imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

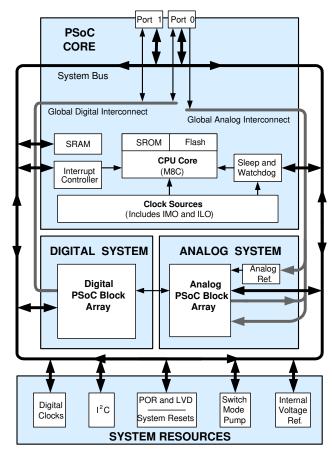
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CY8CLED02


EZ-Color[™] HB LED Controller

Features

- HB LED controller
 - Configurable dimmers support up to 2 independent LED channels
 - □ 8- to 32-bits of resolution per channel
 - Dynamic reconfiguration enables LED controller plus other features; Battery Charging, Motor Control
- Visual embedded design
 - LED-Based drivers
 - · Binning compensation
 - Temperature feedback
 - Optical feedback
 - DMX512
- PrISM modulation technology
 - Reduces radiated EMI
 - Reduces low frequency blinking
- Powerful Harvard-architecture processor M8C processor speeds up to 24 MHz
 - □ 3.0 V to 5.25 V operating voltage
 - Operating voltages down to 1.0 V using on-chip switch mode pump (SMP)
 - □ Industrial temperature range: -40 °C to +85 °C
- Flexible on-chip memory
 - □ 4 KB flash program storage 50,000 erase/write cycles
 - 256 Bytes static random access memory (SRAM) data storage
 - In-system serial programming (ISSP)
 - Partial flash updates
 - Flexible protection modes
 - EEPROM emulation in flash
- Advanced peripherals (PSoC[®] blocks)
- □ Four digital PSoC blocks provide:
 - 8- to 32-bit timers, counters, and pulse-width modulator (PWMs)
 - Full-duplex universal asynchronous receiver transmitter (UART)
 - Multiple serial peripheral interface (SPI) masters or slaves
 - · Connectable to all general purpose I/O (GPIO) pins
- □ Four Rail-to-Rail analog PSoC blocks provide:
 - Up to 14-bit analog-to-digital (ADCs)
 - Up to 9-bit digital-to-analog (DACs)
 - Programmable gain amplifiers (PGAs)
 - · Programmable filters and comparators
- Complex peripherals by combining blocks

- Programmable pin configurations
- □ 25 mA sink, 10 mA source on all GPIO
- Pull-up, Pull-down, high Z, strong, or open drain drive modes on all GPIO
- Up to 12 analog inputs on GPIO
- □ Four 30 mA analog outputs on GPIO
- Configurable interrupt on all GPIO
- Complete development tools
 - Free development software
 - PSoC[®] Designer[™]
 - □ Full-featured, in-circuit emulator (ICE) and Programmer
- □ Full-speed emulation
- Complex breakpoint structure
- □ 128 KB trace memory

Logic Block Diagram

CY8CLED02

Contents

EZ-Color™ Functional Overview	3
Target Applications	3
The PSoC Core	3
The Digital System	3
The Analog System	4
Additional System Resources	4
EZ-Color Device Characteristics	5
Getting Started	5
Application Notes	5
Development Kits	5
Training	5
CYPros Consultants	5
Solutions Library	
Technical Support	
Development Tools	
PSoC Designer Software Subsystems	
Designing with PSoC Designer	7
Select User Modules	
Configure User Modules	
Organize and Connect	
Generate, Verify, and Debug	7
Pin Information	
Pinouts	-
Register Reference	
Register Conventions	
Register Mapping Tables	
Electrical Specifications	
Absolute Maximum Ratings	
Operating Temperature	
DC Electrical Characteristics	
AC Electrical Characteristics	22

Packaging Information3	1
Thermal Impedances	4
Solder Reflow Peak Temperature	4
Development Tool Selection	
Software Tools	
Hardware Tools	
Evaluation Tools	
Device Programmers	5
Accessories (Emulation and Programming)	6
Ordering Information	
Key Device Features	
Ordering Code Definitions	
Acronyms	
Acronyms Used	
Reference Documents	7
Document Conventions	8
Units of Measure	
Numeric Conventions	
Glossary	8
Document History Page43	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support44	
Products	
PSoC Solutions44	4

EZ-Color[™] Functional Overview

Cypress's EZ-Color family of devices offers the ideal control solution for High Brightness LED applications requiring intelligent dimming control. EZ-Color devices combine the power and flexibility of Programmable System-on-Chip (PSoC[®]); with Cypress' precise illumination signal modulation (PrISM[™]) drive technology providing lighting designers a fully customizable and integrated lighting solution platform.

The EZ-Color family supports a range of independent LED channels from 4 channels at 32 bits of resolution each, up to 16 channels at 8 bits of resolution each. This enables lighting designers the flexibility to choose the LED array size and color quality. PSoC Designer software, with lighting specific drivers, can significantly cut development time and simplify implementation of fixed color points through temperature, optical, and LED binning compensation. EZ-Color's virtually limitless analog and digital customization enables the simple integration of features in addition to intelligent lighting, such as Battery Charging, Image Stabilization, and Motor Control during the development process. These features, along with Cypress's best-in-class quality and design support, make EZ-Color the ideal choice for intelligent HB LED control applications.

Target Applications

- LCD Backlight
- Large Signs
- General Lighting
- Architectural Lighting
- Camera/Cell Phone Flash
- Flashlights

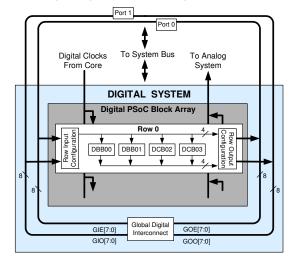
The PSoC Core

The PSoC Core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and an internal main oscillator (IMO) and an internal low-speed oscillator (ILO). The CPU core, called the M8C, is a powerful, four-million instructions per second (MIPS), 8-bit Harvard-architecture microprocessor with speeds up to 24 MHz.

System resources provide additional capability, such as digital clocks to increase the flexibility of the PSoC; I^2C functionality for implementing an I^2C master, slave, or multi-master; an internal voltage reference that provides an absolute value of 1.3 V to a number of PSoC subsystems; a switch mode pump (SMP) that generates normal operating voltages off a single battery cell; and various system resets supported by the M8C.

The digital system is composed of an array of digital blocks, which can be configured into any number of digital peripherals. The digital blocks can be connected to the GPIO through a series of global busses that can route any signal to any pin, freeing designers from the constraints of a fixed peripheral controller. The analog system consists of four analog blocks, supporting comparators, and analog-to-digital conversion up to 10 bits of precision.

The Digital System


The digital system is composed of four digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8-, 16-, 24-, and 32-bit peripherals, which are called user modules. Digital peripheral configurations include those listed below.

- PrISM (8- to 32-bit)
- PWMs (8- to 32-bit)
- PWMs with dead band (8- to 32-bit)
- Counters (8- to 32-bit)
- Timers (8- to 32-bit)
- UART 8-bit with selectable parity
- SPI master and slave
- I²C slave, master, multi-master (one available as a system resource)
- Cyclical redundancy checker (CRC)/generator (8- to 32-bit)
- IrDA (up to four)
- Generators (8- to 32-bit)

Connect the digital blocks to any GPIO through a series of global busses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by device family. This allows you the optimum choice of system resources for your application. Family resources are shown in the table titled EZ-Color Device Characteristics.

Figure 1. Digital System Block Diagram

The Analog System

The analog system is composed of four configurable blocks that enable creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common EZ-Color analog functions (most available as user modules) are listed below.

- ADCs (single or dual, with 10-bit resolution)
- Pin-to-pin comparators (1)
- Single-ended comparators (up to two) with absolute (1.3-V) reference or 8-bit DAC reference
- 1.3-V reference (as a system resource)

In most PSoC based devices, analog blocks are provided in columns of three, which includes one continuous time (CT) and two switched capacitor (SC) blocks. This particular EZ-Color device provides limited functionality Type E analog blocks. Each column contains one CT block and one SC block.

Figure 2. Analog System Block Diagram

Array Input Configuration

Additional System Resources

System resources, some of which have been previously listed, provide additional capability useful to complete systems. Additional resources include:

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital blocks as clock dividers.
- The I²C module provides 100- and 400-kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low-voltage detect (LVD) interrupts can signal the application of falling voltage levels, while the advanced power-on reset (POR) circuit eliminates the need for a system supervisor.
- An internal 1.3-V voltage reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch mode pump generates normal operating voltages from a single 1.2-V battery cell, providing a low cost boost converter.

EZ-Color Device Characteristics

Depending on your EZ-Color device characteristics, the digital, and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. The following table lists the resources available for specific EZ-Color device groups. The device covered by this data sheet is shown in the highlighted row of the table.

Table 1.	EZ-Color	Device	Characteristics
----------	----------	--------	-----------------

Part Number	LED Channels	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size	CapSense [®]
CY8CLED02	2	16	1	4	8	0	2	4	256 Bytes	4K	No
CY8CLED04	4	56	1	4	48	2	2	6	1K	16K	Yes
CY8CLED08	8	44	2	8	12	4	4	12	256 Bytes	16K	No
CY8CLED16	16	44	4	16	12	4	4	12	2K	32K	No

Getting Started

The quickest path to understanding the EZ-Color silicon is by reading this datasheet and using the PSoC Designer integrated development environment (IDE). This datasheet is an overview of the EZ-Color integrated circuit and presents specific pin, register, and electrical specifications.

For up-to-date ordering, packaging, and electrical specification information, reference the latest device datasheets on the cypress website at http://www.cypress.com.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants website.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Development Tools

PSoC Designer[™] is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- Hardware and software I²C slaves and masters
- □ Full-speed USB 2.0
- Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC's resources for an application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also lets you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed-function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and lowering inventory costs. These configurable resources, called PSoC blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is:

- 1. Select user modules.
- 2. Configure user modules.
- 3. Organize and connect.
- 4. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each eight bits of resolution. Using these parameters, you can establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All of the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information that you may need to successfully implement your design.

Organize and Connect

Build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. Perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides APIs with high-level functions to control and respond to hardware events at run time, and interrupt service routines that you can adapt as needed.

A complete code development environment lets you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (accessed by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full-speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer. It lets you to define complex breakpoint events that include monitoring address and data bus values, memory locations, and external signals.

Pin Information

Pinouts

This section describes, lists, and illustrates the CY8CLED02 EZ-Color device pins and pinout configurations. The CY8CLED02 device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of Digital I/O. However, V_{SS}, V_{DD}, SMP, and XRES are not capable of Digital I/O.

8-Pin Part Pinout

Table 2. 8-Pin Part Pinout (SOIC)

Pin	Ту	/pe	Pin	Description			
No.	Digital	Analog	Name	Description			
1	I/O	I	P0[5]	Analog column mux input.			
2	I/O	I	P0[3]	Analog column mux input.			
3	I/O	-	P1[1]	I ² C serial clock (SCL), ISSP-SCLK.			
4	Po	wer	V _{SS}	Ground connection.			
5	I/O	-	P1[0]	I ² C serial data (SDA), ISSP-SDATA.			
6	I/O	I	P0[2]	Analog column mux input.			
7	I/O	I	P0[4]	Analog column mux input.			
8	Po	wer	V _{DD}	Supply voltage.			

LEGEND: A = Analog, I = Input, and O = Output.

16-Pin Part Pinout

Table 3. 16-Pin Part Pinout (SOIC)

Pin	Ту	vpe	Name	Description			
No.	Digital	Analog	Name	Description			
1	I/O	I	P0[7]	Analog column mux input.			
2	I/O	I	P0[5]	Analog column mux input.			
3	I/O	I	P0[3]	Analog column mux input.			
4	I/O	I	P0[1]	Analog column mux input.			
5	Po	wer	SMP	Switch mode pump (SMP) connection to required external components.			
6	Po	wer	V _{SS}	Ground connection.			
7	I/O	-	P1[1]	I ² C SCL, ISSP-SCLK.			
8	Po	wer	V _{SS}	Ground connection.			
9	I/O	-	P1[0]	I ² C SDA, ISSP-SDATA.			
10	I/O	-	P1[2]				
11	I/O	-	P1[4]	Optional external clock input (EXTCLK).			
12	I/O	I	P0[0]	Analog column mux input.			
13	I/O	I	P0[2]	Analog column mux input.			
14	I/O	I	P0[4]	Analog column mux input.			
15	I/O		P0[6]	Analog column mux input.			
16	Po	wer	V_{DD}	Supply voltage.			

LEGEND A = Analog, I = Input, and O = Output.

Figure 3. 8-Pin EZ-Color Device

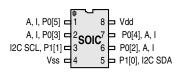
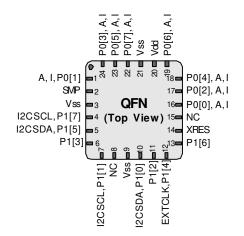


Figure 4. 16-Pin EZ-Color Device

	~		l
1		16	Vdd
2		15	= P0[6], A, I
3		14	P0[4], A, I
4	SOIC	13	P0[2], A, I
5	5010	12	= P0[0], A, I
6		11	P1[4], EXTCLK
7		10	P1[2]
8		9	P1[0], I2C SDA
	3 4 5 6 7	3 4 5 6 7	2 15 3 14 4 SOIC 13 5 12 6 11 7 10



24-Pin Part Pinout

Table 4. 24-Pin Part Pinout (QFN)^[2]

Pin	T	уре	Name	Description				
No.	Digital	Analog	name	Description				
1	I/O	I	P0[1]	Analog column mux input.				
2	Po	ower	SMP	SMP connection to required external components.				
3	Po	ower	V_{SS}	Ground connection.				
4	I/O	I	P1[7]	I ² C SCL.				
5	I/O	I	P1[5]	I ² C SDA.				
6	I/O	-	P1[3]	-				
7	I/O	-	P1[1]	I ² C SCL, ISSP-SCLK ^[1] .				
8			NC	No connection.				
9	Po	ower	V_{SS}	Ground connection.				
10	I/O	-	P1[0]	I ² C SDA, ISSP-SDATA ^[1] .				
11	I/O	-	P1[2]	-				
12	I/O	-	P1[4]	Optional external clock input (EXTCLK).				
13	I/O	-	P1[6]					
14	In	iput	XRES	Active high external reset with internal pull down.				
15			NC	No connection.				
16	I/O	I	P0[0]	Analog column mux input.				
17	I/O	I	P0[2]	Analog column mux input.				
18	I/O	I	P0[4]	Analog column mux input.				
19	I/O	I	P0[6]	Analog column mux input.				
20	Po	ower	V _{DD}	Supply voltage.				
21	Po	ower	V _{SS}	Ground connection.				
22	I/O	I	P0[7]	Analog column mux input.				
23	I/O	I	P0[5]	Analog column mux input.				
24	I/O	I	P0[3]	Analog column mux input.				

Figure 5. 24-Pin EZ-Color Device

LEGEND A = Analog, I = Input, and O = Output.

Notes

2. The center patient of the FN package should be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floated and not connected to any other signal.

^{1.} These are the ISSP pins, which are not High Z at power-on reset (POR).

Register Reference

Register Conventions

This section lists the registers of the CY8CLED02 EZ-Color device.

The register conventions specific to this section are listed in the following table.

Table 5. Register Conventions

Convention	Description
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

The device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks, Bank 0 and Bank 1. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set to 1, the user is in Bank 1.

Note In the following register mapping tables, blank fields are Reserved and should not be accessed.

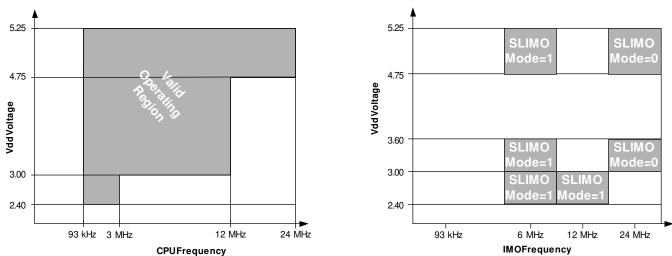
Table 6. Register Map Bank 0: User Space

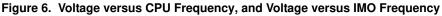
Name	Addr (0,Hex)		Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)		Name	Addr (0,Hex)	Acces
PRT0DR	00	RW		40		ASE10CR0	80	RW		CO	
PRT0IE	01	RW		41			81			C1	
PRT0GS	02	RW		42			82			C2	
PRT0DM2	03	RW		43			83			C3	
PRT1DR	04	RW		44		ASE11CR0	84	RW		C4	
PRT1IE	05	RW		45			85			C5	
PRT1GS	06	RW		46	-		86			C6	
PRT1DM2	07	RW		47			87			C7	
	08	nw.		47			88			C7 C8	
	09			49			89			C9	
	0A			4A			8A			CA	
	0B			4B			8B			СВ	
	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0F			4F	1		8F			CF	
	10			50	-		90			D0	
	11			51			91			D0	
	12	L	Į	52	L		92	L		D2	
	13		[53			93			D3	
	14			54			94			D4	
	15			55			95			D5	
	16	1	I	56	1		96	1	I2C_CFG	D6	RW
	17	1	1	57	1		97	t	I2C_SCR	D7	#
	18		1	58			98		I2C_DR	D8	RW
	19	-		59	-		99		I2C MSCR	D9	#
	13 1A			5A	-		9A		INT CLR0	DA	RW
							9B			DB	
	1B			5B					INT_CLR1		RW
	1C			5C			9C			DC	
	1D			5D			9D		INT_CLR3	DD	RW
	1E			5E			9E		INT_MSK3	DE	RW
	1F			5F			9F			DF	
DBB00DR0	20	#	AMX IN	60	RW		A0		INT MSK0	E0	RW
DBB00DR1	21	W		61			A1		INT MSK1	E1	RW
DBB00DR2	22	RW	PWM CR	62	RW		A2		INT_VC	E2	RC
DBB00CR0	23	#	1.1111_011	63			A3		RES_WDT	E3	W
							A3 A4		RL3_WD1	E4	vv
DBB01DR0	24	#	CMP_CR0	64	#						
DBB01DR1	25	W		65			A5			E5	
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#	ADC0_CR	68	#		A8			E8	
DCB02DR1	29	W	ADC1 CR	69	#		A9			E9	
DCB02DR2	2A	RW	_	6A	1		AA			EA	
DCB02CR0	2B	#		6B	1		AB			EB	
DCB02CR0	2D 2C	#	TMP_DR0	6C	RW		AC	<u> </u>		EC	+
DCB03DR0	20 2D	W W		6C 6D	RW		AD	<u> </u>	1	ED	
	٥F	DW	TMP_DR1	٥F							
DCB03DR2	2E	RW	TMP_DR2	6E	RW		AE			EE	
DCB03CR0	2F	#	TMP_DR3	6F	RW		AF			EF	
	30			70		RDI0RI	B0	RW		F0	
	31	l I	1	71		RDI0SYN	B1	RW	1	F1	
	32	1	ACE00CR1	72	RW	RDI0IS	B2	RW	1	F2	
	33		ACE00CR2	73	RW	RDIOLTO	B3	RW	1	F3	
	34			74	+	RDI0LT1	B4	RW	1	F4	-
	35		ł	74		RDI0RO0	B5	RW	-	F5	+
		ļ			DW/				1		1
	36		ACE01CR1	76	RW	RDI0RO1	B6	RW		F6	L
	37		ACE01CR2	77	RW		B7		CPU_F	F7	RL
	38			78			B8			F8	
	39	İ	Î	79	1		B9	1	1	F9	1
	3A		1	7A			BA	<u> </u>	1	FA	1
	3B		1	7B			BB		1	FB	+
	3D 3C		ł	7D 7C			BC		-	FC	+
		ļ	I					ļ	1		1
		1		7D			BD	1	1	FD	1
	3D										
	3D 3E 3F			7E 7F			BE BF		CPU_SCR1 CPU_SCR0	FE FF	# #

Table 7. Register Map Bank 1: Configuration Space

Name	Addr (1,Hex)		Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)		Name	Addr (1,Hex)	Access
PRT0DM0	00	RW		40		ASE10CR0	80	RW		C0	
PRT0DM1	01	RW		41			81			C1	
PRT0IC0	02	RW		42			82			C2	
PRT0IC1	03	RW		43			83			C3	
PRT1DM0	04	RW		44		ASE11CR0	84	RW		C4	
PRT1DM1	05	RW		45		7.02110110	85			C5	
PRT1IC0	06	RW		46			86			C6	
PRT1IC1	07	RW		47			87	-		C7	
FRITICI	07	ΠW		47			88			C7 C8	
	09			49			89			C9	
	0A			4A			8A			CA	
	0B			4B			8B			СВ	
	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0F			4F			8F			CF	
	10			50			90		GDI O IN	D0	RW
	11			51			91		GDI_E_IN	D1	RW
	12			52			92		GDI O OU	D2	RW
	13			53			93		GDI_E_OU	D3	RW
	13			53				-		D3 D4	L A A A
			8			ł	94		8		
	15		ļ	55			95			D5	
	16			56			96			D6	
	17			57			97			D7	
	18			58			98			D8	
	19			59			99			D9	
	1A			5A			9A			DA	
	1B			5B			9B			DB	
	1C			5C			9C			DC	
	1D			5D			9D		OSC GO EN	DD	RW
	1E			5E			9E		OSC CR4	DE	RW
	1F			5F			9F	-	OSC_CR3	DF	RW
DDDOOFN		DW			DW						
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
	23		AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW	CMP_GO_EN	64	RW		A4		VLT_CMP	E4	R
DBB01IN	25	RW		65			A5		ADC0_TR	E5	RW
DBB01OU	26	RW	AMD_CR1	66	RW		A6		ADC1_TR	E6	RW
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW	_	68			A8		IMO TR	E8	W
DCB02IN	29	RW		69			A9		ILO TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG TR	EA	RW
DODUZOO	2B	1.00	CLK CR3	6B	RW		AB		ECO TR	EB	W
DCB03FN	2C	DW/	TMP DR0	6C	RW				LCO_IN	EC	vv
		RW	—				AC				
DCB03IN	2D	RW	TMP_DR1	6D	RW		AD			ED	
DCB03OU	2E	RW	TMP_DR2	6E	RW	Į	AE			EE	
	2F		TMP_DR3	6F	RW		AF			EF	
	30			70		RDI0RI	B0	RW		F0	
	31			71		RDI0SYN	B1	RW		F1	
	32		ACE00CR1	72	RW	RDI0IS	B2	RW	1	F2	1
	33	1	ACE00CR2	73	RW	RDI0LT0	B3	RW		F3	1
	34			74		RDI0LT1	B4	RW	1	F4	1
	35			75		RDI0RO0	B5	RW		F5	-
	36		ACE01CR1	76	RW	RDI0RO1	B6	RW		F6	1
	37	+	ACE01CR1	76	RW		B7	1.1.4.4	CPU_F	F7	RL
			AULUIURZ			l			UFU_F		nL.
	38		Į	78			B8			F8	
	39			79		Į	B9			F9	
	ЗA			7A		I	BA		FLS_PR1	FA	RW
				7B			BB			FB	
	3B					· · · · · · · · · · · · · · · · · · ·		1		50	1
	3B 3C			7C			BC			FC	
				7C 7D			BC BD			FC FD	
	3C								CPU SCR1		#

Blank fields are Reserved and should not be accessed.




Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8CLED02 EZ-Color device. For the most up to date electrical specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com.

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted.

Refer to Table 21 for the electrical specifications for the IMO using SLIMO mode.

Absolute Maximum Ratings

Table 8. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	-55	25	+100	°C	Higher storage temperatures reduce data retention time. Recommended storage temperature is $+25$ °C ± 25 °C. Extended duration storage temperatures above 65 °C degrade reliability.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	
T _{BAKETIME}	Bake Time	See package label		72	Hours	
T _A	Ambient temperature with power applied	-40	-	+85	°C	
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5	-	+6.0	V	
V _{IO}	DC input voltage	V _{SS} - 0.5	-	$V_{DD} + 0.5$	V	
V _{IOZ}	DC voltage applied to tri-state	V _{SS} - 0.5	-	$V_{DD} + 0.5$	V	
I _{MIO}	Maximum current into any port pin	-25	_	+50	mA	
ESD	Electrostatic discharge voltage	2000	-	-	V	Human Body Model ESD.
LU	Latch up current	_	-	200	mA	

Operating Temperature

Table 9. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient temperature	-40	-	+85	°C	
TJ	Junction temperature	-40	Ι	+100	°C	The temperature rise from ambient to junction is package specific. See Thermal Impedances on page 34. You must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Chip-Level Specifications

Table 10 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 10. DC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DD}	Supply voltage	2.40	-	5.25	V	See DC POR and LVD specifications, Table 18 on page 20.
I _{DD}	Supply current, IMO = 24 MHz	_	3	4	mA	Conditions are $V_{DD} = 5.0 \text{ V}, 25 \text{ °C},$ CPU = 3 MHz, SYSCLK doubler disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 0.366 kHz.
I _{DD3}	Supply current, IMO = 6 MHz	_	1.2	2	mA	Conditions are $V_{DD} = 3.3 \text{ V}, 25 \text{ °C},$ CPU = 3 MHz, clock doubler disabled. VC1 = 375 kHz, VC2 = 23.4 kHz, VC3 = 0.091 kHz.
I _{DD27}	Supply current, IMO = 6 MHz	_	1.1	1.5	mA	Conditions are $V_{DD} = 2.55$ V, 25 °C, CPU = 3 MHz, clock doubler disabled. VC1 = 375 kHz, VC2 = 23.4 kHz, VC3 = 0.091 kHz.
I _{SB27}	Sleep (mode) current with POR, LVD, Sleep Timer, WDT, and internal slow oscillator active. Mid temperature range.	_	2.6	4	μA	V _{DD} = 2.55 V, 0 °C to 40 °C.
I _{SB}	Sleep (mode) current with POR, LVD, Sleep Timer, WDT, and internal slow oscillator active.	_	2.8	5	μA	$V_{DD} = 3.3 \text{ V}, \ \text{-40 } ^\circ\text{C} \leq \text{T}_A \leq 85 \ ^\circ\text{C}.$
V _{REF}	Reference voltage (Bandgap)	1.28	1.30	1.32	V	Trimmed for appropriate V_{DD} . $V_{DD} = 3.0 V$ to 5.25 V.
V _{REF27}	Reference voltage (Bandgap)	1.16	1.30	1.330	V	Trimmed for appropriate V_{DD} . $V_{DD} = 2.4 V to 3.0 V.$
AGND	Analog ground	V _{REF} - 0.003	V _{REF}	V _{REF} + 0.003	V	

DC General Purpose I/O Specifications

Table 11 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 11.	5-V and 3.3-V	DC GPIO Specifications
-----------	---------------	-------------------------------

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} - 1.0	_	_	V	$I_{OH} = 10$ mA, $V_{DD} = 4.75$ to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 80 mA maximum combined I_{OH} budget.
V _{OL}	Low output level	_	_	0.75	V	$I_{OL} = 25 \text{ mA}, V_{DD} = 4.75 \text{ to } 5.25 \text{ V} (8 \text{ total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 150 mA maximum combined I_{OL} budget.$
I _{ОН}	High level source current	10	-	-	mA	$V_{OH} = V_{DD}$ -1.0 V. See the limitations of the total current in the Note for V_{OH} .
I _{OL}	Low level sink current	25	-	-	mA	V_{OL} = 0.75 V. See the limitations of the total current in the Note for V_{OL} .
V _{IL}	Input low level	-	-	0.8	V	V _{DD} = 3.0 to 5.25.
V _{IH}	Input high level	2.1	-	-	V	V _{DD} = 3.0 to 5.25.
V _H	Input hysteresis	-	60	-	mV	
IIL	Input leakage (absolute value)	_	1	_	nA	Gross tested to 1 µA.
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent. Temp = 25 °C.
C _{OUT}	Capacitive load on pins as output	_	3.5	10	pF	Package and pin dependent. Temp = 25 °C.

Table 12 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 2.4 V to 3.0 V and -40 °C $\leq T_A \leq 85$ °C. Typical parameters are measured at 2.7 V at 25 °C and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} - 0.4	_	_	V	I_{OH} = 2.5 mA (6.25 typical), V _{DD} = 2.4 to 3.0 V (16 mA maximum, 50 mA typical combined I _{OH} budget).
V _{OL}	Low output level	-	_	0.75	V	I_{OL} = 10 mA, V_{DD} = 2.4 to 3.0 V (90 mA maximum combined I_{OL} budget).
I _{ОН}	High level source current	2.5	-	-	mA	$V_{OH} = V_{DD}$ -0.4 V. See the limitations of the total current in the Note for V_{OH} .
I _{OL}	Low Level Sink Current	10	_	-	mA	$V_{OL} = 0.75$ V. See the limitations of the total current in the Note for VOL.
V _{IL}	Input low level	-	-	0.75	V	V _{DD} = 2.4 to 3.0.
V _{IH}	Input high level	2.0	-	—	V	V _{DD} = 2.4 to 3.0.
V _H	Input hysteresis	-	60	—	mV	
IIL	Input leakage (absolute value)	-	1	_	nA	Gross tested to 1 µA.
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent. Temp = $25 \degree C$.
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent. Temp = $25 \degree C$.

Table 12. 2.7-V DC GPIO Specifications

DC Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 13. 5-V DC Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	_	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	μV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins)	_	200	-	pА	Gross tested to 1 µA.
C _{INOA}	Input capacitance (Port 0 analog pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V _{CMOA}	Common mode voltage range	0.0	-	V _{DD} - 1	V	
G _{OLOA}	Open loop gain	80	_	-	dB	
I _{SOA}	Amplifier supply current	-	10	30	μA	

Table 14. 3.3-V DC Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	μV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins)	_	200	-	рА	Gross tested to 1 μ A.
C _{INOA}	Input capacitance (Port 0 analog pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V _{CMOA}	Common mode voltage range	0	_	V _{DD} - 1	V	
G _{OLOA}	Open loop gain	80	1	-	dB	
I _{SOA}	Amplifier supply current	_	10	30	μA	

Table 15. 2.7-V DC Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	μV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA.
C _{INOA}	Input capacitance (Port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V _{CMOA}	Common mode voltage range	0	-	V _{DD} - 1	V	
G _{OLOA}	Open loop gain	80	_	-	dB	
I _{SOA}	Amplifier supply current	-	10	30	μA	

DC Low Power Comparator Specifications

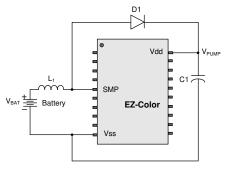
Table 16 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V at 25 °C and are for design guidance only.

Table 16. DC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{REFLPC}	Low power comparator (LPC) reference voltage range	0.2	-	V _{DD} - 1	V	
I _{SLPC}	LPC supply current	_	10	40	μA	
VOSLPC	LPC voltage offset	_	2.5	30	mV	

DC Switch Mode Pump Specifications

Table 17 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.


Table 17.	DC Switch Mode	Pump (SMP) S	Specifications
	DO OWILCH MOUL			peenications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PUMP5V}	5 V output voltage from pump	4.75	5.0	5.25	V	Configured as in Note 3. Average, neglecting ripple. SMP trip voltage is set to 5.0 V.
V _{PUMP3V}	3.3 V output voltage from pump	3.00	3.25	3.60	V	Configured as in Note 3. Average, neglecting ripple. SMP trip voltage is set to 3.25 V.
V _{PUMP2V}	2.6 V output voltage from pump	2.45	2.55	2.80	V	Configured as in Note 3. Average, neglecting ripple. SMP trip voltage is set to 2.55 V.
I _{PUMP}	Available output current $V_{BAT} = 1.8 V$, $V_{PUMP} = 5.0 V$ $V_{BAT} = 1.5 V$, $V_{PUMP} = 3.25 V$ $V_{BAT} = 1.3 V$, $V_{PUMP} = 2.55 V$	5 8 8		_ _ _	mA mA mA	Configured as in Note 3. SMP trip voltage is set to 5.0 V. SMP trip voltage is set to 3.25 V. SMP trip voltage is set to 2.55 V.
V _{BAT5V}	Input voltage range from battery	1.8	-	5.0	V	Configured as in Note 3. SMP trip voltage is set to 5.0 V.
V _{BAT3V}	Input voltage range from battery	1.0	-	3.3	V	Configured as in Note 3. SMP trip voltage is set to 3.25 V.
V _{BAT2V}	Input voltage range from battery	1.0	-	2.8	V	Configured as in Note 3. SMP trip voltage is set to 2.55 V.
V _{BATSTART}	Minimum input voltage from battery to start pump	1.2	-	-	V	Configured as in Note 3.0 °C \leq T _A \leq 100. 1.25 V at T _A = -40 °C.
ΔV_{PUMP}_{Line}	Line regulation (over Vi range)	_	5	-	%V _O	Configured as in Note 3. V_O is the " V_{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 18 on page 20.
ΔV_{PUMP_Load}	Load Regulation	_	5	-	%V _O	Configured as in Note 3. V_O is the " V_{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 18 on page 20.
ΔV_{PUMP_Ripple}	Output voltage ripple (depends on cap/load)	-	100	-	mVpp	Configured as in Note 3. Load is 5 mA.
E ₃	Efficiency	35	50	-	%	Configured as in Note 3. Load is 5 mA. SMP trip voltage is set to 3.25 V.
E ₂	Efficiency	35	80	-	%	For I load = 1mA, V_{PUMP} = 2.55 V, V_{BAT} = 1.3 V, 10 µH inductor, 1 µF capacitor, and Schottky diode.
F _{PUMP}	Switching frequency	-	1.3	-	MHz	
DC _{PUMP}	Switching duty cycle	-	50	-	%	

Note 3. $L_1 = 2 \text{ mH}$ inductor, $C_1 = 10 \text{ mF}$ capacitor, $D_1 = \text{Schottky}$ diode. See Figure 7 on page 20.

Figure 7. Basic Switch Mode Pump Circuit

DC POR and LVD Specifications

Table 18 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 18. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0} V _{PPOR1} V _{PPOR2}	V _{DD} value for PPOR trip PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_	2.36 2.82 4.55	2.40 2.95 4.70	V V V	V_{DD} must be greater than or equal to 2.5 V during startup, reset from the XRES pin, or reset from Watchdog.
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	$\begin{array}{l} V_{DD} \mbox{ value for LVD trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \\ \end{array}$	2.40 2.85 2.95 3.06 4.37 4.50 4.62 4.71	2.45 2.92 3.02 3.13 4.48 4.64 4.73 4.81	2.51 ^[4] 2.99 ^[5] 3.09 3.20 4.55 4.75 4.83 4.95	> > > > > > > > > > > > > > > > > > >	
VPUMP0 VPUMP1 VPUMP2 VPUMP3 VPUMP4 VPUMP5 VPUMP6 VPUMP7	V _{DD} value for PUMP trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b	2.45 2.96 3.03 3.18 4.54 4.62 4.71 4.89	2.55 3.02 3.10 3.25 4.64 4.73 4.82 5.00	2.62 ^[6] 3.09 3.16 3.32 ^[7] 4.74 4.83 4.92 5.12	> > > > > > > > > > > > > > > > > > >	

Notes

- 4. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.
- 5. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.
- 6. Always greater than 50 mV above V $_{LVD0}$. 7. Always greater than 50 mV above V $_{LVD0}$.

DC Programming Specifications

Table 19 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, or 2.4 V to 3.0 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 19.	DC Programming Specifications	
-----------	--------------------------------------	--

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5.0	5.5	V	This specification applies to the functional requirements of external programmer tools
V _{DDLV}	Low V _{DD} for verify	3.0	3.1	3.2	V	This specification applies to the functional requirements of external programmer tools
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operations	3.0	-	5.25	V	This specification applies to this device when it is executing internal flash writes
I _{DDP}	Supply current during programming or verify	_	5	25	mA	
V _{ILP}	Input low voltage during programming or verify	_	-	0.8	V	
V _{IHP}	Input high voltage during programming or verify	2.2	_	-	V	
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	_	-	0.2	mA	Driving internal pull-down resistor.
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	-	-	1.5	mA	Driving internal pull-down resistor.
V _{OLV}	Output low voltage during programming or verify	-	_	V _{SS} + 0.75	V	
V _{OHV}	Output high voltage during programming or verify	V _{DD} - 1.0	-	V _{DD}	V	
Flash _{ENPB}	Flash endurance (per block)	50,000 ^[8]	-	-	-	Erase/write cycles per block.
Flash _{ENT}	Flash endurance (total) ^[9]	1,800,000	-	-	-	Erase/write cycles.
Flash _{DR}	Flash data retention	10	-	-	Years	

DC I²C Specifications

Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 20. DC I²C Specifications^[10]

Symbol	Description	Min	Тур	Max	Units	Notes
V _{ILI2C}	Input low level	-	-	$0.3 \times V_{DD}$	V	$3.0~V \leq V_{DD} \leq 3.6~V$
		-	-	$0.25 \times V_{DD}$	V	$4.75~V \le V_{DD} \le 5.25~V$
V _{IHI2C}	Input high level	$0.7 \times V_{DD}$	-	—	V	$3.0~V \leq V_{DD} \leq 5.25~V$

Notes

 The 50,000 cycle flash endurance per block will only be guaranteed if the flash is operating within one voltage range. Voltage ranges are 2.4 V to 3.0 V, 3.0 V to 3.6 V, and 4.75 V to 5.25 V.

A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles).

ever sees more than 50,000 cycles). For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.

10. All GPIO meet the DC GPIO V_{IL} and V_{IH} specifications mentioned in section DC General Purpose I/O Specifications on page 16. The I²C GPIO pins also meet the mentioned specs.

AC Electrical Characteristics

AC Chip-Level Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and

-40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 21. 5-V and 3.3-V AC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO24}	IMO frequency for 24 MHz	23.4	24	24.6 ^[11,12]	MHz	Trimmed for 5 V or 3.3 V operation using factory trim values. Refer to Figure 6 on page 13. SLIMO mode = 0.
F _{IMO6}	IMO frequency for 6 MHz	5.5	6	6.5 ^[11,12]	MHz	Trimmed for 3.3 V operation using factory trim values. See Figure 6 on page 13. SLIMO mode = 1.
F _{CPU1}	CPU frequency (5 V nominal)	0.0937	24	24.6 ^[11]	MHz	12 MHz only for SLIMO mode = 0.
F _{CPU2}	CPU frequency (3.3 V nominal)	0.0937	12	12.3 ^[12]	MHz	SLIMO Mode = 0.
F _{BLK5}	Digital PSoC block frequency (5 V nominal)	0	48	49.2 ^[11,13]	MHz	Refer to the section AC Digital Block Specifications on page 26.
F _{BLK33}	Digital PSoC block frequency (3.3 V nominal)	0	24	24.6 ^[13]	MHz	
F _{32K1}	ILO frequency	15	32	64	kHz	
F _{32K_U}	ILO untrimmed frequency	5	_	100	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the system resets section of the PSoC Technical Reference Manual for details on this timing.
t _{XRST}	External reset pulse width	10	-	-	μs	
DC24M	24 MHz duty cycle	40	50	60	%	
DC _{ILO}	ILO duty cycle	20	50	80	%	
Step24M	24 MHz trim step size	-	50	-	kHz	
Fout48M	48 MHz output frequency	46.8	48.0	49.2 ^[11,12]	MHz	Trimmed. Using factory trim values.
F _{MAX}	Maximum frequency of signal on row input or row output.	_	-	12.3	MHz	
SR _{POWER_UP}	Power supply slew rate	-	-	250	V/ms	V _{DD} slew rate during power-up.
tpowerup	Time from end of POR to CPU executing code	-	16	100	ms	Power up from 0 V. See the system resets section of the PSoC Technical Reference Manual.
t _{jit_IMO}	24-MHz IMO cycle-to-cycle jitter (RMS) [14]	-	200	700	ps	
	24-MHz IMO long term N cycle-to-cycle jitter (RMS) ^[14]	-	300	900	ps	N = 32
	24-MHz IMO period jitter (RMS) [14]	-	100	400	ps	

Notes

Notes
11. 4.75 V < V_{DD} < 5.25 V.
12. 3.0 V < V_{DD} < 3.6 V.
13. See the individual user module datasheets for information on maximum frequencies for user modules.
14. Refer to the application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information on jitter specifications.

Table 22. 2.7-V AC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO12}	IMO frequency for 12 MHz	11.5	12	12.7 ^[15]	MHz	Trimmed for 2.7 V operation using factory trim values. See Figure 6 on page 13. SLIMO mode = 1.
F _{IMO6}	IMO frequency for 6 MHz	5.5	6	6.5 ^[15]	MHz	Trimmed for 2.7 V operation using factory trim values. See Figure 6 on page 13. SLIMO mode = 1.
F _{CPU1}	CPU frequency (2.7 V nominal)	0.093	3	3.15 ^[15]	MHz	24 MHz only for SLIMO mode = 0.
F _{BLK27}	Digital PSoC block frequency (2.7 V nominal)	0	12	12.5 ^[15]	MHz	Refer to the section AC Digital Block Specifications on page 26.
F _{32K1}	ILO frequency	8	32	96	kHz	
F _{32K_U}	ILO untrimmed frequency	5	-	100	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the system resets section of the PSoC Technical Reference Manual for details on this timing.
t _{XRST}	External reset pulse width	10	-	-	μs	
DC _{ILO}	ILO duty cycle	20	50	80	%	
F _{MAX}	Maximum frequency of signal on row input or row output	-	-	12.3	MHz	
SR _{POWER_UP}	Power supply slew rate	-	-	250	V/ms	V _{DD} slew rate during power up.
^t POWERUP	Time from end of POR to CPU executing code	_	16	100	ms	Power up from 0 V. See the system resets section of the PSoC Technical Reference Manual.
t _{jit_IMO}	12-MHz IMO cycle-to-cycle jitter (RMS) ^[16]	-	400	1000	ps	
	12-MHz IMO long term N cycle-to-cycle jitter (RMS) ^[16]	-	600	1300	ps	N = 32
	12-MHz IMO period jitter (RMS) ^[16]	_	100	500	ps	

Notes 15. 2.4 V < V_{DD} < 3.0 V. 16. Refer to the application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information on jitter specifications.

AC GPIO Specifications

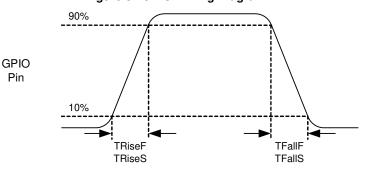

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 23. 5-V and 3.3-V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	12	MHz	Normal strong mode
TRiseF	Rise time, normal strong mode, Cload = 50 pF	3	-	18	ns	V _{DD} = 4.5 to 5.25 V, 10% - 90%
TFallF	Fall time, normal strong mode, Cload = 50 pF	2	-	18	ns	V _{DD} = 4.5 to 5.25 V, 10% - 90%
TRiseS	Rise time, slow strong mode, Cload = 50 pF	10	27	-	ns	V _{DD} = 3 to 5.25 V, 10% - 90%
TFallS	Fall time, slow strong mode, Cload = 50 pF	10	22	-	ns	V _{DD} = 3 to 5.25 V, 10% - 90%

Table 24. 2.7-V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	3	MHz	Normal strong mode
TRiseF	Rise time, normal strong mode, Cload = 50 pF	6	-	50	ns	V _{DD} = 2.4 to 3.0 V, 10% - 90%
TFallF	Fall time, normal strong mode, Cload = 50 pF	6	-	50	ns	V _{DD} = 2.4 to 3.0 V, 10% - 90%
TRiseS	Rise time, slow strong mode, Cload = 50 pF	18	40	120	ns	V _{DD} = 2.4 to 3.0 V, 10% - 90%
TFallS	Fall time, slow strong mode, Cload = 50 pF	18	40	120	ns	V _{DD} = 2.4 to 3.0 V, 10% - 90%

Figure 8. GPIO Timing Diagram

AC Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.

Table 25. 5-V and 3.3-V AC Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{COMP1}	Comparator mode response time, 50 mVpp signal centered on reference	-	-	100	ns	
T _{COMP2}	Comparator mode response time, 2.5 V input, 0.5 V overdrive	-	-	300	ns	

Table 26. 2.7V AC Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{COMP1}	Comparator mode response Time, 50 mVpp signal centered on Ref	-	-	600	ns	
T _{COMP2}	Comparator mode response time, 1.5 V input, 0.5 V overdrive	_	_	300	ns	

AC Low Power Comparator Specifications

Table 27 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V at 25 °C and are for design guidance only.

Table 27. AC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RLPC}	LPC response time	-	-	50	μS	\geq 50 mV overdrive comparator reference set within V _{REFLPC} .