imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CY8C27143/CY8C27243 CY8C27443/CY8C27543 CY8C27643

PSoC[®] Programmable System-on-Chip™

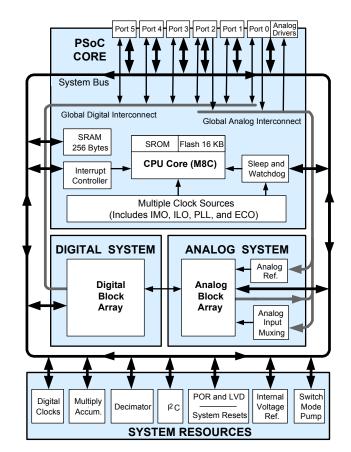
Features

- Powerful Harvard-architecture processor
 - M8C processor speeds up to 24 MHz
 - 8 × 8 multiply, 32-bit accumulate
 - Low power at high speed
 - □ Operating voltage: 3.0 V to 5.25 V
 - Operating voltages down to 1.0 V using on-chip switch mode pump (SMP)
 - □ Industrial temperature range: –40 °C to +85 °C

Advanced peripherals (PSoC[®] blocks)

- Twelve rail-to-rail analog PSoC blocks provide:
 - Up to 14-bit analog-to-digital converters (ADCs)
 - Up to 9-bit digital-to-analog converters (DACs)
 - Programmable gain amplifiers (PGAs)
 - · Programmable filters and comparators
- □ Eight digital PSoC blocks provide:
 - 8- to 32-bit timers and counters, 8- and 16-bit pulse-width modulators (PWMs)
 - Cyclical redundancy check (CRC) and pseudo random sequence (PRS) modules
 - Up to two full-duplex universal asynchronous receiver transmitters (UARTs)
 - Multiple serial peripheral interface (SPI) masters or slaves
- Connectable to all general-purpose I/O (GPIO) pins
- Complex peripherals by combining blocks

Precision, programmable clocking


- Internal 2.5% 24- / 48-MHz main oscillator
- 24- / 48-MHz with optional 32 kHz crystal
- Optional external oscillator up to 24 MHz
- Internal oscillator for watchdog and sleep

Flexible on-chip memory

- □ 16 KB flash program storage 50,000 erase/write cycles
- 256-bytes SRAM data storage
- □ In-system serial programming (ISSP)
- Partial flash updates
- Flexible protection modes
- Electronically erasable programmable read only memory (EEPROM) emulation in flash
- Programmable pin configurations
 - 25-mA sink, 10-mA source on all GPIOs
 - Pull-up, pull-down, high-Z, strong, or open-drain drive modes on all GPIOs
 - Eight standard analog inputs on GPIO, plus four additional analog inputs with restricted routing
 - □ Four 30-mA analog outputs on GPIOs
 - □ Configurable interrupt on all GPIOs

- Additional system resources
 - I²C slave, master, and multi-master to 400 kHz
 - Watchdog and sleep timers
 - User-configurable low-voltage detection (LVD)
 - Integrated supervisory circuit
 - On-chip precision voltage reference
- Complete development tools
 - □ Free development software (PSoC Designer[™])
 - D Full-featured, in-circuit emulator (ICE) and programmer
 - □ Full-speed emulation
 - Complex breakpoint structure
 - □ 128 KB trace memory

Logic Block Diagram

Errata: For information on silicon errata, see "Errata" on page 61. Details include trigger conditions, devices affected, and proposed workaround.

198 Champion Court

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article "How to Design with PSoC[®] 1, PowerPSoC[®], and PLC – KBA88292". Following is an abbreviated list for PSoC 1:

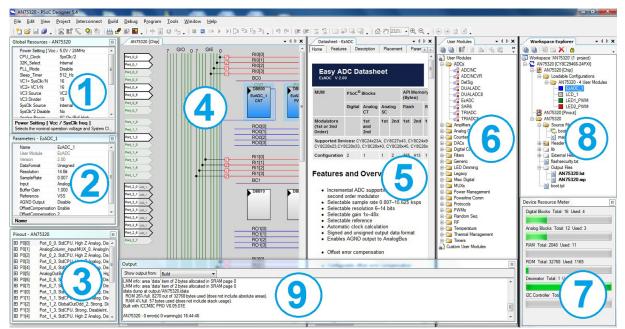
- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP
- In addition, PSoC Designer includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 1 are:
 - □ Getting Started with PSoC[®] 1 AN75320
 - □ PSoC[®] 1 Getting Started with GPIO AN2094
 - □ PSoC[®] 1 Analog Structure and Configuration AN74170
 - □ PSoC[®] 1 Switched Capacitor Analog Blocks AN2041
 - Selecting Analog Ground and Reference AN2219

Note: For CY8C27X43 devices related Application note please click here.

- Development Kits:
 - CY3210-PSoCEval1 supports all PSoC 1 Mixed-Signal Array families, including automotive, except CY8C25/26xxx devices. The kit includes an LCD module, potentiometer, LEDs, and breadboarding space.
 - CY3214-PSoCEvalUSB features a development board for the CY8C24x94 PSoC device. Special features of the board include USB and CapSense development and debugging support.

Note: For CY8C27X43 devices related Development Kits please click here.

The MiniProg1 and MiniProg3 devices provide interfaces for flash programming and debug.


PSoC Designer

PSoC Designer is a free Windows-based Integrated Design Environment (IDE). Develop your applications using a library of pre-characterized analog and digital peripherals in a drag-and-drop design environment. Then, customize your design leveraging the dynamically generated API libraries of code. Figure 1 shows PSoC Designer windows. **Note:** This is not the default view.

- 1. Global Resources all device hardware settings.
- 2. **Parameters –** the parameters of the currently selected User Modules.
- 3. Pinout information related to device pins.
- 4. Chip-Level Editor a diagram of the resources available on the selected chip.
- 5. Datasheet the datasheet for the currently selected UM
- 6. User Modules all available User Modules for the selected device.
- 7. **Device Resource Meter –** device resource usage for the current project configuration.
- 8. Workspace a tree level diagram of files associated with the project.
- 9. Output output from project build and debug operations.

Note: For detailed information on PSoC Designer, go to PSoC[®] Designer > Help > Documentation > Designer Specific Documents > IDE User Guide.

Figure 1. PSoC Designer Layout

CY8C27143/CY8C27243 CY8C27443/CY8C27543 CY8C27643

Contents

PSoC Functional Overview	4
PSoC Core	4
Digital System	
Analog System	5
Additional System Resources	6
PSoC Device Characteristics	6
Development Tools	7
PSoC Designer Software Subsystems	
Designing with PSoC Designer	8
Select User Modules	8
Configure User Modules	
Organize and Connect	
Generate, Verify, and Debug	8
Pinouts	9
8-pin Part Pinout	
20-pin Part Pinout	
28-pin Part Pinout	
44-pin Part Pinout	
48-pin Part Pinout	
56-pin Part Pinout	
Register Reference	
Register Conventions	
Register Mapping Tables	
Electrical Specifications	
Absolute Maximum Ratings	
Operating Temperature	
DC Electrical Characteristics	
AC Electrical Characteristics	

Packaging Information	44
Packaging Dimensions	
Thermal Impedances	50
Capacitance on Crystal Pins	
Solder Reflow Specifications	
Development Tool Selection	
Software	
Development Kits	
Evaluation Tools	
Device Programmers	52
Accessories (Emulation and Programming)	
Ordering Information	
Ordering Code Definitions	
Acronyms	
Reference Documents	
Document Conventions	56
Units of Measure	56
Numeric Conventions	
Glossary	56
Errata	
In Production	61
Not in Production	
Document History Page	66
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	69
Technical Support	

PSoC Functional Overview

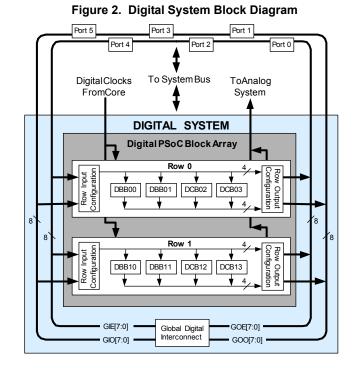
The PSoC family consists of many programmable system-on-chip controller devices. These devices are designed to replace multiple traditional microcontroller unit (MCU)-based components with low-cost system one, single-chip programmable device. PSoC devices include configurable blocks of analog and digital logic, as well as programmable interconnects. This architecture lets you to create customized peripheral configurations that match the requirements of each individual application. Additionally, a fast central processing unit (CPU), flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts and packages.

The PSoC architecture, as illustrated in Logic Block Diagram on page 1, consists of four main areas: PSoC core, digital system, analog system, and system resources. Configurable global busing allows all the device resources to be combined into a complete custom system. The PSoC CY8C27x43 family can have up to five I/O ports that connect to the global digital and analog interconnects, providing access to eight digital blocks and 12 analog blocks.

PSoC Core

The PSoC core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable GPIO.

The M8C CPU core is a powerful processor with speeds up to 24 MHz, providing a four MIPS 8-bit Harvard architecture microprocessor. The CPU uses an interrupt controller with 17 vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included sleep and watchdog timers (WDT).


Memory encompasses 16 KB of flash for program storage, 256 bytes of SRAM for data storage, and up to 2 K of EEPROM emulated using the flash. Program flash uses four protection levels on blocks of 64 bytes, allowing customized software IP protection.

The PSoC device incorporates flexible internal clock generators, including a 24-MHz internal main oscillator (IMO) accurate to 2.5% over temperature and voltage. The 24-MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32-kHz internal low speed oscillator (ILO) is provided for the sleep timer and WDT. If crystal accuracy is desired, the 32.768-kHz external crystal oscillator (ECO) is available for use as a Real Time Clock (RTC) and can optionally generate a crystal-accurate 24-MHz system clock using a PLL. The clocks, together with programmable clock dividers (as a system resource), provide the flexibility to integrate almost any timing requirement into the PSoC device.

PSoC GPIOs provide connection to the CPU, digital and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read.

Digital System

The digital system is composed of eight digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8-, 16-, 24-, and 32-bit peripherals, which are called user modules.

Digital peripheral configurations include:

- PWMs (8- and 16-bit)
- PWMs with dead band (8- and 16-bit)
- Counters (8- to 32-bit)
- Timers (8- to 32-bit) [1, 2]
- UART 8-bit with selectable parity (up to two)
- SPI slave and master (up to two) [3]
- I²C slave and multi-master (one available as a system resource)
- CRC/generator (8- to 32-bit)
- IrDA (up to two)
- Pseudo random sequence (PRS) generators (8- to 32-bit)

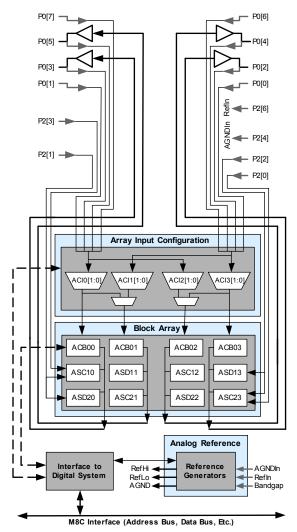
Notes

- 1. Errata: When operated between 4.75 V to 5.25 V, the input capture signal cannot be sourced from Row Output signals or the Broadcast clock signals. This problem has been fixed in silicon Rev B. For more information, see "Errata" on page 61.
- Errata: When operated between 3.0V to 4.75V, the input capture signal can only be sourced from Row input signal that has been re-synchronized. This problem has been fixed in silicon Rev B. For more information, see "Errata" on page 61.
 Errata: Development of the problem has been fixed in silicon Rev B. For more information, see "Errata" on page 61.

Errata: In PSoC, when one output of one SPI Slave block is connected to the input of other SPI slave block, data is shifted correctly but last bit is read incorrectly. For the workaround and more information related to this problem, see "Errata" on page 61.

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also enable signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This lets you the optimum choice of system resources for your application. Family resources are shown in the table titled PSoC Device Characteristics on page 6.


Analog System

The analog system is composed of 12 configurable blocks, each comprised of an opamp circuit allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common PSoC analog functions (most available as user modules) are as follows:

- ADCs (up to 4, with 6- to 14-bit resolution, selectable as incremental, delta sigma, and SAR)
- Filters (2, 4, 6, and 8 pole band pass, low pass, and notch)
- Amplifiers (up to four, with selectable gain to 48x)
- Instrumentation amplifiers (up to two, with selectable gain to 93x)
- Comparators (up to four, with 16 selectable thresholds)
- DACs (up to four, with 6- to 9-bit resolution)
- Multiplying DACs (up to four, with 6- to 9-bit resolution)
- High current output drivers (four with 30 mA drive as a core resource)
- 1.3-V reference (as a system resource)
- DTMF dialer
- Modulators
- Correlators
- Peak detectors
- Many other topologies possible

Analog blocks are provided in columns of three, which includes one continuous time (CT) and two switched capacitor (SC) blocks, as shown in the following figure.

Figure 3. Analog System Block Diagram

Additional System Resources

System resources, some of which have been previously listed, provide additional capability useful to complete systems. Additional resources include a multiplier, decimator, switch mode pump, low voltage detection, and power on reset.

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- Multiply accumulate (MAC) provides fast 8-bit multiplier with 32-bit accumulate, to assist in general math and digital filters.
- The decimator provides a custom hardware filter for digital signal processing applications including the creation of Delta Sigma ADCs.

- The I²C module provides 100 and 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- LVD interrupts can signal the application of falling voltage levels, while the advanced power-on reset (POR) circuit eliminates the need for a system supervisor.
- An internal 1.3-V reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch mode pump (SMP) generates normal operating voltages from a single 1.2-V battery cell, providing a low cost boost converter.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. The following table lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is highlighted in Table 1.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66	up to 64	4	16	up to 12	4	4	12	2 K	32 K
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[4]	1 K	16 K
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K
CY8C24x94	up to 56	1	4	up to 48	2	2	6	1 K	16 K
CY8C24x23A	up to 24	1	4	up to 12	2	2	6	256	4 K
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K
CY8C22x45	up to 38	2	8	up to 38	0	4	6 ^[4]	1 K	16 K
CY8C21x45	up to 24	1	4	up to 24	0	4	6 ^[4]	512	8 K
CY8C21x34	up to 28	1	4	up to 28	0	2	4 ^[4]	512	8 K
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[4]	256	4 K
CY8C20x34	up to 28	0	0	up to 28	0	0	3 ^[4, 5]	512	8 K
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[4, 5]	up to 2 K	up to 32 K

Table 1. PSoC Device Characteristics

4. Limited analog functionality.

5. Two analog blocks and one $CapSense^{\mathbb{R}}$.

Development Tools

PSoC Designer[™] is the revolutionary Integrated Design Environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- Hardware and software I²C slaves and masters
- □ Full-speed USB 2.0
- Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC's resources for an application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also lets you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality In-Circuit Emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24-MHz) operation.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is summarized in four steps:

- 1. Select User Modules.
- 2. Configure user modules.
- 3. Organize and connect.
- 4. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a pulse width modulator (PWM) User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

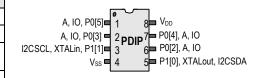
Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed.

A complete code development environment lets you to develop and customize your applications in either C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint and watch-variable features, the debug interface provides a large trace buffer and lets you to define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals.

Pinouts


The CY8C27x43 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of Digital I/O. However, Vss, V_{DD} , SMP, and XRES are not capable of Digital I/O.

8-pin Part Pinout

Table 2. Pin Definitions – 8-pin PDIP

Pin	Ту	pe	Pin	Description		
No.	Digital	Analog	Name	Description		
1	I/O	I/O	P0[5]	Analog column mux input and column output		
2	I/O	I/O	P0[3]	Analog column mux input and column output		
3	I/O		P1[1]	Crystal Input (XTALin), I ² C serial clock (SCL), ISSP-SCLK ^[6]		
4	Po	wer	Vss	Ground connection.		
5	I/O		P1[0]	Crystal output (XTALout), I ² C serial data (SDA), ISSP-SDATA ^[6]		
6	I/O	I/O	P0[2]	Analog column mux input and column output		
7	I/O	I/O	P0[4]	Analog column mux input and column output		
8	Power V _{DD}		V _{DD}	Supply voltage		
I FGF	I EGEND : A = Analog I = Input and $O = Output$					

Figure 4. CY8C27143 8-pin PSoC Device

LEGEND: A = Analog, I = Input, and O = Output.

20-pin Part Pinout

Table 3. Pin Definitions – 20-pin SSOP, SOIC

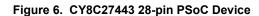
Pin	Ту	pe	Pin	Description	
No.	Digital	Analog	Name	Description	
1	I/O	I	P0[7]	Analog column mux input	
2	I/O	I/O	P0[5]	Analog column mux input and column output	
3	I/O	I/O	P0[3]	Analog column mux input and column output	
4	I/O	I	P0[1]	Analog column mux input	
5	Po	wer	SMP	Switch Mode Pump (SMP) connection to external components required	
6	I/O		P1[7]	I ² C Serial Clock (SCL)	
7	I/O		P1[5]	I ² C Serial Data (SDA)	
8	I/O		P1[3]		
9	I/O		P1[1]	Crystal input (XTALin), I ² C SCL, ISSP-SCLK ^[6]	
10	Power Vs		Vss	Ground connection.	
11	I/O		P1[0]	Crystal output (XTALout), I ² C SDA, ISSP-SDATA ^[6]	
12	I/O		P1[2]		
13	I/O		P1[4]	Optional external clock input (EXTCLK)	
14	I/O		P1[6]		
15	Inj	put	XRES	Active high external reset with internal pull down	
16	I/O	I	P0[0]	Analog column mux input	
17	I/O	I/O	P0[2]	Analog column mux input and column output	
18	I/O	I/O	P0[4]	Analog column mux input and column output	
19	I/O	I	P0[6]	Analog column mux input	
20	Power V _E		V _{DD}	Supply voltage	

Figure 5. CY8C27243 20-pin PSoC Device

LEGEND: A = Analog, I = Input, and O = Output.

Note

6. These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Programmable System-on-Chip Technical Reference Manual for details.



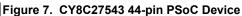
CY8C27143/CY8C27243 CY8C27443/CY8C27543 CY8C27643

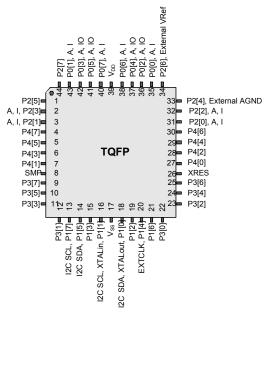
28-pin Part Pinout

Table 4. Pin Definitions – 28-pin PDIP, SSOP, SOIC

Pin No.	Ту	ре	Pin	Description	
PIN NO.	Digital	Analog	Name	Description	
1	I/O	I	P0[7]	Analog column mux input	
2	I/O	I/O	P0[5]	Analog column mux input and column output	
3	I/O	I/O	P0[3]	Analog column mux input and column output	
4	I/O	I	P0[1]	Analog column mux input	
5	I/O		P2[7]		
6	I/O		P2[5]		
7	I/O	-	P2[3]	Direct switched capacitor block input	
8	I/O	-	P2[1]	Direct switched capacitor block input	
9	Pov	wer	SMP	Switch mode pump (SMP) connection to external components required	
10	I/O		P1[7]	I ² C SCL	
11	I/O		P1[5]	I ² C SDA	
12	I/O		P1[3]		
13	I/O		P1[1]	Crystal input (XTALin), I ² C SCL, ISSP-SCLK ^[7]	
14	Pov	wer	Vss	Ground connection.	
15	I/O		P1[0]	Crystal output (XTALout), I ² C SDA, ISSP-SDATA ^[7]	
16	I/O		P1[2]		
17	I/O		P1[4]	Optional external clock input (EXTCLK)	
18	I/O		P1[6]		
19	Inp	out	XRES	Active high external reset with internal pull down	
20	I/O	I	P2[0]	Direct switched capacitor block input	
21	I/O	I	P2[2]	Direct switched capacitor block input	
22	I/O		P2[4]	External analog ground (AGND)	
23	I/O		P2[6]	External voltage reference (V _{REF})	
24	I/O	I	P0[0]	Analog column mux input	
25	I/O	I/O	P0[2]	Analog column mux input and column output	
26	I/O	I/O	P0[4]	Analog column mux input and column output	
27	I/O		P0[6]] Analog column mux input	
28	Pov	wer	V_{DD}	Supply voltage	

LEGEND: A = Analog, I = Input, and O = Output.


7. These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Programmable System-on-Chip Technical Reference Manual for details.



44-pin Part Pinout

Table 5. Pin Definitions – 44-pin TQFP

Pin	Ту	Туре		Description		
No.	Digital	Analog	Pin Name	Description		
1	I/O		P2[5]			
2	I/O	I	P2[3]	Direct switched capacitor block input		
3	I/O	I	P2[1]	Direct switched capacitor block input		
4	I/O		P4[7]			
5	I/O		P4[5]			
6	I/O		P4[3]			
7	I/O		P4[1]			
8	Pov	wer	SMP	SMP connection to external components required		
9	I/O		P3[7]			
10	I/O		P3[5]			
11	I/O		P3[3]			
12	I/O		P3[1]			
13	I/O		P1[7]	I ² C SCL		
14	I/O		P1[5]	I ² C SDA		
15	I/O		P1[3]			
16	I/O		P1[1]	Crystal input (XTALin), I ² C SCL, ISSP-SCLK ^[8]		
17	Po	wer	Vss	Ground connection.		
18	I/O		P1[0]	Crystal output (XTALout), I ² C SDA, ISSP-SDATA ^[8]		
19	I/O		P1[2]			
20	I/O		P1[4]	Optional external clock input (EXTCLK)		
21	I/O		P1[6]			
22	I/O		P3[0]			
23	I/O		P3[2]			
24	I/O		P3[4]			
25	I/O		P3[6]			
26	Inp	out	XRES	Active high external reset with internal pull down		
27	I/O		P4[0]			
28	I/O		P4[2]			
29	I/O		P4[4]			
30	I/O		P4[6]			
31	I/O	I	P2[0]	Direct switched capacitor block input		
32	I/O	I	P2[2]	Direct switched capacitor block input		
33	I/O		P2[4]	External Analog Ground (AGND)		
34	I/O		P2[6]	External Voltage Reference (VRef)		
35	I/O	I	P0[0]	Analog column mux input		
36	I/O	I/O	P0[2]	Analog column mux input and column output		
37	I/O	I/O	P0[4]	Analog column mux input and column output		
38	I/O	1	P0[6]	Analog column mux input		
39	Pov	wer	V _{DD}	Supply voltage		
40	I/O	I	P0[7]	Analog column mux input		
41	I/O	I/O	P0[5]	Analog column mux input and column output		
42	I/O	I/O	P0[3]	Analog column mux input and column output		
43	I/O	I	P0[1]	Analog column mux input		
44	I/O	1	P2[7]			
LEOE						

LEGEND: A = Analog, I = Input, and O = Output.

Note

8. These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Programmable System-on-Chip Technical Reference Manual for details.

48-pin Part Pinout

Table 6. Pin Definitions – 48-pin Part Pinout (SSOP)

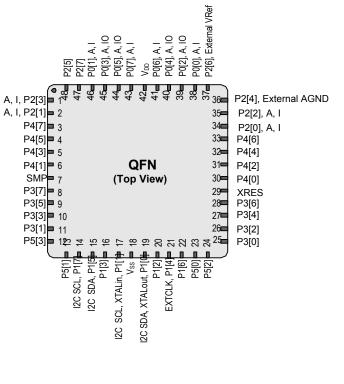
	Type		. .				
Pin No.			Pin Name	Description			
-	Digital	Analog					
1	I/O		P0[7]	Analog column mux input			
2	I/O	I/O	P0[5]	Analog column mux input and column output			
3	I/O	I/O	P0[3]	Analog column mux input and column output			
4	I/O		P0[1]	Analog column mux input			
5	I/O		P2[7]				
6	I/O		P2[5]				
7	I/O	I	P2[3]	Direct switched capacitor block input			
8	I/O	I	P2[1]	Direct switched capacitor block input			
9	I/O		P4[7]				
10	I/O		P4[5]				
11	I/O		P4[3]				
12	I/O		P4[1]				
13	Po	wer	SMP	SMP connection to external components required			
14	I/O		P3[7]				
15	I/O		P3[5]				
16	I/O		P3[3]				
17	I/O		P3[1]				
18	I/O		P5[3]				
19	I/O		P5[1]				
20	I/O		P1[7]	I ² C SCL			
21	I/O		P1[5]	I ² C SDA			
22	I/O		P1[3]				
23	I/O		P1[1]	Crystal Input (XTALin), I ² C SCL, ISSP-SCLK ^[9]			
24	Po	wer	Vss	Ground connection			
25	I/O		P1[0]	Crystal output (XTALout), I ² C SDA, ISSP-SDATA. ^[9]			
26	I/O		P1[2]				
27	I/O		P1[4]	Optional external clock input (EXTCLK)			
28	I/O		P1[6]				
29	I/O		P5[0]				
30	I/O		P5[2]				
31	I/O		P3[0]				
32	I/O		P3[2]				
33	I/O		P3[4]				
34	I/O		P3[6]				
35	In	put	XRES	Active high external reset with internal pull down			
36	I/O		P4[0]				
37	I/O		P4[2]				
38	I/O		P4[4]				
39	I/O		P4[6]				
40	I/O	I	P2[0]	Direct switched capacitor block input			
41	I/O	I	P2[2]	Direct switched capacitor block input			
42	I/O		P2[4]	External analog ground (AGND)			
43	I/O		P2[6]	External voltage reference (VRef)			
44	I/O	I	P0[0]	Analog column mux input			
45	I/O	I/O	P0[2]	Analog column mux input and column output			
46	I/O	I/O	P0[4]	Analog column mux input and column output			
47	1/0		P0[6]	Analog column mux input			
48		wer	V _{DD}	Supply voltage			
L			00				

Figure 8. CY8C27643 48-pin PSoC Device

-		<u> </u>		
A, I, P0[7] ⊑	1	\smile	48	V _{DD}
A, IO, P0[5]	2		47	P0[6], A, I
A, IO, P0[3]	3		46	P0[4], A, IO
A, I, P0[1] =	4		45	P0[2], A, IO
P2[7] 🗖	5		44	P0[0], A, I
P2[5] 🖛	6		43	P2[6], External VRef
A, I, P2[3]	7		42	P2[4], External AGND
A, I, P2[1] =	8		41	P2[2], A, I
P4[7] 🗖	9		40	P2[0], A, I
P4[5] 🗖	10		39	P4[6]
P4[3] 🗖	11		38	P4[4]
P4[1] 🗖	12	SSOP	37	P4[2]
SMP	13	330F	36	P4[0]
P3[7] 🗖	14		35	XRES
P3[5] 🗖	15		34	P3[6]
P3[3] 🗖	16		33	P3[4]
P3[1] 🗖	17		32	P3[2]
P5[3] 🗖	18		31	P3[0]
P5[1] 🖛			30	P5[2]
I2C SCL, P1[7]	20		29	P5[0]
I2C SDA, P1[5]	21		28	P1[6]
P1[3] 🗖	22		27	P1[4], EXTCLK
SCL, XTALin, P1[1]	23		26	P1[2]
V _{SS} 🗖	24		25	P1[0], XTALout, I2C SDA
L				

LEGEND: A = Analog, I = Input, and O = Output.

Note


9. These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Programmable System-on-Chip Technical Reference Manual for details.

I2C

				48-pin Part Pinout (QFN)
Pin No.	Digital	pe	Pin Name	Description
1	I/O	Analog	P2[3]	Direct switched capacitor block input
2	1/0		P2[1]	Direct switched capacitor block input
3	1/0		P4[7]	
4	1/0		P4[5]	
5	1/0		P4[3]	
6	1/0		P4[1]	
7	Pov	wer	SMP	SMP connection to external components required
8	I/O		P3[7]	
9	I/O		P3[5]	
10	I/O		P3[3]	
11	I/O		P3[1]	
12	I/O		P5[3]	
13	I/O		P5[1]	
14	I/O		P1[7]	I ² C SCL
15	I/O		P1[5]	I ² C SDA
16	I/O		P1[3]	
17	I/O		P1[1]	Crystal input (XTALin), I ² C SCL, ISSP-SCLK ^[11]
18	Pov	wer	Vss	Ground connection.
19	I/O		P1[0]	Crystal output (XTALout), I ² C SDA, ISSP-SDATA ^[11]
20	I/O		P1[2]	
21	I/O		P1[4]	Optional external clock input (EXTCLK)
22	I/O		P1[6]	
23	I/O		P5[0]	
24	I/O		P5[2]	
25	I/O		P3[0]	
26	I/O		P3[2]	
27	I/O		P3[4]	
28	I/O		P3[6]	
29		out	XRES	Active high external reset with internal pull down
30	I/O		P4[0]	
31	I/O		P4[2]	
32	I/O		P4[4]	
33	I/O		P4[6]	
34	I/O	1	P2[0]	Direct switched capacitor block input
35	I/O	I	P2[2]	Direct switched capacitor block input
36	I/O		P2[4]	External analog ground (AGND)
37	I/O		P2[6]	External voltage reference (V _{REF})
38	1/0	I I/O	P0[0]	Analog column mux input
39	I/O	I/O	P0[2]	Analog column mux input and column output
40	I/O	1/0	P0[4]	Analog column mux input and column output
41	I/O	I	P0[6]	Analog column mux input
42		wer	V _{DD}	Supply voltage
43	I/O	1	P0[7]	Analog column mux input
44	I/O	I/O	P0[5]	Analog column mux input and column output
45	I/O	I/O	P0[3]	Analog column mux input and column output
46	I/O		P0[1]	Analog column mux input
47	I/O		P2[7]	
48	I/O		P2[5]	

Figure 9. CY8C27643 48-pin PSoC Device^[10]

LEGEND: A = Analog, I = Input, and O = Output.

Notes

The QFN package has a center pad that must be connected to ground (Vss).
 These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Technical Reference Manual for details.

56-pin Part Pinout

The 56-pin SSOP part is for the CY8C27002 On-Chip Debug (OCD) PSoC device.

Note This part is only used for in-circuit debugging. It is NOT available for production.

Table 8. Pin Definitions – 56-pin Part Pinout (SSOP)

Pin	Ту	/pe	Pin	Deparimtion
No.	Digital	Analog	Name	Description
1			NC	No connection. Pin must be left floating
2	I/O	I	P0[7]	Analog column mux input
3	I/O	Ι	P0[5]	Analog column mux input and column output
4	I/O	I	P0[3]	Analog column mux input and column output
5	I/O	I	P0[1]	Analog column mux input
6	I/O		P2[7]	
7	I/O		P2[5]	
8	I/O	I	P2[3]	Direct switched capacitor block input
9	I/O	I	P2[1]	Direct switched capacitor block input
10	I/O		P4[7]	
11	I/O		P4[5]	
12	I/O		P4[3]	
13	I/O	I	P4[1]	
14	OCD		OCDE	OCD even data I/O
15	OCD		OCDO	OCD odd data output
16	Po	wer	SMP	SMP connection to required external components
17	I/O		P3[7]	
18	I/O		P3[5]	
19	I/O		P3[3]	
20	I/O		P3[1]	
21	I/O		P5[3]	
22	I/O		P5[1]	
23	I/O		P1[7]	I ² C SCL
24	I/O		P1[5]	I ² C SDA
25			NC	No connection. Pin must be left floating
26	I/O		P1[3]	
27	I/O		P1[1]	Crystal Input (XTALin), I ² C SCL, ISSP-SCLK ^[12]
28	Po	wer	V _{DD}	Supply voltage
29			NC	No connection. Pin must be left floating
30			NC	No connection. Pin must be left floating
31	I/O		P1[0]	Crystal output (XTALout), I ² C SDA, ISSP-SDATA ^[12]
32	I/O		P1[2]	
33	I/O		P1[4]	Optional external clock input (EXTCLK)
34	I/O		P1[6]	
35	I/O		P5[0]	
36	I/O		P5[2]	
37	I/O		P3[0]	
38	I/O		P3[2]	
39	I/O		P3[4]	
40	I/O		P3[6]	
	-			

Figure 10. C	Y8C2	7002 56	-pin	F	SoC Device
ſ	0	\neg		1	
NC 🗖	1		56	Þ.	V _{DD}
AI, P0[7] =	2		55	Þ	P0[6], AI
AIO, P0[5] =	3		54	Þ	P0[4], AIO
AIO, P0[3]	4		53	Þ	P0[2], AIO
AI, P0[1]	5		52	þ.	P0[0], AI
P2[7] 🗖	6		51	Þ	P2[6], External VRef
P2[5] 🖬	7		50	╞	P2[4], External AGND
AI, P2[3] =	8		49	Þ	P2[2], AI
Al, P2[1]	9		48	þ.	P2[0], AI
P4[7] 🗖	10		47	Þ	P4[6]
P4[5] 🗖	11		46	Þ	P4[4]
P4[3] 🗖	12		45	Þ	P4[2]
P4[1] 🗖	13		44	Þ	P4[0]
OCDE =	14	SSOP	43	Þ	CCLK
OCDO 🗖	15		42	þ.	HCLK
SMP 🗖	16		41	Þ	XRES
P3[7] 🗖	17		40	þ.	P3[6]
P3[5] 🗖	18		39	╞	P3[4]
P3[3] 🗖	19		38	Þ	P3[2]
P3[1] 🗖	20		37	þ.	P3[0]
P5[3] =	21		36	Þ	P5[2]
P5[1] 🗲	22		35	Þ	P5[0]
I2C SCL, P1[7]=	23		34	Þ	P1[6]
I2C SDA, P1[5]	24		33	þ.	P1[4], EXTCLK
NC 🗖	25		32	Þ	P1[2]
P1[3] =	26		31	Þ	P1[0], XTALOut, I2C SDA, S
I2C SCL, XTALIn, P1[#	27		30	Þ.	NC
V _{SS} ■	28		29	╞	NC

Not for Production

Note

12. These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Programmable System-on-Chip Technical Reference Manual for details.

SCLK,

Table 8. Pin Definitions - 56-pin Part Pinout (SSOP) (continued)

Pin	Ту	/pe	Pin	Description
No.	Digital	Analog	Name	Description
42	OCD		HCLK	OCD high-speed clock output
43	OCD		CCLK	OCD CPU clock output
44	I/O		P4[0]	
45	I/O		P4[2]	
46	I/O		P4[4]	
47	I/O		P4[6]	
48	I/O	I	P2[0]	Direct switched capacitor block input
49	I/O	I	P2[2]	Direct switched capacitor block input
50	I/O		P2[4]	External Analog Ground (AGND)
51	I/O		P2[6]	External Voltage Reference (VRef)
52	I/O	I	P0[0]	Analog column mux input
53	I/O	Ι	P0[2]	Analog column mux input and column output
54	I/O	I	P0[4]	Analog column mux input and column output
55	I/O	I	P0[6]	Analog column mux input
56	Po	wer	V _{DD}	Supply voltage

LEGEND: A = Analog, I = Input, O = Output, and OCD = On-Chip Debug.

Register Reference

This section lists the registers of the CY8C27x43 PSoC device. For detailed register information, see the PSoC Programmable System-on-Chip Technical Reference Manual.

Register Conventions

The register conventions specific to this section are listed in the following table.

Table 9. Register Conventions

Convention	Description						
R	Read register or bit(s)						
W	Write register or bit(s)						
L	Logical register or bit(s)						
С	Clearable register or bit(s)						
#	Access is bit specific						

Table 10. Register Map Bank 0 Table: User Space

Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set, the user is in Bank 1.

Note In the following register mapping tables, blank fields are reserved and must not be accessed.

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASC10CR0	80	RW		C0	
PRTOIE	01	RW		41		ASC10CR1	81	RW		C1	
PRT0GS	02	RW		42		ASC10CR2	82	RW		C2	
PRT0DM2	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DR	04	RW		44		ASD11CR0	84	RW		C4	
PRT1IE	05	RW		45		ASD11CR1	85	RW		C5	
PRT1GS	06	RW		46		ASD11CR2	86	RW		C6	
PRT1DM2	07	RW		47		ASD11CR3	87	RW		C7	
PRT2DR	08	RW		48		ASC12CR0	88	RW		C8	
PRT2IE	09	RW		49		ASC12CR1	89	RW		C9	
PRT2GS	0A	RW		4A		ASC12CR2	8A	RW		CA	
PRT2DM2	0B	RW		4B		ASC12CR3	8B	RW		CB	
PRT3DR	0C	RW		4C		ASD13CR0	8C	RW		CC	
PRT3IE	0D	RW		4D		ASD13CR1	8D	RW		CD	
PRT3GS	0E	RW		4E		ASD13CR2	8E	RW		CE	
PRT3DM2	0F	RW		4F		ASD13CR3	8F	RW		CF	
PRT4DR	10	RW		50		ASD20CR0	90	RW		D0	
PRT4IE	11	RW		51		ASD20CR1	91	RW		D1	
PRT4GS	12	RW		52		ASD20CR2	92	RW		D2	
PRT4DM2	13	RW		53		ASD20CR3	93	RW		D3	
PRT5DR	14	RW		54		ASC21CR0	94	RW		D4	
PRT5IE	15	RW		55		ASC21CR1	95	RW		D5	
PRT5GS	16	RW		56		ASC21CR2	96	RW	I2C_CFG	D6	RW
PRT5DM2	17	RW		57		ASC21CR3	97	RW	I2C_SCR	D7	#
	18			58		ASD22CR0	98	RW	I2C_DR	D8	RW
	19			59		ASD22CR1	99	RW	I2C_MSCR	D9	#
	1A			5A		ASD22CR2	9A	RW	INT_CLR0	DA	RW
	1B			5B		ASD22CR3	9B	RW	INT_CLR1	DB	RW
	1C			5C		ASC23CR0	9C	RW		DC	
	1D			5D		ASC23CR1	9D	RW	INT_CLR3	DD	RW
	1E			5E		ASC23CR2	9E	RW	INT_MSK3	DE	RW
	1F			5F		ASC23CR3	9F	RW		DF	
DBB00DR0	20	#	AMX_IN	60	RW		A0	1	INT_MSK0	E0	RW
DBB00DR1	21	W	_	61			A1		INT_MSK1	E1	RW
DBB00DR2	22	RW		62			A2		INT_VC	E2	RC
DBB00CR0	23	#	ARF_CR	63	RW		A3		RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4		DEC_DH	E4	RC
DBB01DR1	25	W	ASY_CR	65	#		A5		DEC_DL	E5	RC
DBB01DR2	26	RW	CMP_CR1	66	RW		A6	1	DEC CR0	E6	RW

Blank fields are Reserved and must not be accessed.

Access is bit specific.

Table 10. Register Map Bank 0 Table: User Space (continued)

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
DBB01CR0	27	#		67	••		A7	•	DEC_CR1	E7	RW
DCB02DR0	28	#		68			A8		MUL_X	E8	W
DCB02DR1	29	W		69			A9		MUL_Y	E9	W
DCB02DR2	2A	RW		6A			AA		MUL_DH	EA	R
DCB02CR0	2B	#		6B			AB		MUL_DL	EB	R
DCB03DR0	2C	#		6C			AC		ACC_DR1	EC	RW
DCB03DR1	2D	W		6D			AD		ACC_DR0	ED	RW
DCB03DR2	2E	RW		6E			AE		ACC_DR3	EE	RW
DCB03CR0	2F	#		6F			AF		ACC_DR2	EF	RW
DBB10DR0	30	#	ACB00CR3	70	RW	RDIORI	B0	RW		F0	-
DBB10DR1	31	W	ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	-
DBB10DR2	32	RW	ACB00CR1	72	RW	RDI0IS	B2	RW		F2	-
DBB10CR0	33	#	ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	-
DBB11DR0	34	#	ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
DBB11DR1	35	W	ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
DBB11DR2	36	RW	ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
DBB11CR0	37	#	ACB01CR2	77	RW		B7	1	CPU_F	F7	RL
DCB12DR0	38	#	ACB02CR3	78	RW	RDI1RI	B8	RW		F8	
DCB12DR1	39	W	ACB02CR0	79	RW	RDI1SYN	B9	RW		F9	
DCB12DR2	3A	RW	ACB02CR1	7A	RW	RDI1IS	BA	RW		FA	
DCB12CR0	3B	#	ACB02CR2	7B	RW	RDI1LT0	BB	RW	1	FB	1
DCB13DR0	3C	#	ACB03CR3	7C	RW	RDI1LT1	BC	RW	1	FC	1
DCB13DR1	3D	W	ACB03CR0	7D	RW	RDI1RO0	BD	RW		FD	1
DCB13DR2	3E	RW	ACB03CR1	7E	RW	RDI1RO1	BE	RW	CPU_SCR1	FE	#
DCB13CR0	3F	#	ACB03CR2	7F	RW		BF	1	CPU_SCR0	FF	#

Blank fields are Reserved and must not be accessed.

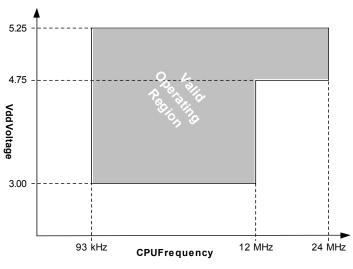
Access is bit specific.

Table 11. Register Map Bank 1 Table: Configuration Space

Name	Addr (1,Hex)	Access	Name			Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	
PRT0DM0	00	RW		40		ASC10CR0	80	RW		C0	
PRT0DM1	01	RW		41		ASC10CR1	81	RW		C1	
PRT0IC0	02	RW		42		ASC10CR2	82	RW		C2	
PRT0IC1	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DM0	04	RW		44		ASD11CR0	84	RW		C4	
PRT1DM1	05	RW		45		ASD11CR1	85	RW		C5	
PRT1IC0	06	RW		46		ASD11CR2	86	RW		C6	
PRT1IC1	07	RW		47		ASD11CR3	87	RW		C7	
PRT2DM0	08	RW		48		ASC12CR0	88	RW	1	C8	
PRT2DM1	09	RW		49		ASC12CR1	89	RW		C9	-
PRT2IC0	0A	RW		4A		ASC12CR2	8A	RW		CA	-
PRT2IC1	0B	RW		4B		ASC12CR3	8B	RW		CB	-
PRT3DM0	0C	RW		4C		ASD13CR0	8C	RW		CC	
PRT3DM1	0D	RW		4D		ASD13CR1	8D	RW		CD	
PRT3IC0	0E	RW		4E		ASD13CR2	8E	RW		CE	
PRT3IC1	0F	RW		4F		ASD13CR3	8F	RW		CF	
PRT4DM0	10	RW		50		ASD20CR0	90	RW	GDI_O_IN	D0	RW
PRT4DM1	11	RW		51		ASD20CR1	91	RW	GDI_E_IN	D1	RW
PRT4IC0	12	RW		52		ASD20CR2	92	RW	GDI_O_OU	D2	RW
PRT4IC1	13	RW		53		ASD20CR3	93	RW	GDI_E_OU	D3	RW
PRT5DM0	14	RW		54		ASC21CR0	94	RW		D4	
PRT5DM1	15	RW		55		ASC21CR1	95	RW		D5	
PRT5IC0	16	RW		56		ASC21CR2	96	RW		D6	
PRT5IC1	17	RW		57		ASC21CR3	97	RW		D7	
	18	1		58		ASD22CR0	98	RW		D8	
	19			59		ASD22CR1	99	RW	1	D9	
	1A			5A		ASD22CR2	9A	RW		DA	
	1B	1		5B		ASD22CR3	9B	RW		DB	
	1C			5C		ASC23CR0	9C	RW	1	DC	1

CY8C27143/CY8C27243 CY8C27443/CY8C27543 CY8C27643

Table 11. Register Map Bank 1 Table: Configuration Space (continued)


Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
	1D	-		5D		ASC23CR1	9D	RW	OSC_GO_EN	DD	RW
	1E			5E		ASC23CR2	9E	RW	OSC_CR4	DE	RW
	1F			5F		ASC23CR3	9F	RW	OSC_CR3	DF	RW
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
	23		AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW		64			A4		VLT_CMP	E4	R
DBB01IN	25	RW		65			A5			E5	
DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW	ALT_CR1	68	RW		A8		IMO_TR	E8	W
DCB02IN	29	RW	CLK_CR2	69	RW		A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
	2B			6B			AB		ECO_TR	EB	W
DCB03FN	2C	RW		6C			AC		_	EC	
DCB03IN	2D	RW		6D			AD			ED	
DCB03OU	2E	RW		6E			AE			EE	
	2F			6F			AF			EF	
DBB10FN	30	RW	ACB00CR3	70	RW	RDI0RI	B0	RW		F0	
DBB10IN	31	RW	ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
DBB10OU	32	RW	ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
DBB11FN	34	RW	ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
DBB11IN	35	RW	ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
DBB11OU	36	RW	ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACB01CR2	77	RW		B7		CPU_F	F7	RL
DCB12FN	38	RW	ACB02CR3	78	RW	RDI1RI	B8	RW		F8	
DCB12IN	39	RW	ACB02CR0	79	RW	RDI1SYN	B9	RW		F9	
DCB12OU	3A	RW	ACB02CR1	7A	RW	RDI1IS	BA	RW		FA	
	3B		ACB02CR2	7B	RW	RDI1LT0	BB	RW		FB	
DCB13FN	3C	RW	ACB03CR3	7C	RW	RDI1LT1	BC	RW		FC	
DCB13IN	3D	RW	ACB03CR0	7D	RW	RDI1RO0	BD	RW		FD	
DCB13OU	3E	RW	ACB03CR1	7E	RW	RDI1RO1	BE	RW	CPU_SCR1	FE	#
	3F	1	ACB03CR2	7F	RW	1	BF		CPU SCR0	FF	#

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C27x43 PSoC device. For the most up to date electrical specifications, confirm that you have the most recent datasheet by going to the web at http://www.cypress.com.

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications for devices running at greater than 12 MHz are valid for –40 °C \leq T_A \leq 70 °C and T_J \leq 82 °C.

Figure 11. Voltage versus CPU Frequency

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 12. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Unit	Notes
T _{STG}	Storage temperature	-55	25	+100	°C	Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 65 °C degrade reliability.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	
^t вакетіме	Bake time	See package label	-	72	Hours	
T _A	Ambient temperature with power applied	-40	-	+85	°C	
V _{DD}	Supply voltage on V _{DD} relative to Vss	-0.5	-	+6.0	V	
V _{IO}	DC input voltage	Vss - 0.5	-	V _{DD} + 0.5	V	
V _{IOZ}	DC voltage applied to tristate	Vss - 0.5	-	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	_	+50	mA	
I _{MAIO}	Maximum current into any port pin configured as analog driver	-50	_	+50	mA	
ESD	Electrostatic discharge voltage	2000	-	-	V	Human body model ESD.
LU	Latch-up current	-	-	200	mA	

Operating Temperature

Table 13. Operating Temperature

Symbol	Description	Min	Тур	Max	Unit	Notes
T _A	Ambient temperature	-40	-	+85	°C	
TJ	Junction temperature	-40	-	+100	°C	The temperature rise from ambient to junction is package specific. See Thermal Impedances on page 50. The user must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Chip-Level Specifications

Table 14 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 14. DC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
V _{DD}	Supply voltage	3.00	_	5.25	V	
I _{DD}	Supply current	-	5	8	mA	Conditions are V_{DD} = 5.0 V, T _A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz.
I _{DD3}	Supply current	-	3.3	6.0	mA	Conditions are V_{DD} = 3.3 V, T _A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz.
I _{SB}	Sleep (Mode) current with POR, LVD, sleep timer, and WDT. ^[13]	_	3	6.5	μA	Conditions are with internal slow speed oscillator, V _{DD} = 3.3 V, -40 °C \leq T _A \leq 55 °C.
I _{SBH}	Sleep (Mode) current with POR, LVD, sleep timer, and WDT at high temperature. ^[13]	_	4	25	μA	Conditions are with internal slow speed oscillator, V _{DD} = 3.3 V, 55 °C < T _A \leq 85 °C.
I _{SBXTL}	Sleep (Mode) current with POR, LVD, sleep timer, WDT, and external crystal. ^[13]	-	4	7.5	μA	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. V _{DD} = 3.3 V, -40 °C \leq T _A \leq 55 °C.
I _{SBXTLH}	Sleep (Mode) current with POR, LVD, sleep timer, WDT, and external crystal at high temperature. ^[13]	_	5	26	μA	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. V _{DD} = 3.3 V, 55 °C < T _A \leq 85 °C.
V _{REF}	Reference voltage (Bandgap) for Silicon A [14]	1.275	1.300	1.325	V	Trimmed for appropriate V _{DD} .
V _{REF}	Reference voltage (Bandgap) for Silicon B ^[14]	1.280	1.300	1.320	V	Trimmed for appropriate V _{DD} .

Notes

14. Refer to the Ordering Information on page 53.

^{13.} Standby current includes all functions (POR, LVD, WDT, Sleep Time) needed for reliable system operation. This must be compared with devices that have similar functions enabled.

DC GPIO Specifications

Table 15 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C $\leq T_A \leq 85$ °C, or 3.0 V to 3.6 V and –40 °C $\leq T_A \leq 85$ °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 15. DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} – 1.0	-	-	V	I_{OH} = 10 mA, V_{DD} = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])).
V _{OL}	Low output level	-	-	0.75	V	I_{OL} = 25 mA, V_{DD} = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])).
I _{OH}	High-level source current	10	-	-	mA	V_{OH} = V_{DD} – 1.0 V, see the limitations of the total current in the note for V_{OH}
I _{OL}	Low-level sink current	25	-	-	mA	V_{OL} = 0.75 V, see the limitations of the total current in the note for V_{OL}
V _{IL}	Input low level	-	-	0.8	V	V _{DD} = 3.0 to 5.25
V _{IH}	Input high level	2.1	-		V	V _{DD} = 3.0 to 5.25
V _H	Input hysterisis	-	60	-	mV	
IIL	Input leakage (absolute value)	-	1	_	nA	Gross tested to 1 µA.
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent. Temp = 25 °C.
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent. Temp = 25 °C.

DC Operational Amplifier Specifications

Table 16 and Table 17 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

The operational amplifier is a component of both the analog continuous time PSoC blocks and the analog switched cap PSoC blocks. The guaranteed specifications are measured in the analog continuous time PSoC block. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

	Table 16.	5-V DC	Operational Am	plifier S	pecifications
--	-----------	--------	----------------	-----------	---------------

Symbol	Description	Min	Тур	Max	Units	Notes
V _{osoa}	Input offset voltage (absolute value) Power = low, Opamp bias = low Power = low, Opamp bias = high Power = medium, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = low Power = high, Opamp bias = high		1.6 1.6 1.6 1.6 1.6	10 10 10 10 10 10	mV mV mV mV mV mV	
TCV _{OSOA}	Average input offset voltage drift	-	4	20	µV/∘C	
I _{EBOA}	Input leakage current (port 0 analog pins)	-	20	-	pА	Gross tested to 1 µA.
CINOA	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0	_	V _{DD}	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
	Common mode voltage range (high power or high Opamp bias)	0.5	-	V _{DD} – 0.5	V	

Table 16. 5-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
CMRR _{OA}	Common mode rejection ratio Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	60 60 60	_ _ _		dB dB dB	Specification is applicable at both High and Low opamp bias.
G _{OLOA}	Open loop gain Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	60 60 80	_ _ _		dB dB dB	Specification is applicable at High opamp bias. For Low opamp bias mode, minimum is 60 dB.
V _{OHIGHOA}	High output voltage swing (internal signals) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	$V_{DD} - 0.2$ $V_{DD} - 0.2$ $V_{DD} - 0.5$	_ _ _		V V V	
V _{OLOWOA}	Low output voltage swing (internal signals) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	- - -	- - -	0.2 0.2 0.5	V V V	
I _{SOA}	Supply current (including associated AGND buffer) Power = low, Opamp bias = low Power = low, Opamp bias = high Power = medium, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = low Power = high, Opamp bias = high	- - - - -	150 300 600 1200 2400 4600	200 400 800 1600 3200 6400	μΑ μΑ μΑ μΑ μΑ	
PSRR _{OA}	Supply voltage rejection ratio	60	-	_	dB	$Vss \leq V_{IN} \leq (V_{DD} - 2.25) \text{ or } (V_{DD} - 1.25 \text{ V}) \leq V_{IN} \leq V_{DD}.$

Table 17. 3.3-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
V _{OSOA}	Input offset voltage (absolute value) Power = Iow, Opamp bias = Iow Power = Iow, Opamp bias = high Power = medium, Opamp bias = Iow Power = medium, Opamp bias = high Power = high, Opamp bias = low Power = high, Opamp bias = high	- - - - - -	1.4 1.4 1.4 1.4 1.4 1.4	10 10 10 10 10 -	mV mV mV mV mV mV	Power = high, Opamp bias = high setting is not allowed for 3.3 V V _{DD} operation.
TCV _{OSOA}	Average input offset voltage drift	-	7	40	µV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	-	20	-	pА	Gross tested to 1µA.
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V _{CMOA}	Common mode voltage range	0.2	-	V _{DD} – 0.2	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
CMRR _{OA}	Common mode rejection ratio Power = low, Opamp bias = low Power = medium, Opamp bias = low Power = high, Opamp bias = low	50 50 50	_ _ _	- - -	dB dB dB	Specification is applicable at Low opamp bias. For High bias mode (except High Power, High opamp bias), minimum is 60 dB.
G _{OLOA}	Open loop gain Power = low, Opamp bias = low Power = medium, Opamp bias = low Power = high, Opamp bias = low	60 60 80	_ _ _	- - -	dB dB dB	Specification is applicable at Low opamp bias. For High opamp bias mode (except High Power, High opamp bias), minimum is 60 dB.

Table 17. 3.3-V DC Operational Amplifier Specifications (continued)

Symbol	Description	Min	Тур	Max	Unit	Notes
V _{OHIGHOA}	High output voltage swing (internal signals) Power = low, Opamp bias = low Power = medium, Opamp bias = low Power = high, Opamp bias = low	$V_{DD} - 0.2$ $V_{DD} - 0.2$ $V_{DD} - 0.2$	- - -	- - -	V V V	Power = high, Opamp bias = high setting is not allowed for $3.3 \text{ V} \text{V}_{\text{DD}}$ operation.
V _{OLOWOA}	Low output voltage swing (internal signals) Power = low, Opamp bias = low Power = medium, Opamp bias = low Power = high, Opamp bias = low	- - -	_ _ _	0.2 0.2 0.2	V V V	Power = high, Opamp bias = high setting is not allowed for $3.3 \text{ V} \text{V}_{\text{DD}}$ operation.
I _{SOA}	Supply current (including associated AGND buffer) Power = low, Opamp bias = low Power = low, Opamp bias = high Power = medium, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = low Power = high, Opamp bias = high	- - - - -	150 300 600 1200 2400 -	200 400 800 1600 3200	μΑ μΑ μΑ μΑ μΑ	Power = high, Opamp bias = high setting is not allowed for 3.3 V V _{DD} operation.
PSRR _{OA}	Supply voltage rejection ratio	50	80	-	dB	$ \begin{array}{l} V_{SS} \leq V_{IN} \leq (V_{DD}-2.25) \mbox{ or } \\ (V_{DD}-1.25 \mbox{ V}) \leq V_{IN} \leq V_{DD}. \end{array} $

DC Low-Power Comparator Specifications

Table 18 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Symbol	Description	Min	Тур	Max	Unit
V _{REFLPC}	Low-power comparator (LPC) reference voltage range	0.2	-	V _{DD} – 1	V
I _{SLPC}	LPC supply current	-	10	40	μA
V _{OSLPC}	LPC voltage offset	-	2.5	30	mV

DC Analog Output Buffer Specifications

Table 19 and Table 20 on page 24 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 19.	5-V DC /	Analog Out	put Buffer S	Specifications
-----------	----------	------------	--------------	----------------

Symbol	Description	Min	Тур	Max	Unit	Notes
V _{OSOB}	Inputoffset voltage (absolute value) Power = Iow, Opamp bias = Iow Power = Iow, Opamp bias = high Power = high, Opamp bias = Iow Power = high, Opamp bias = high		3 3 3 3	19 19 19 19	mV mV mV mV	
TCV _{OSOB}	Average input offset voltage drift	-	5	30	μV/°C	
V _{CMOB}	Common-mode input voltage range	0.5	_	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = low Power = high		1 1		Ω Ω	
V _{OHIGHOB}	High output voltage swing (Load = 32 ohms to V _{DD} /2) Power = low Power = high	0.5 × V _{DD} + 1.3 0.5 × V _{DD} + 1.3			V V	
V _{OLOWOB}	Low output voltage swing (Load = 32 ohms to V _{DD} /2)	-	-	-		
	Power = low	-	-	0.5 × V _{DD} – 1.3	V	
	Power = high	-	-	0.5 × V _{DD} – 1.3	V	

Table 19. 5-V DC Analog Output Buffer Specifications (continued)

Symbol	Description	Min	Тур	Max	Unit	Notes
I _{SOB}	Supply current including opamp bias cell (no load) Power = low Power = high		1.1 2.6	5.1 8.8	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	60	64	_	dB	
I _{OMAX}	Maximum output current	_	40	_	mA	
CL	Load capacitance	-	-	200	pF	This specification applies to the external circuit driven by the analog output buffer.

Table 20. 3.3-V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
V _{OSOB}	Input offset voltage (absolute value) Power = Iow, Opamp bias = Iow Power = Iow, Opamp bias = high Power = high, Opamp bias = Iow Power = high, Opamp bias = high		3.2 3.2 6 6	20 20 25 25	mV mV mV mV	High power setting is not recommended.
TCV _{OSOB}	Average input offset voltage drift Power = Iow, Opamp bias = Iow Power = Iow, Opamp bias = high Power = high, Opamp bias = Iow Power = high, Opamp bias = high		9 9 12 12	55 55 70 70	μV/°C μV/°C μV/°C μV/°C	High power setting is not recommended.
V _{CMOB}	Common-mode input voltage range	0.5	-	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = low Power = high		1 1		$\Omega \Omega$	
V _{OHIGHOB}	High output voltage swing (load = 32 ohms to V _{DD} /2) Power = low Power = high	0.5 × V _{DD} + 1.0 0.5 × V _{DD} + 1.0			V V	
V _{OLOWOB}	Low output voltage swing (load = 32 ohms to V _{DD} /2) Power = low Power = high	-	-	0.5 × V _{DD} – 1.0 0.5 × V _{DD} – 1.0	V V	
I _{SOB}	Supply current including opamp bias cell (no load) Power = low Power = high	-	0.8 2.0	2 4.3	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	60	64	-	dB	
CL	Load capacitance	-	-	200	pF	This specification applies to the external circuit driven by the analog output buffer.

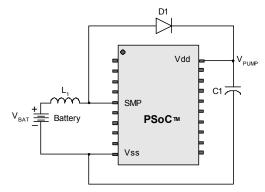

DC Switch Mode Pump Specifications

Table 21 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 21. DC Switch Mode Pump (SMP) Specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
V _{PUMP} 5 V	5 V output voltage	4.75	5.0	5.25	V	Configured as in Note 15. Average, neglecting ripple. SMP trip voltage is set to 5.0 V.
V _{PUMP} 3 V	3 V output voltage	3.00	3.25	3.60	V	Configured as in Note 15. Average, neglecting ripple. SMP trip voltage is set to 3.25 V.
I _{PUMP}	Available output current V_{BAT} = 1.5 V, V_{PUMP} = 3.25 V V_{BAT} = 1.8 V, V_{PUMP} = 5.0 V	8 5			mA mA	Configured as in Note 15. SMP trip voltage is set to 3.25 V. SMP trip voltage is set to 5.0 V.
V _{BAT} 5 V	Input voltage range from battery	1.8	-	5.0	V	Configured as in Note 15. SMP trip voltage is set to 5.0 V.
V _{BAT} 3 V	Input voltage range from battery	1.0	-	3.3	V	Configured as in Note 15. SMP trip voltage is set to 3.25 V.
VBATSTART	Minimum input voltage from battery to start pump	1.1	-	-	V	Configured as in Note 15.
ΔV_{PUMP_Line}	Line regulation (over V _{BAT} range)	-	5	_	%V _O	Configured as in Note 15. V_O is the " V_{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 25 on page 33.
ΔV_{PUMP_Load}	Load regulation	-	5	_	%V _O	Configured as in Note 15. V_O is the " V_{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 25 on page 33.
ΔV_{PUMP} Ripple	Output voltage ripple (depends on capacitor/load)	-	100	-	mVpp	Configured as in Note 15. Load is 5 mA.
E ₃	Efficiency	35	50	-	%	Configured as in Note 15. Load is 5 mA. SMP trip voltage is set to 3.25 V.
F _{PUMP}	Switching frequency	-	1.3	-	MHz	
DC _{PUMP}	Switching duty cycle	_	50	-	%	

Figure 12. Basic Switch Mode Pump Circuit

