_	ns	
-	Power Up IMO to Switch	150	-		μS	

Table 26. 3.3 V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU Clock divide by 1	0.093	_	12.3	MHz	Maximum CPU frequency is 12 MHz at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.
F _{OSCEXT}	Frequency with CPU Clock divide by 2 or greater	0.186	_	24.6	MHz	If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.
_	High Period with CPU Clock divide by 1	41.7	-	5300	ns	
-	Low Period with CPU Clock divide by 1	41.7	-	-	ns	
_	Power Up IMO to Switch	150	-	-	μS	

SAR10 ADC AC Specifications

Table 27 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 27. SAR10 ADC AC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Freq ₃	Input clock frequency 3 V	-	-	2.7	MHz	
Freq ₅	Input clock frequency 5 V	-	-	2.7	MHz	

AC Programming Specifications

Table 28 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, or 3.3 V at 25 °C and are for design guidance only.

Table 28.	AC Programming	Specifications
-----------	----------------	----------------

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RSCLK}	Rise Time of SCLK	1	-	20	ns	
T _{FSCLK}	Fall Time of SCLK	1	-	20	ns	
T _{SSCLK}	Data Set up Time to Falling Edge of SCLK	40	-	-	ns	
T _{HSCLK}	Data Hold Time from Falling Edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
F _{SCLK3}	Frequency of SCLK3	0	-	6	MHz	V _{DD} < 3.6 V
T _{ERASEB}	Flash Erase Time (Block)	_	10	-	ms	
T _{WRITE}	Flash Block Write Time	_	40	-	ms	
T _{DSCLK}	Data Out Delay from Falling Edge of SCLK	_	-	55	ns	3.6 < Vdd; at 30 pF Load
T _{DSCLK3}	Data Out Delay from Falling Edge of SCLK	_	-	65	ns	$3.0 \le Vdd \le 3.6$; at 30 pF Load
T _{ERASEALL}	Flash Erase Time (Bulk)	_	40	_	ns	
T _{PROGRAM_HOT}	Flash Block Erase + Flash Block Write Time	_	-	100	ms	
T _{PROGRAM_COLD}	Flash Block Erase + Flash Block Write Time	_	-	200	ms	