

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

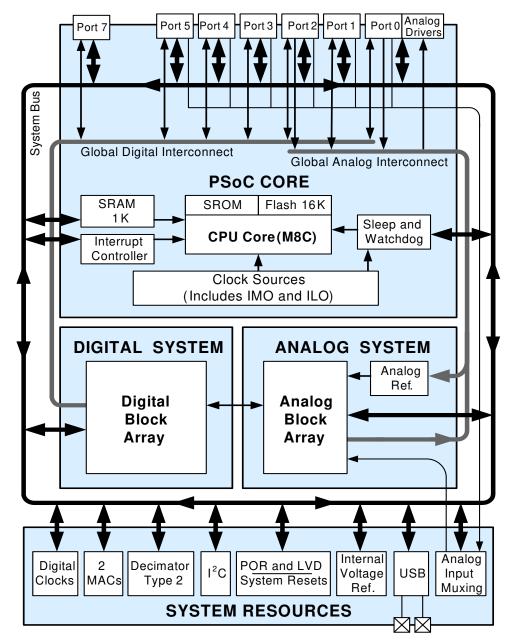
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

EZ-Color™ HB LED Controller


Features

- HB LED Controller
 - □ Configurable dimmers support up to four independent LED channels
 - □ 8- to 32-bits of resolution per channel
 - □ Dynamic reconfiguration enables led controller plus other features: CapSense[®], Battery Charging, and Motor Control
- Visual embedded design
 - □ LED-Based drivers
 - · Binning compensation
 - · Temperature feedback
 - · Optical feedback
 - DMX512
- PrISMTM modulation technology
 - □ Reduces radiated EMI
 - □ Reduces low frequency blinking
- Advanced peripherals (PSoC[®] blocks)
 - □ Four digital PSoC blocks provide:
 - 8 to 32-bit timers, counters, and PWMs
 - Full-duplex UART
 - Multiple SPI Masters or Slaves
 - · Connectable to all GPIO pins
 - □ Six Rail-to-Rail analog PSoC blocks provide:
 - Up to 14-bit ADCs
 - Up to 9-bit DACs
 - Programmable gain amplifiers (PGA)
 - Programmable filters and comparators
 - Complex peripherals by combining blocks
 - □ Capacitive sensing application capability

- Complete development tools
 - ☐ Free development software
 - PSoC Designer™
 - □ Full featured, in-circuit emulator (ICE) and programmer
 - □ Full speed emulation
 - □ Complex breakpoint structure
 - □ 128 KB trace memory
- Programmable pin configurations
 - 25 mA sink, 10 mA source on all GPIO
 - □ Pull-up, pull-down, high Z, strong, or open drain drive modes on all GPIO
 - □ Up to 12 analog inputs on GPIO
 - □ Four 30 mA analog outputs on GPIO
 - □ Configurable interrupt on all GPIO
- Flexible on-chip memory
 - □ 16K flash program storage 50,000 erase/write cycles
 - □ 1K SRAM data storage
 - □ In-system serial programming (ISSP)
 - □ Partial flash updates
 - □ Flexible protection modes
 - □ EEPROM emulation in flash
- Full speed USB (12 Mbps)
 - □ Four uni-directional endpoints
 - □ One bi-directional control endpoint
 - □ USB 2.0 compliant
 - □ Dedicated 256 byte buffer
 - □ No external crystal required

Logic Block Diagram

Contents

EZ-Color™ Functional Overview	4
Target Applications	4
The PSoC Core	
The Digital System	4
The Analog System	
The Analog Multiplexer System	6
Additional System Resources	
EZ-Color Device Characteristics	6
Getting Started	7
Application Notes	
Development Kits	7
Training	7
CYPros Consultants	
Solutions Library	7
Technical Support	
Development Tools	7
PSoC Designer Software Subsystems	7
Designing with PSoC Designer	9
Select User Modules	
Configure User Modules	9
Organize and Connect	
Generate, Verify, and Debug	9
Pin Information	
68-Pin Part Pinout	
Register Conventions	
Abbreviations Used	
Register Mapping Tables	
Electrical Specifications	
Absolute Maximum Ratings	
Operating Temperature	
DC Electrical Characteristics	
AC Electrical Characteristics	29

Packaging Information	37
Thermal Impedance	
Solder Reflow Peak Temperature	
Development Tools	
Software	
Evaluation Tools	
Device Programmers	40
Accessories (Emulation and Programming)	
Third Party Tools	
Build a PSoC Emulator into Your Board	40
Ordering Information	41
Key Device Features	
Ordering Code Definitions	
Acronyms	
Acronyms Used	42
Reference Documents	
Document Conventions	43
Units of Measure	43
Numeric Conventions	43
Glossary	
Document History Page	48
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	49

EZ-Color™ Functional Overview

Cypress's EZ-Color family of devices offers the ideal control solution for high brightness LED applications requiring intelligent dimming control. EZ-Color devices combine the power and flexibility of Programmable System-on-Chip (PSoC®); with Cypress's precise illumination signal modulation (PrISMTM) modulation technology providing lighting designers a fully customizable and integrated lighting solution platform.

The EZ-Color family supports a range of independent LED channels from 4 channels at 32 bits of resolution each, up to 16 channels at 8 bits of resolution each. This enables lighting designers the flexibility to choose the LED array size and color quality. PSoC Designer software, with lighting specific drivers, can significantly cut development time and simplify implementation of fixed color points through temperature, optical, and LED binning compensation. EZ-Color's virtually limitless analog and digital customization enable simple integration of features in addition to intelligent lighting, such as CapSense, battery charging, image stabilization, and motor control during the development process. These features, along with Cypress's best-in-class quality and design support, make EZ-Color the ideal choice for intelligent HB LED control applications.

Target Applications

- LCD Backlight
- Large Signs
- General Lighting
- Architectural Lighting
- Camera/Cell Phone Flash
- Flashlights

The PSoC Core

The PSoC Core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable General Purpose I/O (GPIO).

The M8C CPU core is a powerful processor with speeds up to 68 MHz, providing a four MIPS 8-bit Harvard-architecture microprocessor. The CPU uses an interrupt controller with up to 20 vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included Sleep and watchdog timers (WDT).

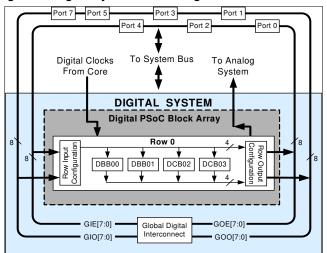
Memory encompasses 16K of flash for program storage, 1K of SRAM for data storage, and up to 2K of EEPROM emulated using the flash. Program flash uses four protection levels on blocks of 64 bytes, allowing customized software IP protection.

The EZ-Color family incorporates flexible internal clock generators, including a 24 MHz internal main oscillator (IMO) accurate to 8 percent over temperature and voltage. The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32 kHz internal low speed oscillator (ILO) is provided for the sleep timer and WDT. The clocks, together with programmable clock dividers (as a system resource), provide the flexibility to integrate almost any timing requirement into the EZ-Color device. In USB systems, the IMO self-tunes to $\pm\,0.25\%$ accuracy for USB communication.

EZ-Color GPIOs provide connection to the CPU, digital and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin can also generate a system interrupt on high level, low level, and change from last read.

The Digital System

The digital system is composed of four digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8-, 16-, 24-, and 32-bit peripherals, which are called user module references.

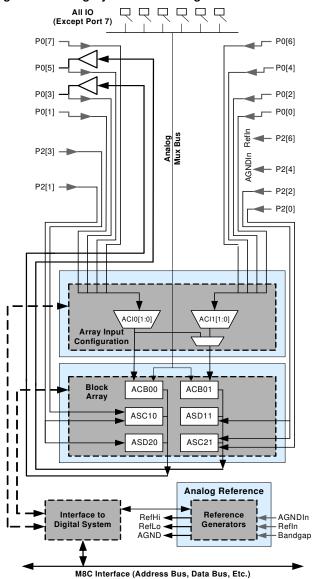

Digital peripheral configurations include:

- PrISM (8- to 32-bit)
- Full speed USB (12 Mbps)
- PWMs (8- to 32-bit)
- PWMs with Dead band (8- to 24-bit)
- Counters (8- to 32-bit)
- Timers (8- to 32-bit)
- UART 8-bit with selectable parity
- SPI master and slave
- I²C slave and multi-master
- Cyclical Redundancy Checker (CRC)/Generator (8- to 32-bit)
- IrDA
- Generators (8- to 32-bit)

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by EZ-Color device family. This allows you the optimum choice of system resources for your application. Family resources are shown in the table titled EZ-Color Device Characteristics.

Figure 1. Digital System Block Diagram


The Analog System

The Analog System is composed of six configurable blocks, each comprised of an opamp circuit allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common EZ-Color analog functions (most available as user modules) are listed below.

- Analog-to-digital converters (up to 2, with 6- to 14-bit resolution, selectable as Incremental, Delta Sigma, and SAR)
- Filters (2 and 4 pole band-pass, low-pass, and notch)
- Amplifiers (up to 2, with selectable gain to 48x)
- Instrumentation amplifiers (1 with selectable gain to 93x)
- Comparators (up to 2, with 16 selectable thresholds)
- DACs (up to 2, with 6- to 9-bit resolution)
- Multiplying DACs (up to 2, with 6- to 9-bit resolution)
- High current output drivers (two with 30 mA drive as a PSoC Core Resource)
- 1.3-V reference (as a system resource)
- DTMF Dialer
- Modulators
- Correlators
- Peak detectors
- Many other topologies possible

Analog blocks are arranged in a column of three, which includes one Continuous Time (CT) and two Switched Capacitor (SC) blocks, as shown in the figure below.

Figure 2. Analog System Block Diagram

The Analog Multiplexer System

The Analog Mux Bus can connect to every GPIO pin in ports 0-5. Pins can be connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with comparators and analog-to-digital converters. It can be split into two sections for simultaneous dual-channel processing. An additional 8:1 analog input multiplexer provides a second path to bring Port 0 pins to the analog array.

Switch control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Track pad, finger sensing.
- Chip-wide mux that allows analog input from up to 48 I/O pins.
- Crosspoint connection between any I/O pin combinations.

When designing capacitive sensing applications, refer to the latest signal-to-noise signal level requirements Application Notes, which can be found under http://www.cypress.com > Documentation. In general, and unless otherwise noted in the relevant Application Notes, the minimum signal-to-noise ratio (SNR) for CapSense applications is 5:1.

Additional System Resources

System resources, provide additional capability useful to complete systems. Additional resources include a multiplier, decimator, low voltage detection, and power on reset. Brief statements describing the merits of each resource follow.

- Full-speed USB (12 Mbps) with 5 configurable endpoints and 256 bytes of RAM. No external components required except two series resistors. Wider than commercial temperature USB operation (-10 °C to +85 °C).
- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- Two multiply accumulates (MACs) provide fast 8-bit multipliers with 32-bit accumulate, to assist in both general math as well as digital filters.
- Decimator provides a custom hardware filter for digital signal processing apps. including creation of Delta Sigma ADCs.
- The I²C module provides 100- and 400-kHz communication over two wires. Slave, master, multi-master are supported.
- Low-voltage detect (LVD) interrupts signal the application of falling voltage levels, while the advanced Power-on reset (POR) circuit eliminates the need for a system supervisor.
- An internal 1.3-V reference provides an absolute reference for the analog system, including ADCs and DACs.
- Versatile analog multiplexer system.

EZ-Color Device Characteristics

Depending on your EZ-Color device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. The following table lists the resources available for specific EZ-Color device groups. The device covered by this data sheet is shown in the highlighted row of the table

Table 1. EZ-Color Device Characteristics

PSoC Part Number	LED Channels	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size	CapSense
CY8CLED02	2	16	1	4	8	0	2	4	256 Bytes	4K	No
CY8CLED04	4	56	1	4	48	2	2	6	1K	16K	Yes
CY8CLED08	8	44	2	8	12	4	4	12	256 Bytes	16K	No
CY8CLED16	16	44	4	16	12	4	4	12	2K	32K	No

Document Number: 001-13108 Rev. *F Page 6 of 49

Getting Started

The quickest way to understand PSoC silicon is to read this data sheet and then use the PSoC Designer integrated development environment (IDE). This data sheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming details, see the *PSoC® Programmable System-on-Chip Technical Reference Manual.*

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device data sheets on the web at http://www.cypress.com/ez-color.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Development Tools

PSoC Designer™ is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- ☐ Hardware and software I²C slaves and masters
- ☐ Full-speed USB 2.0
- □ Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC's resources for an application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers.

You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also lets you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed-function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and lowering inventory costs. These configurable resources, called PSoC blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is:

- 1. Select user modules.
- 2. Configure user modules.
- 3. Organize and connect.
- 4. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each eight bits of resolution. Using these parameters, you can establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All of the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information that you may need to successfully implement your design.

Organize and Connect

Build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. Perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides APIs with high-level functions to control and respond to hardware events at run time, and interrupt service routines that you can adapt as needed.

A complete code development environment lets you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (accessed by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full-speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer. It lets you to define complex breakpoint events that include monitoring address and data bus values, memory locations, and external signals.

Pin Information

68-Pin Part Pinout

This Section describes, lists, and illustrates the CY8CLED04 EZ-Color device pins and pinout configuration. The CY8CLED04 device is available in the following package. Every port pin (labeled with a "P") is capable of Digital I/O. However, V_{SS} , V_{DD} , and XRES are not capable of Digital I/O.

Table 2. 68-Pin Part Pinout (QFN)[1, 2]

Pin No.	_	/pe	Name	Description				Fig	ure 3. 68-Pin Device
1	Digital I/O	Analog M	P4[7]	·					VREF
2	1/0	M	P4[7] P4[5]						V AG
3	1/0	M	P4[3]					a a	A A A A A A A A A A A A A A A A A A A
4	1/0	M	P4[1]					ΣŚ	ΣΣΣΣΣ ΣΣΣΣΣΣ
5	., 0		NC	No connection.				Ξ΄ Ξ΄	P2[5] P0[1] P0[3] P0[6] P0[6] P2[6] P2[6]
6			NC	No connection.	-				
7	Po	wer	V _{SS}	Ground connection.			(
8	I/O	М	P3[7]			M	И, Р4[7] 🗖	1 8 6	9 6 6 6 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9	I/O	М	P3[5]			N	И, Р4[5] 🗖	2	50 P 4[6], M
10	I/O	М	P3[3]			M	И, Р4[3] 🗖	3	49 P P4[4], M
11	I/O	М	P3[1]			M	И, Р4[1] 🗖		48 P P4[2], M
12	I/O	М	P5[7]				NC =	5	47 = P4[0], M
13	I/O	М	P5[5]				NC =		46 XRES
14	I/O	М	P5[3]				Vss =		45 NC
15	I/O	М	P5[1]				И, Р3[7] = И, Р3[5] =		QFN 44 NC P3[6], M
16	I/O	М	P1[7]	I ² C serial clock (SCL).			и, РЗ[З] = И, РЗ[З] =		(Top View) 42 P3[4], M
17	I/O	М	P1[5]	I ² C serial data (SDA).			и, гэ[э] И, Р3[1] =		41 P3[2], M
18	I/O	М	P1[3]	, ,			и, Р5[7]		40 P 3[0], M
19	I/O	М	P1[1]	I ² C SCL ISSP SCLK.			л, P5[5] =		39 P P5[6], M
20	Po	wer	V _{SS}	Ground connection.			л, P5[3] =		38 P P5[4], M
21	U	SB	D+			M	И, P5[1] 🗖	15	37 P5[2], M
22	U	SB	D-			I2C SCL, N			36 – P5[0], M
23	Po	wer	V_{DD}	Supply voltage.		I2C SDA, N	И, Р1[5] 🗖		35 P1[6], M
24	I/O		P7[7]				(22 22 23 24 25 25 25 26 27 27 28 33 33 33 34 35 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37
25	I/O		P7[6]						0 +
26	I/O		P7[5]					은 는	Vss D + 1 D - 0 Vdd Vdd V7[5] P7[6] P7[7] P7[1] P7[1] P7[1] P7[1] P7[1] P7[1]
27	I/O		P7[4]					ΣΣ	2
28	I/O		P7[3]						
								SCL,	SDA,
								2C	20
29	I/O		P7[2]		Pin	Tv	ре		_
30	1/0		P7[1]		No.	_	Analog	Name	Description
31	1/0		P7[0]		50	I/O	M	P4[6]	
32	1/0	М	P1[0]	II ² C SDA, ISSP SDATA.	51	1/0	I,M	P2[0]	Direct switched capacitor block input.
33	1/0	M	P1[2]	I C SDA, ISSF SDATA.	52	1/0	I,M	P2[2]	Direct switched capacitor block input.
34	1/0	M	P1[4]	Optional external clock input	53	1/0	M	P2[4]	External Analog Ground (AGND) input.
34	1/0	IVI	1 1[-1]	(EXTCLK).	33	1/0	IVI	1 2[4]	External Analog Ground (AGIVD) Input.
35	I/O	М	P1[6]	- /	54	I/O	М	P2[6]	External Voltage Reference (VREF) input.
36	I/O	М	P5[0]		55	I/O	I.M	P0[0]	Analog column mux input.
37	I/O	М	P5[2]		56	I/O	Í.M	P0[2]	Analog column mux input and column output.
38	I/O	М	P5[4]		57	I/O	Í,M	P0[4]	Analog column mux input and column output.
39	I/O	M	P5[6]		58	I/O	I,M	P0[6]	Analog column mux input.
40	1/0	M	P3[0]		59		wer	V _{DD}	Supply voltage.
41	1/0	M	P3[2]		60	Po	-	V _{SS}	Ground connection.
42	1/0	M	P3[4]		61	1/0	I,M	P0[7]	Analog column mux input, integration input #1
43	1/0	M	P3[6]		62	I/O	I/O,M	P0[5]	Analog column mux input and column output,
44			NC	No connection	60	I/O	1/0 1/4	DOIO	integration input #2.
44			NC NC	No connection.	63 64	1/0	I/O,M I.M	P0[3] P0[1]	Analog column mux input and column output. Analog column mux input.
45	l n	nut	XRES	No connection. Active high pin reset with internal	65	1/0	M I,IVI	P0[1] P2[7]	Arraiog column mux input.
40	l in	put	VUES	pull-down.	00	1/0	IVI	[[[]	
<u> </u>			D // 01	r		I/O	М	P2[5]	
47	I/O	M	P4[0]		66	1/0	IVI		
47	I/O I/O	M M	P4[0] P4[2]		67	1/0	I,M		Direct switched capacitor block input.
			P4[0] P4[2] P4[4]					P2[3] P2[1]	Direct switched capacitor block input. Direct switched capacitor block input.

LEGENDA = Analog, I = Input, O = Output, NC = No Connection, M = Analog Mux Input. Notes

These are the ISSP pins, which are not High Z at POR.
 The center pad on the QFN package should be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floated and not connected to any other signal.

Register Conventions

This section lists the registers of the CY8CLED04 EZ-Color device.

Abbreviations Used

The register conventions specific to this section are listed in the following table.

Convention	Description
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

The device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks., Bank 0 and Bank 1. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set to 1, the user is in Bank 1.

Note In the following register mapping tables, blank fields are Reserved and should not be accessed.

Table 3. Register Map Bank 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW	PMA0_DR	40	RW	ASC10CR0	80	RW		C0	
PRT0IE	01	RW	PMA1_DR	41	RW	ASC10CR1	81	RW		C1	
PRT0GS	02	RW	PMA2_DR	42	RW	ASC10CR2	82	RW		C2	
PRT0DM2	03	RW	PMA3_DR	43	RW	ASC10CR3	83	RW		C3	
PRT1DR	04	RW	PMA4_DR	44	RW	ASD11CR0	84	RW		C4	
PRT1IE	05	RW	PMA5_DR	45	RW	ASD11CR1	85	RW		C5	
PRT1GS	06	RW	PMA6_DR	46	RW	ASD11CR2	86	RW		C6	
PRT1DM2	07	RW	PMA7_DR	47	RW	ASD11CR3	87	RW		C7	
PRT2DR	08	RW	USB_SOF0	48	R		88			C8	
PRT2IE	09	RW	USB_SOF1	49	R		89			C9	
PRT2GS	0A	RW	USB_CR0	4A	RW		8A			CA	
PRT2DM2	0B	RW	USBI/O_CR 0	4B	#		8B			СВ	
PRT3DR	0C	RW	USBI/O_CR 1	4C	RW		8C			CC	
PRT3IE	0D	RW		4D			8D			CD	
PRT3GS	0E	RW	EP1_CNT1	4E	#		8E			CE	
PRT3DM2	0F	RW	EP1_CNT	4F	RW		8F			CF	
PRT4DR	10	RW	EP2_CNT1	50	#	ASD20CR0	90	RW	CUR_PP	D0	RW
PRT4IE	11	RW	EP2_CNT	51	RW	ASD20CR1	91	RW	STK_PP	D1	RW
PRT4GS	12	RW	EP3_CNT1	52	#	ASD20CR2	92	RW		D2	
PRT4DM2	13	RW	EP3_CNT	53	RW	ASD20CR3	93	RW	IDX_PP	D3	RW
PRT5DR	14	RW	EP4_CNT1	54	#	ASC21CR0	94	RW	MVR_PP	D4	RW
PRT5IE	15	RW	EP4_CNT	55	RW	ASC21CR1	95	RW	MVW_PP	D5	RW
PRT5GS	16	RW	EP0_CR	56	#	ASC21CR2	96	RW	I2C_CFG	D6	RW
PRT5DM2	17	RW	EP0_CNT	57	#	ASC21CR3	97	RW	I2C_SCR	D7	#
	18		EP0_DR0	58	RW		98		I2C_DR	D8	RW
	19		EP0_DR1	59	RW		99		I2C_MSCR	D9	#
	1A		EP0_DR2	5A	RW		9A		INT_CLR0	DA	RW
	1B		EP0_DR3	5B	RW		9B		INT_CLR1	DB	RW
PRT7DR	1C	RW	EP0_DR4	5C	RW		9C		INT_CLR2	DC	RW
PRT7IE	1D	RW	EP0_DR5	5D	RW		9D		INT_CLR3	DD	RW
PRT7GS	1E	RW	EP0_DR6	5E	RW		9E		INT_MSK3	DE	RW
PRT7DM2	1F	RW	EP0_DR7	5F	RW		9F		INT_MSK2	DF	RW
DBB00DR0	20	#	AMX_IN	60	RW		A0		INT_MSK0	E0	RW
DBB00DR1	21	W	AMUXCFG	61	RW		A1		INT_MSK1	E1	RW

Blank fields are Reserved and should not be accessed.

Access is bit specific.

Table 3. Register Map Bank 0 Table: User Space (continued)

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
DBB00DR2	22	RW		62			A2		INT_VC	E2	RC
DBB00CR0	23	#	ARF_CR	63	RW		A3		RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4		DEC_DH	E4	RC
DBB01DR1	25	W	ASY_CR	65	#		A5		DEC_DL	E5	RC
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#		68		MUL1_X	A8	W	MUL0_X	E8	W
DCB02DR1	29	W		69		MUL1_Y	A9	W	MUL0_Y	E9	W
DCB02DR2	2A	RW		6A		MUL1_DH	AA	R	MUL0_DH	EA	R
DCB02CR0	2B	#		6B		MUL1_DL	AB	R	MUL0_DL	EB	R
DCB03DR0	2C	#	TMP_DR0	6C	RW	ACC1_DR1	AC	RW	ACC0_DR	EC	RW
DCB03DR1	2D	W	TMP_DR1	6D	RW	ACC1_DR0	AD	RW	ACC0_DR 0	ED	RW
DCB03DR2	2E	RW	TMP_DR2	6E	RW	ACC1_DR3	AE	RW	ACC0_DR 3	EE	RW
DCB03CR0	2F	#	TMP_DR3	6F	RW	ACC1_DR2	AF	RW	ACC0_DR	EF	RW
	30		ACB00CR3	70	RW	RDI0RI	B0	RW		F0	
	31		ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
	32		ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34		ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
	36		ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACB01CR2	77	RW		B7		CPU_F	F7	RL
	38			78			B8			F8	
	39			79			B9			F9	
	3A			7A			BA			FA	
	3B			7B			BB			FB	
	3C			7C			BC			FC	
	3D			7D			BD		DAC_D	FD	RW
	3E			7E			BE		CPU_SCR 1	FE	#
	3F			7F			BF		CPU_SCR	FF	#

Blank fields are Reserved and should not be accessed.

Access is bit specific.

Table 4. Register Map Bank 1 Table: Configuration Space

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW	PMA0_WA	40	RW	ASC10CR 0	80	RW	USBI/O_CR2	C0	RW
PRT0DM1	01	RW	PMA1_WA	41	RW	ASC10CR	81	RW	USB_CR1	C1	#
PRT0IC0	02	RW	PMA2_WA	42	RW	ASC10CR 2	82	RW			
PRT0IC1	03	RW	PMA3_WA	43	RW	ASC10CR	83	RW			
PRT1DM0	04	RW	PMA4_WA	44	RW	ASD11CR 0	84	RW	EP1_CR0	C4	#
PRT1DM1	05	RW	PMA5_WA	45	RW	ASD11CR	85	RW	EP2_CR0	C5	#
PRT1IC0	06	RW	PMA6_WA	46	RW	ASD11CR 2	86	RW	EP3_CR0	C6	#
PRT1IC1	07	RW	PMA7_WA	47	RW	ASD11CR 3	87	RW	EP4_CR0	C7	#
PRT2DM0	08	RW		48			88			C8	
PRT2DM1	09	RW		49			89			C9	
PRT2IC0	0A	RW		4A			8A			CA	
PRT2IC1	0B	RW		4B			8B			СВ	
PRT3DM0	0C	RW		4C			8C			CC	
PRT3DM1	0D	RW		4D			8D			CD	
PRT3IC0	0E	RW		4E			8E			CE	
PRT3IC1	0F	RW		4F			8F			CF	
PRT4DM0	10	RW	PMA0_RA	50	RW		90		GDI_O_IN	D0	RW

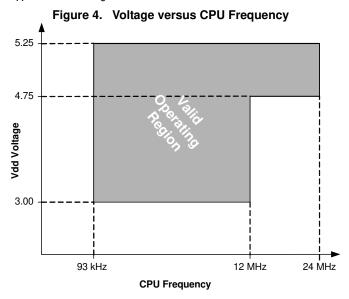
Blank fields are Reserved and should not be accessed.

Access is bit specific.

Table 4. Register Map Bank 1 Table: Configuration Space (continued)

	Register Map										
Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access		Addr (1,Hex)		Name	Addr (1,Hex)	
PRT4DM1	11	RW	PMA1_RA	51	RW	ASD20CR	91	RW	GDI_E_IN	D1	RW
PRT4IC0	12	RW	PMA2_RA	52	RW	ASD20CR	92	RW	GDI_O_OU	D2	RW
PRT4IC1	13	RW	PMA3_RA	53	RW	ASD20CR	93	RW	GDI_E_OU	D3	RW
PRT5DM0	14	RW	PMA4_RA	54	RW	ASC21CR	94	RW		D4	
PRT5DM1	15	RW	PMA5_RA	55	RW	ASC21CR	95	RW		D5	
PRT5IC0	16	RW	PMA6_RA	56	RW	ASC21CR	96	RW		D6	
PRT5IC1	17	RW	PMA7_RA	57	RW	ASC21CR	97	RW		D7	
	18			58		3	98		MUX CR0	D8	RW
	19			59			99		MUX CR1	D9	RW
	1A			5A			9A		MUX_CR2	DA	RW
	1B			5B			9B		MUX_CR3	DB	RW
PRT7DM0	1C	RW		5C			9C		WOX_ONS	DC	1100
PRT7DM1	1D	RW		5D			9D		OSC GO EN	DD	RW
PRT7IC0	1E	RW		5E			9E		OSC_GO_LIN	DE	RW
PRT7IC1	1F	RW		5F			9E 9F		OSC_CR3	DF	RW
			CLK CD0		DW						RW
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	
DBB00IN DBB00OU	21	RW RW	CLK_CR1	61 62	RW RW		A1 A2		OSC_CR1 OSC_CR2	E1 E2	RW RW
DBB0000		RW	ABF_CR0								
DDD0451	23	D)4/	AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW	CMP_GO_E N	64	RW		A4		VLT_CMP	E4	R
DBB01IN	25	RW	CMP_GO_E N1	65	RW		A5			E5	
DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW		68			A8		IMO_TR	E8	W
DCB02IN	29	RW		69			A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
	2B			6B			AB		ECO_TR	EB	W
DCB03FN	2C	RW	TMP_DR0	6C	RW		AC		MUX_CR4	EC	RW
DCB03IN	2D	RW	TMP_DR1	6D	RW		AD		MUX_CR5	ED	RW
DCB03OU	2E	RW	TMP_DR2	6E	RW		AE			EE	
	2F		TMP_DR3	6F	RW		AF			EF	
	30		ACB00CR3	70	RW	RDI0RI	B0	RW		F0	
	31		ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
	32		ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34		ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
	36		ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACB01CR2	77	RW		B7		CPU F	F7	RL
	38			78			B8			F8	
	39			79			B9			F9	
	3A			7A			BA			FA	
	3B			7B			BB			FB	
	3C			7C			BC			FC	
	3D			7D			BD		DAC CR	FD	RW
	3E			7E			BE		CPU SCR1	FE	#
	3F			7E 7F			BF		CPU_SCR1	FF	#
	JF			/ F			טר		0F0_30R0	l L	#

Blank fields are Reserved and should not be accessed.


Access is bit specific.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8CLED04 EZ-Color device. For the most up to date electrical specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com/ez-color.

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications for devices running at greater than 12 MHz are valid for –40 °C \leq T_A \leq 70 °C and T_J \leq 82 °C.

Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	- 55	25	+100	°C	Higher storage temperatures will reduce data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 65 °C will degrade reliability.
T _A	Ambient temperature with power applied	-40	_	+85	°C	
V_{DD}	Supply voltage on V _{DD} relative to V _{SS}	-0.5	_	+6.0	V	
V _{I/O}	DC input voltage	V _{SS} - 0.5	-	V _{DD} + 0.5	V	
V _{I/O2}	DC voltage applied to tri-state	V _{SS} - 0.5	-	V _{DD} + 0.5	V	
I _{MI/O}	Maximum current into any port pin	-25	_	+50	mA	
I _{MAI/O}	Maximum current into any port pin configured as analog driver	- 50	_	+50	mA	
ESD	Electrostatic discharge voltage	2000	_	_	V	Human Body Model ESD.
LU	Latch-up current	_	_	200	mA	

Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient temperature	-40	_	+85	°C	
T _{AUSB}	Ambient temperature using USB	-10	_	+85	°C	
T _J	Junction temperature	-40	_	+100	°C	The temperature rise from ambient to junction is package specific. See "Thermal Impedance" on page 38. The user must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional requirements of external programmer tools
V _{DDLV}	Low V _{DD} for verify	3	3.1	3.2	V	This specification applies to the functional requirements of external programmer tools
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operation	3.0	-	5.25	V	This specification applies to this device when it is executing internal flash writes
V_{DD}	Supply voltage	3.0	_	5.25	V	See DC POR and LVD specifications, Table 15 on page 27.
T _{DD5}	Supply current, IMO = 24 MHz (5V)	_	14	27	mA	Conditions are $V_{DD} = 5.0 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$, $CPU = 3 \text{MHz}$, $SYSCLK$ doubler disabled, $VC1 = 1.5 \text{MHz}$, $VC2 = 93.75 \text{kHz}$, $VC3 = 93.75 \text{kHz}$, analog power = off.
I _{DD3}	Supply current, IMO = 24 MHz (3.3V)	_	8	14	mA	Conditions are V_{DD} = 3.3 V, T_A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 0.367 kHz, analog power = off.
T _{SB}	Sleep (mode) current with POR, LVD, Sleep Timer, and WDT ^[3]	_	3	6.5	μА	Conditions are with internal slow speed oscillator, V_{DD} = 3.3 V, -40 °C $\leq T_A \leq 55$ °C, analog power = off.
I _{SBH}	Sleep (mode) current with POR, LVD, Sleep Timer, and WDT at high temperature. [3]	_	4	25	μА	Conditions are with internal slow speed oscillator, $V_{DD} = 3.3 \text{ V}$, 55 °C < $T_A \le 85$ °C, analog power = off.

DC GPIO Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^\circ\text{C} \le T_\text{A} \le 85~^\circ\text{C}$, or 3.0 V to 3.6 V and $-40~^\circ\text{C} \le T_\text{A} \le 85~^\circ\text{C}$, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 $^\circ\text{C}$ and are for design guidance only.

Table 5. DC GPI/O Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} - 1.0	_	_	V	I/OH = 10 mA, V _{DD} = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 80 mA maximum combined I/OH budget.
V _{OL}	Low output level	-	-	0.75	V	I/OL = 25 mA, V _{DD} = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 200 mA maximum combined I/OL budget.

Note

Document Number: 001-13108 Rev. *F Page 16 of 49

^{3.} Standby current includes all functions (POR, LVD, WDT, Sleep Time) needed for reliable system operation. This should be compared with devices that have similar functions enabled.

Table 5. DC GPI/O Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
I _{OH}	High level source current	10	_	_	mA	$V_{OH} = V_{DD}$ -1.0 V. See the limitations of the total current in the Note for V_{OH} .
I _{OL}	Low level sink current	25	_	_	mA	V_{OL} = 0.75 V. See the limitations of the total current in the Note for V_{OL} .
V _{IL}	Input low level	_	_	0.8	V	V _{DD} = 3.0 to 5.25.
V _{IH}	Input high level	2.1	_		V	V _{DD} = 3.0 to 5.25.
V _H	Input hysterisis	_	60	_	mV	
I _{IL}	Input leakage (absolute value)	_	1	_	nA	Gross tested to 1 μA.
C _{IN}	Capacitive load on pins as input	_	3.5	10	pF	Package and pin dependent. Temp = 25 °C.
C _{OUT}	Capacitive load on pins as output	_	3.5	10	pF	Package and pin dependent. Temp = 25 °C.

DC Full-Speed USB Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-10~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-10~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 6. DC Full-Speed (12 Mbps) USB Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
USB Inte	rface		•		•	
V_{DI}	Differential input sensitivity	0.2	_	_	V	(D+) - (D-)
V _{CM}	Differential input common mode range	0.8	_	2.5	V	
V_{SE}	Single ended receiver threshold	0.8	_	2.0	V	
C _{IN}	Transceiver capacitance	-	-	20	pF	
I _{I/O}	High-Z State data line leakage	-10	_	10	μА	0 V < V _{IN} < 3.3 V.
R _{EXT}	External USB series resistor	23	_	25	W	In series with each USB pin.
V _{UOH}	Static output high, driven	2.8	_	3.6	V	15 kΩ \pm 5% to Ground. Internal pull-up enabled.
V _{UOHI}	Static output high, idle	2.7	_	3.6	V	15 kΩ \pm 5% to Ground. Internal pull-up enabled.
V _{UOL}	Static output low	-	_	0.3	V	15 kΩ ± 5% to Ground. Internal pull-up enabled.
Z _O	USB driver output impedance	28	_	44	W	Including R _{EXT} resistor.
V _{CRS}	D+/D- crossover voltage	1.3	_	2.0	V	

DC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

The Operational Amplifier is a component of both the analog continuous time PSoC blocks and the analog switched capacitor PSoC blocks. The guaranteed specifications are measured in the analog continuous time PSoC block.

Table 7. 5-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)					
	Power = low, opamp bias = high	_	1.6	10	mV	
	Power = medium, opamp bias = high	_	1.3	8	mV	
	Power = high, opamp bias = high	_	1.2	7.5	mV	
TCV _{OSOA}	Average input offset voltage drift	_	7.0	35.0	μV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins)	_	20	_	рΑ	Gross tested to 1 μA.
C _{INOA}	Input capacitance (Port 0 analog pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V _{CMOA}	Common mode voltage range	0.0	_	V_{DD}	V	The common-mode input
	Common mode voltage range (high power or high opamp bias)	0.5	I	V _{DD} – 0.5	V	voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open loop gain					
	Power = low, opamp bias = high	60	_	_	dB	
	Power = medium, opamp bias = high	60	_	_	dB	
	Power = high, opamp bias = high	80	_	-	dB	
V _{OHIGHOA}	High output voltage swing (internal signals) Power = low, opamp bias = high Power = medium, opamp bias = high	V _{DD} - 0.2 V _{DD} - 0.2	_ _	_ _	V V	
	Power = high, opamp bias = high	$V_{DD} - 0.5$	_	_	V	
V _{OLOWOA}	Low output voltage swing (internal signals) Power = low, opamp bias = high Power = medium, opamp bias = high Power = high, opamp bias = high	- - -	_ _ _	0.2 0.2 0.5	V V V	
I _{SOA}	Supply current (including associated AGND buffer)					
	Power = low, opamp bias = low	_	400	800	μΑ	
	Power = low, opamp bias = high	_	500	900	μΑ	
	Power = medium, opamp bias = low	_	800	1000	μΑ	
	Power = medium, opamp bias = high	_	1200	1600	μΑ	
	Power = high, opamp bias = low	_	2400	3200	μΑ	
DODE	Power = high, opamp bias = high	-	4600	6400	μA	N 0 N 0 N 0 05
PSRR _{OA}	Supply voltage rejection ratio	65	80	_	dB	$V_{SS} \pounds V_{IN} \pounds (V_{DD} - 2.25)$ or $(V_{DD} - 1.25 V) \pounds V_{IN} \pounds V_{DD}$.

Table 8. 3.3-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)					Power = high, opamp bias =
	Power = low, opamp bias = high	_	1.65	10	mV	high setting is not allowed for
	Power = medium, opamp bias = high	_	1.32	8	mV	3.3 V V _{DD} operation
	Power = high, opamp bias = high	_	_	_	mV	
TCV _{OSOA}	Average input offset voltage drift	_	7.0	35.0	μV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	_	20	_	рA	Gross tested to 1 μA.
C _{INOA}	Input capacitance (port 0 analog pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V _{CMOA}	Common mode voltage range	0.2	1	V _{DD} – 0.2	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open loop gain Power = low, opamp bias = low Power = medium, opamp bias = low Power = high, opamp bias = low	60 60 80	1 1 1	1 1 1	dB dB dB	Specification is applicable at Low opamp bias. For high opamp bias mode (except high power, High opamp bias), minimum is 60 dB.
V _{OHIGHO}	High output voltage swing (internal signals) Power = low, opamp bias = low Power = medium, opamp bias = low Power = high, opamp bias = low	$V_{DD} - 0.2$ $V_{DD} - 0.2$ $V_{DD} - 0.2$	- - -	- - -	V V V	Power = high, Opamp bias = high setting is not allowed for 3.3 V V _{DD} operation
V _{OLOWOA}	Low output voltage swing (internal signals) Power = low, opamp bias = low Power = medium, opamp bias = low Power = high, opamp bias = low	- - -	1 1 1	0.2 0.2 0.2	V V V	Power = high, opamp bias = high setting is not allowed for 3.3 V V _{DD} operation
I _{SOA}	Supply current (including associated AGND buffer) Power = low, opamp bias = low Power = low, opamp bias = high Power = medium, opamp bias = low Power = medium, opamp bias = high Power = high, opamp bias = low Power = high, opamp bias = high	- - - -	400 500 800 1200 2400	800 900 1000 1600 3200	ДА ДА ДА ДА ДД Д	Power = high, opamp bias = high setting is not allowed for 3.3 V V _{DD} operation
PSRR _{OA}	Supply voltage rejection ratio	65	80	_	dB	$V_{SS} $

DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 2.4 V to 3.0 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters are measured at 5 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 9. DC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{REFLPC}	Low power comparator (LPC) reference voltage range	0.2	-	V _{DD} - 1	V	
I _{SLPC}	LPC supply current	_	10	40	μΑ	
V _{OSLPC}	LPC voltage offset	_	2.5	30	mV	

DC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^\circ\text{C} \le T_\text{A} \le 85~^\circ\text{C}$, or 3.0 V to 3.6 V and $-40~^\circ\text{C} \le T_\text{A} \le 85~^\circ\text{C}$, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 $^\circ\text{C}$ and are for design guidance only.

Table 10. 5-V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
C _L	Load capacitance	-	-	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.
V _{OSOB}	Input offset voltage (absolute value)	_	3	12	mV	bullet.
TCV _{OSOB}	Average input offset voltage drift	_	+6	_	μV/°C	
V _{CMOB}	Common mode input voltage range	0.5	_	V _{DD} – 1.0	· V	
R _{OUTOB}	Output resistance Power = low Power = high	_ _	0.6 0.6	_ _	W W	
V _{OHIGHOB}	High output voltage swing (Load = 32 ohms to V _{DD} /2) Power = low Power = high	0.5 × V _{DD} + 1.1 0.5 × V _{DD} + 1.1	_	- -	V V	
V _{OLOWOB}	Low output voltage swing (Load = 32 ohms to V _{DD} /2) Power = low Power = high	_ _ _		0.5 × V _{DD} – 1.3 0.5 × V _{DD} – 1.3	V	
I _{SOB}	Supply current including opamp bias cell (No Load) Power = low Power = high	- -	1.1 2.6	5.1 8.8	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	53	64	_	dB	$(0.5 \times V_{DD} - 1.3) $ £ V_{OUT} £ $(V_{DD} - 2.3)$.

Table 11. 3.3-V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
C _L	Load capacitance	_	_	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.
V _{OSOB}	Input offset voltage (absolute value)	_	3	12	mV	
TCV _{OSOB}	Average input offset voltage drift	_	+6	_	μV/°C	
V _{CMOB}	Common mode input voltage range	0.5	-	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = low Power = high	_ _	1	_ _	W W	
V _{OHIGHOB}	High output voltage swing (Load = 1 k Ω to V _{DD} /2) Power = low Power = high	0.5 × V _{DD} + 1.0 0.5 × V _{DD} + 1.0		- -	V	
V _{OLOWOB}	Low output voltage swing (Load = 1 k Ω to V _{DD} /2) Power = low Power = high	_ _		0.5 × V _{DD} – 1.0 0.5 × V _{DD} – 1.0		
I _{SOB}	Supply current including opamp bias cell (No load) Power = low Power = high	_ _	0.8 2.0	2.0 4.3	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	34	64	-	dB	$(0.5 \times V_{DD} - 1.0) $ £ V_{OUT} £ $(0.5 \times V_{DD} + 0.9)$.

DC Analog Reference Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^\circ\text{C} \le T_\text{A} \le 85~^\circ\text{C}$, or 3.0 V to 3.6 V and $-40~^\circ\text{C} \le T_\text{A} \le 85~^\circ\text{C}$, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 $^\circ\text{C}$ and are for design guidance only.

The guaranteed specifications are measured through the analog continuous time PSoC blocks. The power levels for AGND refer to the power of the analog continuous time PSoC block. The power levels for RefHi and RefLo refer to the analog reference control register. The limits stated for AGND include the offset error of the AGND buffer local to the analog continuous time PSoC block. Reference control power is high.

Table 12. 5-V DC Analog Reference Specifications

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b000	RefPower = high	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.229	$V_{DD}/2 + 1.290$	$V_{DD}/2 + 1.346$	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.038$	V _{DD} /2	$V_{DD}/2 + 0.040$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.356	V _{DD} /2 – 1.295	V _{DD} /2 – 1.218	V
	RefPower = high	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.220	$V_{DD}/2 + 1.292$	$V_{DD}/2 + 1.348$	V
	Opamp bias = low	V_{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.036$	V _{DD} /2	$V_{DD}/2 + 0.036$	V
		V_{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.357	$V_{DD}/2 - 1.297$	V _{DD} /2 – 1.225	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.221	V _{DD} /2 + 1.293	V _{DD} /2 + 1.351	V
	Opamp bias = high	V_{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.036$	V _{DD} /2	$V_{DD}/2 + 0.036$	V
		V_{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.357	$V_{DD}/2 - 1.298$	$V_{DD}/2 - 1.228$	V
	RefPower = medium	V_{REFHI}	Ref High	V _{DD} /2 + Bandgap	$V_{DD}/2 + 1.219$	$V_{DD}/2 + 1.293$	$V_{DD}/2 + 1.353$	V
	Opamp bias = low	V_{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.037$	$V_{DD}/2 - 0.001$	55	V
		V_{REFLO}	Ref Low	V _{DD} /2 – Bandgap	$V_{DD}/2 - 1.359$	$V_{DD}/2 - 1.299$	$V_{DD}/2 - 1.229$	V
0b001	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.092	P2[4] + P2[6] – 0.011	P2[4] + P2[6] + 0.064	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.031	P2[4] – P2[6] + 0.007	P2[4] – P2[6] + 0.056	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] – 0.078	P2[4] + P2[6] – 0.008	P2[4] + P2[6] + 0.063	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.031	P2[4] – P2[6] + 0.004	P2[4]-P2[6]+ 0.043	V
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.073	P2[4] + P2[6] – 0.006	P2[4] + P2[6] + 0.062	V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.032	P2[4] – P2[6] + 0.003	P2[4]-P2[6]+ 0.038	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.073	P2[4] + P2[6] - 0.006	P2[4] + P2[6] + 0.062	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.034	P2[4] – P2[6] + 0.002	P2[4]-P2[6]+ 0.037	V

Table 12. 5-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b010	RefPower = high	V _{REFHI}	Ref High	V_{DD}	V _{DD} – 0.037	V _{DD} – 0.007	V_{DD}	٧
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.036$	$V_{DD}/2 - 0.001$	$V_{DD}/2 + 0.036$	V
		V_{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.005	V _{SS} + 0.029	V
	RefPower = high	V_{REFHI}	Ref High	V_{DD}	V _{DD} – 0.034	V _{DD} – 0.006	V_{DD}	V
	Opamp bias = low	V_{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.036$	$V_{DD}/2 - 0.001$	$V_{DD}/2 + 0.035$	V
		V_{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.004	V _{SS} + 0.024	V
	RefPower = medium	V_{REFHI}	Ref High	V_{DD}	V _{DD} – 0.032	V _{DD} – 0.005	V_{DD}	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.036$	$V_{DD}/2 - 0.001$	$V_{DD}/2 + 0.035$	V
		V_{REFLO}	Ref Low	V _{SS}	V _{SS}	$V_{SS} + 0.003$	$V_{SS} + 0.022$	V
	RefPower = medium	V_{REFHI}	Ref High	V_{DD}	V _{DD} – 0.031	V _{DD} – 0.005	V_{DD}	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.037$	$V_{DD}/2 - 0.001$	$V_{DD}/2 + 0.035$	V
		V_{REFLO}	Ref Low	V _{SS}	V _{SS}	$V_{SS} + 0.003$	$V_{SS} + 0.020$	V
0b011	RefPower = high	V_{REFHI}	Ref High	3 × Bandgap	3.760	3.884	4.006	V
	Opamp bias = high	V _{AGND}	AGND	2 × Bandgap	2.522	2.593	2.669	V
		V_{REFLO}	Ref Low	Bandgap	1.252	1.299	1.342	V
	RefPower = high	V_{REFHI}	Ref High	3 × Bandgap	3.766	3.887	4.010	V
	Opamp bias = low	V _{AGND}	AGND	2 × Bandgap	2.523	2.594	2.670	V
		V_{REFLO}	Ref Low	Bandgap	1.252	1.297	1.342	V
	RefPower = medium Opamp bias = high	V_{REFHI}	Ref High	3 × Bandgap	3.769	3.888	4.013	V
		V_{AGND}	AGND	2 × Bandgap	2.523	2.594	2.671	V
		V_{REFLO}	Ref Low	Bandgap	1.251	1.296	1.343	V
	RefPower = medium	V_{REFHI}	Ref High	3 × Bandgap	3.769	3.889	4.015	V
	Opamp bias = low	V _{AGND}	AGND	2 × Bandgap	2.523	2.595	2.671	V
		V _{REFLO}	Ref Low	Bandgap	1.251	1.296	1.344	V
0b100	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.483 – P2[6]	2.582 - P2[6]	S V _{DD} 1 V _{DD} /2 + 0.035 2 V _{SS} + 0.024 3 V _{DD} 1 V _{DD} /2 + 0.035 3 V _{SS} + 0.022 4 V _{DD} 1 V _{DD} /2 + 0.035 3 V _{SS} + 0.020 4.006 2.669 1.342 4.010 2.670 1.342 4.013 2.671 1.343 4.015 2.671 1.344 5] 2.674 - P2[6] 2.669 6] 2.679 - P2[6] 2.669 6] 2.675 - P2[6] 6] 2.682 - P2[6] 6] 2.675 - P2[6] 6] 2.675 - P2[6] 7 2.670 7 2.675 - P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.522	2.593	2.669	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.524 – P2[6]	2.600 - P2[6]	2.676 – P2[6]	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.490 - P2[6]	2.586 - P2[6]	2.679 – P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.523	2.594	2.669	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.523 – P2[6]	2.598 - P2[6]	2.675 – P2[6]	V
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.493 – P2[6]	2.588 - P2[6]	2.682 - P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.523	2.594	2.670	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.523 – P2[6]	2.597 - P2[6]	2.675 – P2[6]	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.494 - P2[6]	2.589 - P2[6]	2.685 - P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.523	2.595	2.671	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.522 – P2[6]	2.596 - P2[6]	2.676 - P2[6]	V

Table 12. 5-V DC Analog Reference Specifications (continued)

Reference								
ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b101	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.218	P2[4] + 1.291	P2[4] + 1.354	٧
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] - 1.335	P2[4] - 1.294	P2[4] - 1.237	٧
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.221	P2[4] + 1.293	P2[4] + 1.358	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] - 1.337	P2[4] - 1.297	P2[4] - 1.243	٧
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.222	P2[4] + 1.294	P2[4] + 1.360	٧
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.338	P2[4] - 1.298	P2[4] - 1.245	٧
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = $V_{DD}/2$)	P2[4] + 1.221	P2[4] + 1.294	P2[4] + 1.362	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] - Bandgap ($P2[4] = V_{DD}/2$)	P2[4] - 1.340	P2[4] - 1.298	P2[4] - 1.245	V
0b110	RefPower = high	V_{REFHI}	Ref High	2 × Bandgap	2.513	2.593	2.672	٧
	Opamp bias = high	V _{AGND}	AGND	Bandgap	1.264	1.302	1.340	V
		V _{REFLO}	Ref Low	V _{SS}	V_{SS}	$V_{SS} + 0.008$	$V_{SS} + 0.038$	V
	RefPower = high Opamp bias = low	V_{REFHI}	Ref High	2 × Bandgap	2.514	2.593	2.674	V
		V _{AGND}	AGND	Bandgap	1.264	1.301	1.340	V
		V _{REFLO}	Ref Low	V _{SS}	V_{SS}	$V_{SS} + 0.005$	$V_{SS} + 0.028$	V
	RefPower = medium	V_{REFHI}	Ref High	2 × Bandgap	2.514	2.593	2.676	V
	Opamp bias = high	V _{AGND}	AGND	Bandgap	1.264	1.301	1.340	V
		V_{REFLO}	Ref Low	V _{SS}	V_{SS}	$V_{SS} + 0.004$	$V_{SS} + 0.024$	V
	RefPower = medium	V_{REFHI}	Ref High	2 × Bandgap	2.514	2.593	2.677	V
	Opamp bias = low	V_{AGND}	AGND	Bandgap	1.264	1.300	1.340	V
		V_{REFLO}	Ref Low	V _{SS}	V_{SS}	$V_{SS} + 0.003$	$V_{SS} + 0.021$	V
0b111	RefPower = high	V_{REFHI}	Ref High	3.2 × Bandgap	4.028	4.144	4.242	V
	Opamp bias = high	V _{AGND}	AGND	1.6 × Bandgap	2.028	2.076	2.125	٧
		V_{REFLO}	Ref Low	V_{SS}	V_{SS}	$V_{SS} + 0.008$	$V_{SS} + 0.034$	٧
	RefPower = high	V _{REFHI}	Ref High	3.2 × Bandgap	4.032	4.142	4.245	٧
	Opamp bias = low	V _{AGND}	AGND	1.6 × Bandgap	2.029	2.076	2.126	٧
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.005	V _{SS} + 0.025	٧
	RefPower = medium	V _{REFHI}	Ref High	3.2 × Bandgap	4.034	4.143	4.247	V
	Opamp bias = high	V _{AGND}	AGND	1.6 × Bandgap	2.029	2.076	2.126	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.004	V _{SS} + 0.021	V
	RefPower = medium	V _{REFHI}	Ref High	3.2 × Bandgap	4.036	4.144	4.249	V
	Opamp bias = low	V _{AGND}	AGND	1.6 × Bandgap	2.029	2.076	2.126	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	$V_{SS} + 0.003$	V _{SS} + 0.019	V

Table 13. 3.3-V DC Analog Reference Specifications

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b000	RefPower = high	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.200	V _{DD} /2 + 1.290	V _{DD} /2 + 1.365	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.030	V _{DD} /2	$V_{DD}/2 + 0.034$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.346	V _{DD} /2 – 1.292	V _{DD} /2 – 1.208	V
	RefPower = high	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.196	V _{DD} /2 + 1.292	V _{DD} /2 + 1.374	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.029	V _{DD} /2	$V_{DD}/2 + 0.031$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.349	V _{DD} /2 – 1.295	V _{DD} /2 – 1.227	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.204	$V_{DD}/2 + 1.293$	V _{DD} /2 + 1.369	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.030$	V _{DD} /2	$V_{DD}/2 + 0.030$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.351	V _{DD} /2 – 1.297	V _{DD} /2 – 1.229	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.189	V _{DD} /2 + 1.294	V _{DD} /2 + 1.384	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.032	V _{DD} /2	$V_{DD}/2 + 0.029$	٧
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.353	V _{DD} /2 – 1.297	V _{DD} /2 – 1.230	٧
0b001	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.105	P2[4] + P2[6] - 0.008	P2[4] + P2[6] + 0.095	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.035	P2[4]-P2[6]+ 0.006	P2[4] – P2[6] + 0.053	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.094	P2[4] + P2[6] – 0.005	P2[4] + P2[6] + 0.073	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.033	P2[4]-P2[6]+ 0.002	P2[4] – P2[6] + 0.042	V
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.094	P2[4] + P2[6] – 0.003	P2[4] + P2[6] + 0.075	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.035	P2[4] - P2[6]	P2[4]-P2[6]+ 0.038	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.095	P2[4] + P2[6] - 0.003	P2[4] + P2[6] + 0.080	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]-P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.038	P2[4] – P2[6]	P2[4]-P2[6]+ 0.038	V
0b010	RefPower = high	V _{REFHI}	Ref High	V_{DD}	V _{DD} – 0.119	V _{DD} – 0.005	V_{DD}	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.028$	V _{DD} /2	$V_{DD}/2 + 0.029$	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	$V_{SS} + 0.004$	$V_{SS} + 0.022$	V
	RefPower = high	V _{REFHI}	Ref High	V_{DD}	V _{DD} – 0.131	V _{DD} - 0.004	V_{DD}	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.028$	V _{DD} /2	$V_{DD}/2 + 0.028$	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	$V_{SS} + 0.003$	V _{SS} + 0.021	V
	RefPower = medium	V _{REFHI}	Ref High	V_{DD}	V _{DD} – 0.111	V _{DD} – 0.003	V_{DD}	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.029	V _{DD} /2	$V_{DD}/2 + 0.028$	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	$V_{SS} + 0.002$	V _{SS} + 0.017	V
	RefPower = medium	V_{REFHI}	Ref High	V_{DD}	V _{DD} – 0.128	V _{DD} – 0.003	V_{DD}	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.029	V _{DD} /2	$V_{DD}/2 + 0.029$	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	$V_{SS} + 0.002$	V _{SS} + 0.019	V