

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

EZ-BLE™ PSoC® Module

General Description

The Cypress CYBLE-214009-00 is a fully certified and qualified module supporting Bluetooth[®] Low Energy (BLE) wireless communication. The CYBLE-214009-00 is a turnkey solution and includes onboard crystal oscillators, trace antenna, passive components, and the Cypress PSoC[®] 4 BLE. Refer to the PSoC[®] 4 BLE datasheet for additional details on the capabilities of the PSoC 4 BLE device used on this module.

The EZ-BLETM PSoC[®] module is a scalable and reconfigurable platform architecture. It combines programmable and reconfigurable analog and digital blocks with flexible automatic routing. The CYBLE-214009-00 also includes digital programmable logic, high-performance analog-to-digital conversion (ADC), opamps with comparator mode, and standard communication and timing peripherals.

The CYBLE-214009-00 includes a royalty-free BLE stack compatible with Bluetooth 4.1 and provides up to 25 GPlOs in a small $11 \times 11 \times 1.80$ mm package. The CYBLE-214009-00 is drop-in compatible with the CYBLE-014008-00 EZ-BLE Module.

The CYBLE-214009-00 is a complete solution and an ideal fit for applications seeking a highly integrated BLE wireless solution.

Module Description

- Module size: 11.0 mm × 11.0 mm × 1.80 mm (with shield)
- Drop-in compatible with CYBLE-014008-00
- 256-KB flash memory, 32-KB SRAM memory
- Up to 25 GPIOs configurable as open drain high/low, pull-up/pull-down, HI-Z analog, HI-Z digital, or strong output
- Bluetooth 4.1 qualified single-mode module
 - □ QDID: 79480
 - □ Declaration ID: D029646
- Certified to FCC, CE, MIC, KC, and IC regulations
- Industrial temperature range: -40 °C to +85 °C
- 32-bit processor (0.9 DMIPS/MHz) with single-cycle 32-bit multiply, operating at up to 48 MHz
- Watchdog timer with dedicated internal low-speed oscillator (ILO)
- Two-pin SWD for programming

Power Consumption

- TX output power: -18 dbm to +3 dbm
- Received signal strength indicator (RSSI) with 1-dB resolution
- TX current consumption of 15.6 mA (radio only, 0 dbm)
- RX current consumption of 16.4 mA (radio only)

- Low power mode support
 - Deep Sleep: 1.3 μA with watch crystal oscillator (WCO) on
 - ☐ Hibernate: 150 nA with SRAM retention
 - Stop: 60 nA with XRES wakeup

Programmable Analog

- Four opamps with reconfigurable high-drive external and high-bandwidth internal drive, comparator modes, and ADC input buffering capability; can operate in Deep-Sleep mode
- 12-bit, 1-Msps SAR ADC with differential and single-ended modes; channel sequencer with signal averaging
- Two current DACs (IDACs) for general-purpose or capacitive sensing applications on any pin
- One low-power comparator that operate in Deep-Sleep mode

Programmable Digital

- Four programmable logic blocks called universal digital blocks, (UDBs), each with eight macrocells and datapath
- Cypress-provided peripheral Component library, user-defined state machines, and Verilog input

Capacitive Sensing

- Cypress CapSense Sigma-Delta (CSD) provides best-in-class SNR (> 5:1) and liquid tolerance
- Cypress-supplied software component makes capacitive-sensing design easy
- Automatic hardware-tuning algorithm (SmartSenseTM)

Segment LCD Drive

- LCD drive supported on all GPIOs (common or segment)
- Operates in Deep-Sleep mode with four bits per pin memory

Serial Communication

■ Two independent runtime reconfigurable serial communication blocks (SCBs) with I²C, SPI, or UART functionality

Timing and Pulse-Width Modulation

- Four 16-bit timer, counter, pulse-width modulator (TCPWM) blocks
- Center-aligned, Edge, and Pseudo-random modes
- Comparator-based triggering of Kill signals for motor drive and other high-reliability digital logic applications

Up to 25 Programmable GPIOs

■ Any GPIO pin can be CapSense, LCD, analog, or digital

Cypress Semiconductor Corporation
Document Number: 002-09714 Rev. *E

198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised December 14, 2016

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right module for your design, and to help you to quickly and effectively integrate the module into your design.

- Overview: EZ-BLE Module Portfolio, Module Roadmap
- EZ-BLE PSoC Product Overview
- PSoC 4 BLE Silicon Datasheet
- Application notes: Cypress offers a number of BLE application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with EZ-BLE modules are:
 - □ AN96841 Getting Started with EZ-BLE Module
- □ AN94020 Getting Started with PSoC® 4 BLE
- □ AN97060 PSoC® 4 BLE and PRoC™ BLE Over-The-Air (OTA) Device Firmware Upgrade (DFU) Guide
- AN91162 Creating a BLE Custom Profile
- □ AN91184 PSoC 4 BLE Designing BLE Applications
- AN92584 Designing for Low Power and Estimating Battery Life for BLE Applications
- □ AN85951 PSoC® 4 CapSense® Design Guide
- □ AN95089 PSoC® 4/PRoC™ BLE Crystal Oscillator Selection and Tuning Techniques
- □ AN91445 Antenna Design and RF Layout Guidelines
- Technical Reference Manual (TRM):
 - □ PSoC® 4 BLE Technical Reference Manual
 - □ PSOC(R) 4 BLE Registers Technical Reference Manual

■ Knowledge Base Articles

- □ KBA10894 Pin Mapping Differences Between the EZ-BLE™ PSoC™ Evaluation Board (CYBLE-214009-EVAL) and the BLE Pioneer Kit (CY8CKIT-042-BLE) KBA10894
- □ KBA210574 RF Regulatory Certifications for CY-BLE-014008-00 and CYBLE-214009-00 EZ-BLE™ PSoC® Modules - KBA210574
- □ KBA97095 EZ-BLE™ Module Placement
- □ KBA213976 FAQ for BLE and Regulatory Certifications with EZ-BLE modules
- □ KBA210802 Queries on BLE Qualification and Declaration Processes
- Development Kits:
 - □ CYBLE-214009-EVAL, CYBLE-214009-00 Evaluation Board
 - □ CY8CKIT-042-BLE, Bluetooth[®] Low Energy (BLE) Pioneer Kit
 - □ CY8CKIT-002, PSoC® MiniProg3 Program and Debug Kit
- Test and Debug Tools:
 - □ CYSmart, Bluetooth® LE Test and Debug Tool (Windows)
 - □ CYSmart Mobile, Bluetooth[®] LE Test and Debug Tool (Android/iOS Mobile App)

Two Design Environments to Get You Started Quickly

PSoC[®] Creator™ Integrated Design Environment (IDE)

PSoC Creator is an Integrated Design Environment (IDE) that enables concurrent hardware and firmware editing, compiling and debugging of PSoC 3, PSoC 4, PSoC 5LP, PSoC 4 BLE, PRoC BLE, and EZ-BLE module systems with no code size limitations. PSoC peripherals are designed using schematic capture and simple graphical user interface (GUI) with over 120 pre-verified, production-ready PSoC Components™.

PSoC Components are analog and digital "virtual chips," represented by an icon that users can drag-and-drop into a design and configure to suit a broad array of application requirements.

Bluetooth Low Energy Component

The Bluetooth Low Energy Component inside PSoC Creator provides a comprehensive GUI-based configuration window that lets you quickly design BLE applications. The Component incorporates a Bluetooth Core Specification v4.1 compliant BLE protocol stack and provides API functions to enable user applications to interface with the underlying Bluetooth Low Energy Sub-System (BLESS) hardware via the stack.

EZ-Serial™ BLE Firmware Platform

The EZ-Serial Firmware Platform provides a simple way to access the most common hardware and communication features needed in BLE applications. EZ-Serial implements an intuitive API protocol over the UART interface and exposes various status and control signals through the module's GPIOs, making it easy to add BLE functionality quickly to existing designs.

Use a simple serial terminal and evaluation kit to begin development without requiring an IDE. Refer to the EZ-Serial webpage for user manuals and instructions for getting started as well as detailed reference materials.

EZ-BLE modules are pre-flashed with the EZ-Serial Firmware Platform. If you do not have EZ-Serial pre-loaded on your module, you can download each EZ-BLE module's firmware images on the EZ-Serial webpage.

Technical Support

- Frequently Asked Questions (FAQs): Learn more about our BLE ECO System.
- Forum: See if your question is already answered by fellow developers on the PSoC 4 BLE and PRoC BLE forums.
- Visit our support page and create a technical support case or contact a local sales representatives. If you are in the United States, you can talk to our technical support team by calling our toll-free number: +1-800-541-4736. Select option 2 at the prompt.

CYBLE-214009-00

Contents

Overview	4
Module Description	4
Pad Connection Interface	6
Recommended Host PCB Layout	7
Digital and Analog Capabilities and Connections	9
Power Supply Connections and Recommended Exter	
Components	11
Connection Options	
External Component Recommendation	11
Critical Components List	14
Antenna Design	14
Electrical Specification	15
GPIO	17
XRES	18
Analog Peripherals	18
Digital Peripherals	22
Serial Communication	24
Memory	25
System Resources	25
Environmental Specifications	31
Environmental Compliance	31
RF Certification	31
Environmental Conditions	31

ESD and EMI Protection	. 31
Regulatory Information	. 32
FCC	. 32
Industry Canada (IC) Certification	. 33
European R&TTE Declaration of Conformity	. 33
MIC Japan	. 34
KC Korea	
Packaging	. 35
Ordering Information	
Part Numbering Convention	. 37
Acronyms	
Document Conventions	
Units of Measure	. 40
Document History Page	. 41
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	

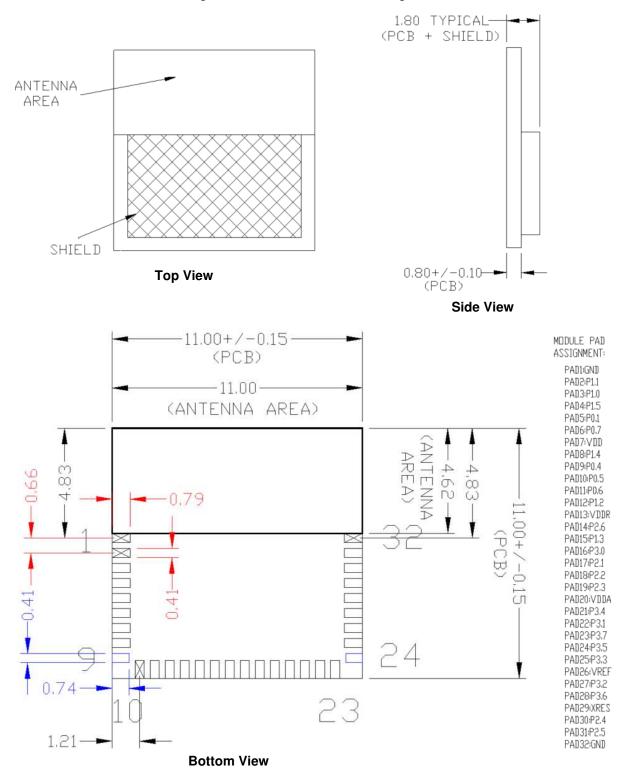
Overview

Module Description

The CYBLE-214009-00 module is a complete module designed to be soldered to the main host board.

Module Dimensions and Drawing

Cypress reserves the right to select components (including the appropriate BLE device) from various vendors to achieve the BLE module functionality. Such selections will guarantee that all height restrictions of the component area are maintained. Designs should be completed with the physical dimensions shown in the mechanical drawings in Figure 1 on page 5. All dimensions are in millimeters (mm).


Table 1. Module Design Dimensions

Dimension Item	Specification	
Module dimensions	Length (X)	11.00 ± 0.15 mm
Module difficults	Width (Y)	11.00 ± 0.15 mm
Antenna location dimensions	Length (X)	11.00 ± 0.15 mm
Afficentia location differisions	Width (Y)	4.62 ± 0.15 mm
PCB thickness	Height (H)	0.80 ± 0.10 mm
Shield height	Height (H)	1.00 ± 0.10 mm
Maximum component height	Height (H)	1.00 mm typical (shield)
Total module thickness (bottom of module to highest component)	Height (H)	1.80 mm typical

See Figure 1 on page 5 for the mechanical reference drawing for CYBLE-214009-00.

Figure 1. Module Mechanical Drawing

Note

^{1.} No metal should be located beneath or above the antenna area. Only bare PCB material should be located beneath the antenna area. For more information on recommended host PCB layout, see Figure 3 on page 6, Figure 4 and Figure 5 on page 7, and Figure 6 and Table 3 on page 8.

Pad Connection Interface

As shown in the bottom view of Figure 1 on page 5, the CYBLE-214009-00 connects to the host board via solder pads on the back of the module. Table 2 and Figure 2 detail the solder pad length, width, and pitch dimensions of the CYBLE-214009-00 module.

Table 2. Solder Pad Connection Description

Name	Connections	Connection Type	Pad Length Dimension	Pad Width Dimension	Pad Pitch
SP	32	Solder Pads	Pad9/Pad24: 0.74 mm All Others: 0.79 mm	0.41 mm	0.66 mm

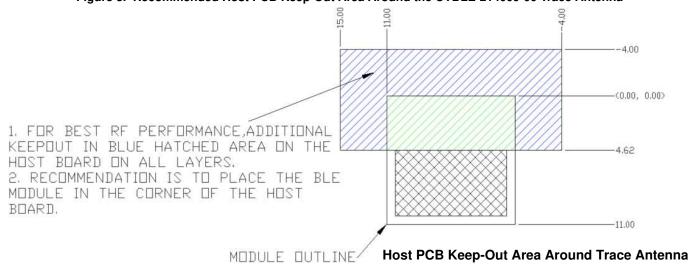
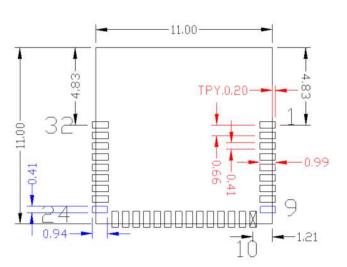

14.83 14.83 1.21 10 23

Figure 2. Solder Pad Dimensions (Seen from Bottom)

To maximize RF performance, the host layout should follow these recommendations:

- The ideal placement of the Cypress BLE module is in a corner of the host board with the antenna located on the edge of the host board. This placement minimizes the additional recommended keep-out area stated in item 2. Refer to AN96841 for module placement best practices.
- 2. To maximize RF performance, the area immediately around the Cypress BLE module trace antenna should contain an additional keep-out area, where no grounding or signal traces are contained. The keep-out area applies to all layers of the host board. The recommended dimensions of the host PCB keep-out area are shown in Figure 3 (dimensions are in mm).

Figure 3. Recommended Host PCB Keep-Out Area Around the CYBLE-214009-00 Trace Antenna



Recommended Host PCB Layout

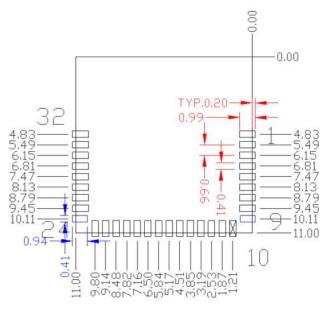

Figure 4 through Figure 6 and Table 3 provide details that can be used for the recommended host PCB layout pattern for the CYBLE-214009-00. Dimensions are in millimeters unless otherwise noted. Pad length of 0.99 mm (0.494 mm from center of the pad on either side) shown in Figure 6 is the minimum recommended host pad length. The host PCB layout pattern can be completed using either Figure 4, Figure 5, or Figure 6. It is not necessary to use all figures to complete the host PCB layout pattern.

Figure 4. Host Layout Pattern for CYBLE-214009-00

Top View (Seen on Host PCB)

Figure 5. Module Pad Location from Origin

Top View (Seen on Host PCB)

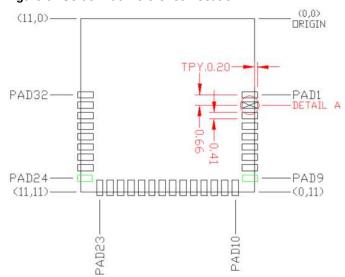
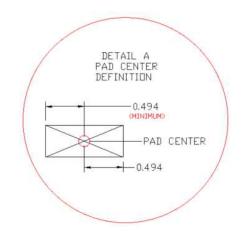


Table 3 provides the center location for each solder pad on the CYBLE-214009-00. All dimensions are referenced to the center of the solder pad. Refer to Figure 6 for the location of each module solder pad.


Table 3. Module Solder Pad Location

Solder Pad (Center of Pad)	Location (X,Y) from Orign (mm)	Dimension from Orign (mils)
1	(0.30, 4.83)	(11.81, 190.16)
2	(0.30, 5.49)	(11.81, 216.14)
3	(0.30, 6.15)	(11.81, 242.13)
4	(0.30, 6.81)	(11.81, 268.11)
5	(0.30, 7.47)	(11.81, 294.09)
6	(0.30, 8.13)	(11.81, 320.08)
7	(0.30, 8.79)	(11.81, 346.06)
8	(0.30, 9.45)	(11.81, 372.05)
9	(0.27, 10.11)	(10.63, 398.03)
10	(1.21, 10.70)	(47.64, 421.26)
11	(1.87, 10.70)	(73.62, 421.26)
12	(2.53, 10.70)	(99.61, 421.26)
13	(3.19, 10.70)	(125.59, 421.26)
14	(3.85, 10.70)	(151.57, 421.26)
15	(4.51, 10.70)	(177.56, 421.26)
16	(5.17, 10.70)	(203.54, 421.26)
17	(5.84, 10.70)	(229.92, 421.26)
18	(6.50, 10.70)	(255.91, 421.26)
19	(7.16, 10.70)	(281.89, 421.26)
20	(7.82, 10.70)	(307.87, 421.26)
21	(8.48, 10.70)	(333.86, 421.26)
22	(9.14, 10.70)	(359.84, 421.26)
23	(9.80, 10.70)	(385.83, 421.26)
24	(10.73, 10.11)	(422.44, 398.03)
25	(10.70, 9.45)	(421.26, 372.05)
26	(10.70, 8.79)	(421.26, 346.06)
27	(10.70, 8.13)	(421.26, 320.08)
28	(10.70, 7.47)	(421.26, 294.09)
29	(10.70, 6.81)	(421.26, 268.11)
30	(10.70, 6.15)	(421.26, 242.13)
31	(10.70, 5.49)	(421.26, 216.14)
32	(10.70, 4.83)	(421.26, 190.16)

Figure 6. Solder Pad Reference Location

Top View (Seen on Host PCB)

Digital and Analog Capabilities and Connections

Table 4 and Table 5 detail the solder pad connection definitions and available functions for each connection pad. Table 4 lists the solder pads on CYBLE-214009-00, the BLE device port-pin, and denotes whether the digital function shown is available for each solder pad. Table 5 denotes whether the analog function shown is available for each solder pad. Each connection is configurable for a single option shown with a \checkmark .

Table 4. Digital Peripheral Capabilities

Pad Number	Device Port Pin	UART	SPI	I ² C	TCPWM ^[2,3]	Cap Sense	WCO Out	ECO OUT	LCD	SWD	GPIO
1	GND ^[4]		Ground Connection								
2	P1.1		✓(SCB1_SS1)		✓(TCPWM)	/			/		
3	P1.0				✓(TCPWM)	/			/		\
4	P1.5	✓(SCB0_TX)	, – ,	✓(SCB0_SCL)	✓(TCPWM)	/			/		/
5	P0.1	✓(SCB1_TX)	✓(SCB1_MISO)	✓(SCB1_SCL)	✓(TCPWM)	✓			/		✓
6	P0.7	✓(SCB0_CTS)	✓(SCB0_SCLK)		✓(TCPWM)				/	(SWDCLK)	\
7	VDD			Digital Pow	er Supply Input (1	.71 to 5.5	V)				
8	P1.4	✓(SCB0_RX)	✓(SCB0_MOSI)	✓(SCB0_SDA)	✓(TCPWM)	/			/		✓
9	P0.4	✓(SCB0_RX)	√(SCB0_MOSI)	✓(SCB0_SDA)	✓(TCPWM)	/		/	/		✓
10	P0.5	✓(SCB0_TX)	√(SCB0_MISO)	✓(SCB0_SCL)	✓(TCPWM)	/			✓		✓
11	P0.6	✓(SCB0_RTS)	✓(SCB0_SS0)		✓(TCPWM)	1			1	(SWDIO)	1
12	P1.2		✓(SCB1_SS2)		✓(TCPWM)	✓			/		/
13	V_{DDR}			Radio Po	ower Supply (1.9\	/ to 5.5V)	ı	l		1.	
14	P2.6				✓(TCPWM)	/			/		✓
15	P1.3		✓(SCB1_SS3)		✓(TCPWM)	/			✓		/
16	P3.0	✓(SCB0_RX)		✓(SCB0_SDA)	✓(TCPWM)	/			✓		✓
17	P2.1		✓(SCB0_SS2)		✓(TCPWM)	/			✓		✓
18	P2.2		✓(SCB0_SS3)		✓(TCPWM)	/			/		✓
19	P2.3				✓(TCPWM)	/	/		✓		✓
20	VDDA			Analog Pow	er Supply Input (1	1.71 to 5.5	V)		•		
21	P3.4	✓(SCB1_RX)		✓(SCB1_SDA)	✓(TCPWM)	/			/		/
22	P3.1	✓(SCB0_TX)		✓(SCB0_SCL)	✓(TCPWM)	/			/		✓
23	P3.7	✓(SCB1_CTS)			✓(TCPWM)	/	/		/		✓
24	P3.5	✓(SCB1_TX)		✓(SCB1_SCL)	✓(TCPWM)	/			/		/
25	P3.3	✓(SCB0_CTS)			✓(TCPWM)	/			✓		✓
26	VREF			Re	ference Voltage Ir	nput			•		
27	P3.2	✓(SCB0_RTS)			✓(TCPWM)	/			/		✓
28	P3.6	✓(SCB1_RTS)			√ (TCPWM)	/			/		✓
29	XRES			External Res	set Hardware Con	nection In	put		•	,	
30	P2.4				✓(TCPWM)	/			/		✓
31	P2.5				√ (TCPWM)	/			/		✓
32	GND			(Ground Connectio	n			•		

Notes

- 2. TCPWM stands for timer, counter, and PWM. If supported, the pad can be configured to any of these peripheral functions.
- 3. TCPWM connections on ports 0, 1, 2, and 3 can be routed through the Digital Signal Interconnect (DSI) to any of the TCPWM blocks and can be either positive or negative polarity.
- 4. The main board needs to connect both GND connections (Pad 1 and Pad 32) on the module to the common ground of the system.

Table 5. Analog Peripheral Capabilities

Pad Number	Device Port Pin	SARMUX	OPAMP	LPCOMP
1	GND ^[4]		Ground Connection	
2	P1.1		✓ (CTBm1_OA0_INN)	
3	P1.0		✓(CTBm1_OA0_INP)	
4	P1.5		✓(CTBm1_OA1_INP)	
5	P0.1			
6	P0.7			
7	VDD		Digital Power Supply Input (1.71	to 5.5V)
8	P1.4		✓ (CTBm1_OA1_INN)	
9	P0.4			✓(COMP1_INP)
10	P0.5			✓(COMP1_INN)
11	P0.6			
12	P1.2		✓(CTBm1_OA0_OUT)	
13	V _{DDR}		Radio Power Supply (1.9V to	5.5V)
14	P2.6		✓(CTBm0_OA0_INP)	
15	P1.3		✓(CTBm1_OA1_OUT)	
16	P3.0	✓		
17	P2.1		✓ (CTBm0_OA0_INN)	
18	P2.2		✓(CTBm0_OA0_OUT)	
19	P2.3		✓(CTBm0_OA1_OUT)	
20	VDDA		Analog Power Supply Input (1.71	to 5.5V)
21	P3.4	✓		
22	P3.1	✓		
23	P3.7	✓		
24	P3.5	✓		
25	P3.3	✓		
26	VREF		Reference Voltage Input (Opt	ional)
27	P3.2	✓		
28	P3.6	✓		
29	XRES		External Reset Hardware Connec	tion Input
30	P2.4		✓(CTBm0_OA1_INN)	
31	P2.5		✓(CTBm0_OA1_INP)	
32	GND		Ground Connection	•

Power Supply Connections and Recommended External Components

Power Connections

The CYBLE-214009-00 contains three power supply connections, VDD, VDDA, and VDDR. The VDD and VDDA connections supply power for the digital and analog device operation respectively. VDDR supplies power for the device radio.

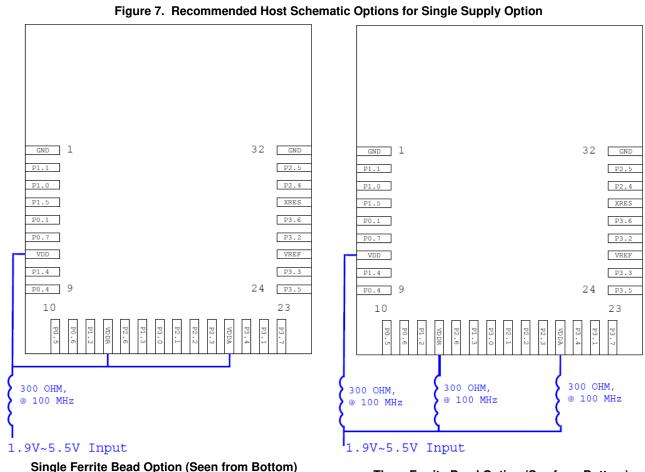
VDD and VDDA accept a supply range of 1.71 V to 5.5 V. VDDR accepts a supply range of 1.9 V to 5.5 V. These specifications can be found in Table 10. The maximum power supply ripple for both power connections on the module is 100 mV, as shown in Table 8.

The power supply ramp rate of VDD and VDDA must be equal to or greater than that of VDDR when the radio is used.

Connection Options

Two connection options are available for any application:

- Single supply: Connect VDD, VDDA, and VDDR to the same supply.
- Independent supply: Power VDD, VDDA, and VDDR separately.


External Component Recommendation

In either connection scenario, it is recommended to place an external ferrite bead between the supply and the module connection. The ferrite bead should be positioned as close as possible to the module pin connection.

Figure 7 details the recommended host schematic options for a single supply scenario. The use of one or three ferrite beads will depend on the specific application and configuration of the CYBLE-214009-00.

Figure 8 details the recommended host schematic for an independent supply scenario.

The recommended ferrite bead value is 330 Ω , 100 MHz (Murata BLM21PG331SN1D).

Single Ferrite Beau Option (Seen from Bottom)

Three Ferrite Bead Option (See from Bottom)

32 GND GND 1 P1.1 P2.5 P1.0 P2.4 P1.5 XRES P3.6 P0.1 300 OHM, P0.7 P3.2 @ 100 MHz 1.71V~5.5V VREF VDD Input P1.4 P3.3 P0.4 9 24 P3.5 23 10 300 OHM, 300 OHM, @ 100 MHz @ 100 MHz 1.9V~5.5V 1.71V~5.5V

Figure 8. Recommended Host Schematic for Independent Supply Option

Independent Power Supply Option (Seen from Bottom)

Input

Input

The CYBLE-214009-00 schematic is shown in Figure 9.

Figure 9. CYBLE-214009-00 Schematic Diagram O P0.1 O P3.0 24MHz O P0.4 O P3.1 O P0.5 P3.2 C15 0.2pF,0201 O P0.6 O P3.3 1.0pF,0201 O P0.7 O P3.4 L1 0.6nH,0201 L2 1.5nH.0201 O P1.0 P3.5 U1 NC7 P0.5 P0.1 XTAL240 XTAL241 VSSR7 VSSR6 P1.1 O P3.6 NC1 VREF VSSA1 P3.3 P3.7 VSSD1 VSSA2 VCCD VDDD1 VSSR3 P0.6 O P1.2 O P3.7 P1.3 O P1.4 P2.3 VSSA3 P2.7 P3.4 P3.5 P3.6 XTAL32I-P6.1 XTAL32O-P6.0 P1.5 O P2.1 VSSR2 P2.2 VSSR1 _ovddr P2.3 NC4 P1.2 P1.3 P1.5 P1.5 P2.4 P5.1 VSSD3 P2.4 32.768KHz P2.5 D1 D2 D3 D4 D6 D6 D9 24pF,0201 P2.6 XRES VDDA P4.0 C18 2.2nF,0201 (MOD C14 0.1uF,0201 C3 0.1uF,0201 P4.1 C17 10nF,0201 OVDDA C13 0.1uF,0201 C7 1.0uF,0201 C4 1.0uF,0201 VCCD 0 C10 1.0uF,0201 C12 0.1uF,0201 VDD o C5 1.0uF,0201 C6 0.1uF,0201 32 GND C8 1.0uF,0201 P2.5 P2.4 P0.1 P3.2 VDD P1.4 24 P3.5 10

Critical Components List

Table 6 details the critical components used in the CYBLE-214009-00 module.

Table 6. Critical Component List

Component	Reference Designator	Description
Silicon	U1	76-pin WLCSP Programmable System-on-Chip (PSoC) with BLE
Crystal	Y1	24.000 MHz, 10PF
Crystal	Y2	32.768 kHz, 12.5PF

Antenna Design

Table 7 details antenna used on the CYBLE-214009-00 module. The Cypress module performance improves many of these characteristics. For more information, see Table 9 on page 15.

Table 7. Trace Antenna Specifications

Item	Description
Frequency Range	2400–2500 MHz
Peak Gain	0.5-dBi typical
Average Gain	-0.5-dBi typical
Return Loss	10-dB minimum

Electrical Specification

Table 8 details the absolute maximum electrical characteristics for the Cypress BLE module.

Table 8. CYBLE-214009-00 Absolute Maximum Ratings

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
V _{DDD_ABS}	V_{DD} , V_{DDA} , or V_{DDR} supply relative to V_{SS} ($V_{SSD} = V_{SSA}$)	-0.5	_	6	٧	Absolute maximum
V _{CCD_ABS}	Direct digital core voltage input relative to V _{SSD}	-0.5	_	1.95	٧	Absolute maximum
V _{DDD_RIPPLE}	Maximum power supply ripple for V_{DD} , V_{DDA} and V_{DDR} input voltage	-	-	100	mV	3.0V supply Ripple frequency of 100 kHz to 750 kHz
V _{GPIO_ABS}	GPIO voltage	-0.5	_	VDD +0.5	V	Absolute maximum
I _{GPIO_ABS}	Maximum current per GPIO	-25	_	25	mA	Absolute maximum
I _{GPIO_injection}	GPIO injection current: Maximum for $V_{IH} > V_{DD}$ and minimum for $V_{IL} < V_{SS}$	-0.5	_	0.5	mA	Absolute maximum current injected per pin
LU	Pin current for latch up	-200		200	mA	-

Table 9 details the RF characteristics for the Cypress BLE module.

Table 9. CYBLE-214009-00 RF Performance Characteristics

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
RF _O	RF output power on ANT	-18	0	3	dBm	Configurable via register settings
RX _S	RF receive sensitivity on ANT	-	-87	-	dBm	Guaranteed by design simulation
F _R	Module frequency range	2400	_	2480	MHz	-
G _P	Peak gain	_	0.5	_	dBi	-
G _{Avg}	Average gain	_	-0.5	_	dBi	_
RL	Return loss	_	-10	_	dB	_

Table 10 through Table 51 list the module level electrical characteristics for the CYBLE-214009-00. All specifications are valid for $-40~^{\circ}\text{C} \le \text{TA} \le 85~^{\circ}\text{C}$ and $\text{TJ} \le 100~^{\circ}\text{C}$, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 10. CYBLE-214009-00 DC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
V _{DD1}	Power supply input voltage (V _{DD} = V _{DDA} = V _{DDR})	1.71	_	5.5	V	With regulator enabled
V _{DD2}	Power supply input voltage unregulated ($V_{DD} = V_{DDA} = V_{DDR}$)	1.71	1.8	1.89	V	Internally unregulated supply
V _{DDR1}	Radio supply voltage (radio on)	1.9	_	5.5	V	_
V _{DDR2}	Radio supply voltage (radio off)	1.71	_	5.5	V	_
Active Mode,	V _{DD} = 1.71 V to 5.5 V					
I _{DD3}	Execute from flash; CPU at 3 MHz	_	1.7	_	mA	T = 25 °C, V _{DD} = 3.3V
I _{DD4}	Execute from flash; CPU at 3 MHz	_	_	_	mA	T = -40 °C to 85 °C
I _{DD5}	Execute from flash; CPU at 6 MHz	_	2.5	_	mA	T = 25 °C, V _{DD} = 3.3V
I _{DD6}	Execute from flash; CPU at 6 MHz	_	_	_	mA	T = -40 °C to 85 °C
I _{DD7}	Execute from flash; CPU at 12 MHz	_	4	_	mA	T = 25 °C, V _{DD} = 3.3V

Table 10. CYBLE-214009-00 DC Specifications (continued)

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
I _{DD8}	Execute from flash; CPU at 12 MHz	_	_	_	mA	T = -40 °C to 85 °C
I _{DD9}	Execute from flash; CPU at 24 MHz	_	7.1	-	mA	T = 25 °C, V _{DD} = 3.3V
I _{DD10}	Execute from flash; CPU at 24 MHz	_	_	_	mA	T = -40 °C to 85 °C
I _{DD11}	Execute from flash; CPU at 48 MHz	_	13.4	_	mA	T = 25 °C, V _{DD} = 3.3V
I _{DD12}	Execute from flash; CPU at 48 MHz	_	_	-	mA	T = -40 °C to 85 °C
Sleep Mode, '	V _{DD} = 1.71 V to 5.5 V				•	
I _{DD13}	IMO on	_	_	_	mA	$T = 25$ °C, $V_{DD} = 3.3$ V, SYSCLK = 3 MHz
Sleep Mode, '	V _{DD} and V _{DDR} = 1.9 V to 5.5 V				•	
I _{DD14}	ECO on	_	_	_	mA	$T = 25$ °C, $V_{DD} = 3.3V$, SYSCLK = 3 MHz
Deep-Sleep M	lode, V _{DD} = 1.71 V to 3.6 V					
I _{DD15}	WDT with WCO on	_	1.3	_	μΑ	T = 25 °C, V _{DD} = 3.3V
I _{DD16}	WDT with WCO on	_	-	_	μΑ	T = -40 °C to 85 °C
I _{DD17}	WDT with WCO on	_	_	_	μΑ	T = 25 °C, V _{DD} = 5V
I _{DD18}	WDT with WCO on	_	_	_	μΑ	T = -40 °C to 85 °C
Deep-Sleep M	lode, V _{DD} = 1.71 V to 1.89 V (Regulator Bypa	assed)				
I _{DD19}	WDT with WCO on	_	_	_	μΑ	T = 25 °C
I _{DD20}	WDT with WCO on	_	_	_	μΑ	T = -40 °C to 85 °C
Hibernate Mo	de, V _{DD} = 1.71 V to 3.6 V					
I _{DD27}	GPIO and reset active	_	150	_	nA	T = 25 °C, V _{DD} = 3.3V
I _{DD28}	GPIO and reset active	_	_	_	nA	T = -40 °C to 85 °C
Hibernate Mo	de, V _{DD} = 3.6 V to 5.5 V					
I _{DD29}	GPIO and reset active	_	_	_	nA	T = 25 °C, V _{DD} = 5V
I _{DD30}	GPIO and reset active	_	_	_	nA	T = -40 °C to 85 °C
Stop Mode, V	_{DD} = 1.71 V to 3.6 V					
I _{DD33}	Stop-mode current (V _{DD})	_	20	_	nA	T = 25 °C, V _{DD} = 3.3V
I _{DD34}	Stop-mode current (V _{DDR})	_	40		nA	T = 25 °C, V _{DDR} = 3.3V
I _{DD35}	Stop-mode current (V _{DD})	_	_	_	nA	T = -40 °C to 85 °C
I _{DD36}	Stop-mode current (V _{DDR})	_	_	_	nA	$T = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C},$ $V_{\text{DDR}} = 1.9 \text{V to } 3.6 \text{V}$
Stop Mode, V	_{DD} = 3.6 V to 5.5 V				•	
I _{DD37}	Stop-mode current (V _{DD})	-	_	_	nA	T = 25 °C, V _{DD} = 5V
I _{DD38}	Stop-mode current (V _{DDR})	-	_	_	nA	T = 25 °C, V _{DDR} = 5V
I _{DD39}	Stop-mode current (V _{DD})	_	_	-	nA	T = -40 °C to 85 °C
I _{DD40}	Stop-mode current (V _{DDR})	_	_	_	nA	T = -40 °C to 85 °C

Table 11. AC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
F _{CPU}	CPU frequency	DC	_	48	MHz	$1.71V \le V_{DD} \le 5.5V$
T _{SLEEP}	Wakeup from Sleep mode	_	0	_	μs	Guaranteed by characterization
T _{DEEPSLEEP}	Wakeup from Deep-Sleep mode	_	_	25	μs	24-MHz IMO. Guaranteed by characterization
T _{HIBERNATE}	Wakeup from Hibernate mode	_	_	800	μs	Guaranteed by characterization
T _{STOP}	Wakeup from Stop mode	_	_	2	ms	XRES wakeup

GPIO

Table 12. GPIO DC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
	Input voltage HIGH threshold	$0.7 \times V_{DD}$	_	_	V	CMOS input
V _{IH} ^[5]	LVTTL input, V _{DD} < 2.7V	$0.7 \times V_{DD}$	_	_	V	-
	LVTTL input, V _{DD} ≥ 2.7V	2.0	_	_	V	-
	Input voltage LOW threshold	_	_	$0.3 \times V_{DD}$	V	CMOS input
V_{IL}	LVTTL input, V _{DD} < 2.7V	_	_	$0.3 \times V_{DD}$	V	-
	LVTTL input, V _{DD} ≥ 2.7V	_	_	0.8	V	-
V	Output voltage HIGH level	V _{DD} – 0.6	_	_	V	$I_{OH} = 4 \text{ mA at } 3.3\text{-V } V_{DD}$
V _{OH}	Output voltage HIGH level	V _{DD} – 0.5	-	_	V	I _{OH} = 1 mA at 1.8-V V _{DD}
	Output voltage LOW level	_	_	0.6	V	I_{OL} = 8 mA at 3.3-V V_{DD}
V_{OL}	Output voltage LOW level	_	_	0.6	V	$I_{OL} = 4 \text{ mA at } 1.8 \text{-V V}_{DD}$
	Output voltage LOW level	_	_	0.4	V	I_{OL} = 3 mA at 3.3-V V_{DD}
R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	-
R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	-
I _{IL}	Input leakage current (absolute value)	_	_	2	nA	25 °C, V _{DD} = 3.3V
I _{IL_CTBM}	Input leakage on CTBm input pins	_	_	4	nA	-
C _{IN}	Input capacitance	_	_	7	pF	-
V _{HYSTTL}	Input hysteresis LVTTL	25	40	_	mV	V _{DD} > 2.7V
V _{HYSCMOS}	Input hysteresis CMOS	0.05 × V _{DD}	_	_	1	-
I _{DIODE}	Current through protection diode to V_{DD}/V_{SS}	-	_	100	μΑ	-
I _{TOT_GPIO}	Maximum total source or sink chip current	_	_	200	mA	-

Note 5. V_{IH} must not exceed V_{DD} + 0.2 V.

Table 13. GPIO AC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
T _{RISEF}	Rise time in Fast-Strong mode	2	-	12	ns	$3.3\text{-V V}_{DDD}, C_{LOAD} = 25 \text{ pF}$
T _{FALLF}	Fall time in Fast-Strong mode	2	_	12	ns	$3.3\text{-V V}_{DDD}, C_{LOAD} = 25 \text{ pF}$
T _{RISES}	Rise time in Slow-Strong mode	10	_	60	ns	$3.3\text{-V V}_{DDD}, C_{LOAD} = 25 \text{ pF}$
T _{FALLS}	Fall time in Slow-Strong mode	10	_	60	ns	3.3-V V_{DDD} , $C_{LOAD} = 25 \text{ pF}$
F _{GPIOUT1}	GPIO Fout; $3.3V \le V_{DD} \le 5.5V$ Fast-Strong mode	_	_	33	MHz	90/10%, 25 pF load, 60/40 duty cycle
F _{GPIOUT2}	GPIO Fout; 1.7V≤ V _{DD} ≤ 3.3V Fast-Strong mode	_	_	16.7	MHz	90/10%, 25 pF load, 60/40 duty cycle
F _{GPIOUT3}	GPIO Fout; $3.3V \le V_{DD} \le 5.5V$ Slow-Strong mode	_	_	7	MHz	90/10%, 25 pF load, 60/40 duty cycle
F _{GPIOUT4}	GPIO Fout; $1.7V \le V_{DD} \le 3.3V$ Slow-Strong mode	_	_	3.5	MHz	90/10%, 25 pF load, 60/40 duty cycle
F _{GPIOIN}	GPIO input operating frequency $1.71V \le V_{DD} \le 5.5V$	_	_	48	MHz	90/10% V _{IO}

XRES

Table 14. XRES DC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
V _{IH}	Input voltage HIGH threshold	$0.7 \times V_{DDD}$	_	_	V	CMOS input
V _{IL}	Input voltage LOW threshold	_	_	$0.3 \times V_{DDD}$	V	CMOS input
R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	_
C _{IN}	Input capacitance	_	3	_	pF	_
V _{HYSXRES}	Input voltage hysteresis	_	100	_	mV	_
I _{DIODE}	Current through protection diode to V_{DD}/V_{SS}	_	_	100	μΑ	-

Table 15. XRES AC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
T _{RESETWIDTH}	Reset pulse width	1	_	-	μs	_

Analog Peripherals

Opamp

Table 16. Opamp Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions				
I _{DD} (Opamp B	I _{DD} (Opamp Block Current. V _{DD} = 1.8 V. No Load)									
I _{DD_HI}	Power = high	_	1000	1300	μΑ	-				
I _{DD_MED}	Power = medium	_	500	-	μΑ	-				
I _{DD_LOW}	Power = low	_	250	350	μΑ	-				
GBW (Load =	GBW (Load = 20 pF, 0.1 mA. V _{DDA} = 2.7 V)									
GBW_HI	Power = high	6	-	_	MHz	-				
GBW_MED	Power = medium	4	_	_	MHz	-				
GBW_LO	Power = low	_	1	_	MHz	-				
I _{OUT_MAX} (V _{DD}	I _{OUT_MAX} (V _{DDA} ≥ 2.7 V, 500 mV from Rail)									
I _{OUT_MAX_HI}	Power = high	10	_	_	mA	-				

Table 16. Opamp Specifications (continued)

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
I _{OUT_MAX_MID}	Power = medium	10	_	-	mA	_
I _{OUT_MAX_LO}	Power = low	_	5	_	mA	_
	.71 V, 500 mV from Rail)		I			
I _{OUT_MAX_HI}	Power = high	4	_	_	mA	_
I _{OUT_MAX_MID}	Power = medium	4	_	_	mA	_
I _{OUT_MAX_LO}	Power = low	_	2	_	mA	_
V _{IN}	Charge pump on, V _{DDA} ≥ 2.7 V	-0.05	_	V _{DDA} – 0.2	V	_
V _{CM}	Charge pump on, V _{DDA} ≥ 2.7 V	-0.05	_	$V_{DDA} - 0.2$	V	_
V _{OUT} (V _{DDA} ≥ 2	2.7 V)		I			
V _{OUT 1}	Power = high, I _{LOAD} = 10 mA	0.5	_	$V_{DDA} - 0.5$	V	_
V _{OUT_2}	Power = high, I _{LOAD} = 1 mA	0.2	_	$V_{DDA} - 0.2$	V	_
V _{OUT_3}	Power = medium, I _{LOAD} = 1 mA	0.2	_	$V_{DDA} - 0.2$	V	_
V _{OUT_4}	Power = low, I _{LOAD} = 0.1 mA	0.2	_	$V_{DDA} - 0.2$	V	_
V _{OS_TR}	Offset voltage, trimmed	1	±0.5	1	mV	High mode
V _{OS_TR}	Offset voltage, trimmed	_	±1	_	mV	Medium mode
V _{OS_TR}	Offset voltage, trimmed	_	±2	_	mV	Low mode
V _{OS_DR_TR}	Offset voltage drift, trimmed	-10	±3	10	μV/°C	High mode
V _{OS_DR_TR}	Offset voltage drift, trimmed	_	±10	_	μV/°C	Medium mode
Vos_dr_tr	Offset voltage drift, trimmed	_	±10	_	μV/°C	Low mode
CMRR	DC	65	70	_	dB	V _{DDD} = 3.6 V, High-power mode
PSRR	At 1 kHz, 100-mV ripple	70	85	_	dB	V _{DDD} = 3.6 V
Noise	74 1 14 12, 100 mv nppio	70	- 00		ub.	1 - PDD - 6:0 1
V _{N1}	Input referred, 1 Hz–1 GHz, power =	_	94	_	μVrms	_
	high					
V _{N2}	Input referred, 1 kHz, power = high	_	72	_	nV/rtHz	_
V _{N3}	Input referred, 10 kHz, power = high		28	_	nV/rtHz	_
V_{N4}	Input referred, 100 kHz, power = high		15	-	nV/rtHz	_
C _{LOAD}	Stable up to maximum load. Performance specs at 50 pF	_	_	125	pF	_
Slew_rate	Cload = 50 pF, Power = High, V _{DDA} ≥ 2.7 V	6	_	_	V/µs	_
T_op_wake	From disable to enable, no external RC dominating	-	300	1	μs	_
Comp_mode ((Comparator Mode; 50-mV Drive, T _{RISE}	= T _{FALL}	(Appro	x.)		
T _{PD1}	Response time; power = high	_	150	_	ns	_
T _{PD2}	Response time; power = medium	_	400	_	ns	_
T _{PD3}	Response time; power = low	_	2000	-	ns	_
Vhyst_op	Hysteresis	-	10	-	mV	-
Deep-Sleep M	lode (Deep-Sleep mode operation is or	nly guara	nteed 1	or V _{DDA} > 2	2.5 V)	
GBW_DS	Gain bandwidth product	_	50	_	kHz	_
DD_DS	Current	_	15	_	μΑ	-
	Offset voltage	_	5	_	mV	_
Vos_DS						1
	Offset voltage drift	_	20	_	μV/°C	_
Vos_DS Vos_dr_DS Vout_DS	_	- 0.2	20 –	- V _{DD} -0.2	μV/°C V	

Table 17. Comparator DC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
V _{OFFSET1}	Input offset voltage, Factory trim	-	_	±10	mV	_
V _{OFFSET2}	Input offset voltage, Custom trim	_	_	±6	mV	_
V _{OFFSET3}	Input offset voltage, ultra-low-power mode	-	±12	-	mV	_
V _{HYST}	Hysteresis when enabled	-	10	35	mV	_
V _{ICM1}	Input common mode voltage in normal mode	0	_	V _{DDD} – 0.1	V	Modes 1 and 2
V _{ICM2}	Input common mode voltage in low-power mode	0	-	V _{DDD}	V	-
V _{ICM3}	Input common mode voltage in ultra low-power mode	0	_	V _{DDD} – 1.15	V	-
CMRR	Common mode rejection ratio	50	_	_	dB	$V_{DDD} \ge 2.7 \text{ V}$
CMRR	Common mode rejection ratio	42	_	_	dB	$V_{DDD} \le 2.7 \text{ V}$
I _{CMP1}	Block current, normal mode	_	_	400	μΑ	_
I _{CMP2}	Block current, low-power mode	_	_	100	μΑ	_
I _{CMP3}	Block current in ultra-low-power mode	-	6	_	μΑ	_
Z _{CMP}	DC input impedance of comparator	35	_	_	MΩ	_

Table 18. Comparator AC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
T _{RESP1}	Response time, normal mode, 50-mV overdrive	_	38	-	ns	50-mV overdrive
T _{RESP2}	Response time, low-power mode, 50-mV overdrive	_	70	_	ns	50-mV overdrive
T _{RESP3}	Response time, ultra-low-power mode, 50-mV overdrive	_	2.3	ı	μs	200-mV overdrive

Temperature Sensor

Table 19. Temperature Sensor Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
T _{SENSACC}	Temperature-sensor accuracy	- 5	±1	5	°C	−40 to +85 °C

SAR ADC

Table 20. SAR ADC DC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
A_RES	Resolution	_	_	12	bits	-
A_CHNIS_S	Number of channels - single-ended	_	_	8	_	8 full-speed
A-CHNKS_D	Number of channels - differential	_	_	4	-	Diff inputs use neighboring I/O
A-MONO	Monotonicity	_	_	_	_	Yes
A_GAINERR	Gain error	_	_	±0.1	%	With external reference
A_OFFSET	Input offset voltage	-	_	2	mV	Measured with 1-V V _{REF}
A_ISAR	Current consumption	_	_	1	mA	-
A_VINS	Input voltage range - single-ended	V _{SS}	_	V_{DDA}	V	_

Table 20. SAR ADC DC Specifications (continued)

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
A_VIND	Input voltage range - differential	V_{SS}	_	V_{DDA}	V	_
A_INRES	Input resistance	– – 2.2 kΩ		_		
A_INCAP	Input capacitance	-	_	10	pF	_
VREFSAR	Trimmed internal reference to SAR	-1	-	1	%	Percentage of Vbg (1.024 V)

Table 21. SAR ADC AC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
A_PSRR	Power-supply rejection ratio	70	_	_	dB	Measured at 1-V reference
A_CMRR	Common-mode rejection ratio	66	_	_	dB	-
A_SAMP	Sample rate	_	_	1	Msps	_
Fsarintref	SAR operating speed without external ref. bypass	_	_	100	ksps	12-bit resolution
A_SNR	Signal-to-noise ratio (SNR)	65	_	_	dB	F _{IN} = 10 kHz
A_BW	Input bandwidth without aliasing	_	_	A_SAMP/2	kHz	_
A_INL	Integral nonlinearity. V _{DD} = 1.71 V to 5.5 V, 1 Msps	-1.7	_	2	LSB	V _{REF} = 1 V to V _{DD}
A_INL	Integral nonlinearity. V _{DDD} = 1.71 V to 3.6 V, 1 Msps	-1.5	_	1.7	LSB	V _{REF} = 1.71 V to V _{DD}
A_INL	Integral nonlinearity. V _{DD} = 1.71 V to 5.5 V, 500 ksps	-1.5	_	1.7	LSB	V _{REF} = 1 V to V _{DD}
A_dnl	Differential nonlinearity. V _{DD} = 1.71 V to 5.5 V, 1 Msps	-1	_	2.2	LSB	V _{REF} = 1 V to V _{DD}
A_DNL	Differential nonlinearity. V _{DD} = 1.71 V to 3.6 V, 1 Msps	– 1	_	2	LSB	V _{REF} = 1.71 V to V _{DD}
A_DNL	Differential nonlinearity. V _{DD} = 1.71 V to 5.5 V, 500 ksps	– 1	_	2.2	LSB	V _{REF} = 1 V to V _{DD}
A_THD	Total harmonic distortion	1	_	- 65	dB	F _{IN} = 10 kHz

CSD

Table 22. CSD Block Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
V _{CSD}	Voltage range of operation	1.71	_	5.5	V	-
IDAC1	DNL for 8-bit resolution	-1	_	1	LSB	_
IDAC1	INL for 8-bit resolution	-3	_	3	LSB	_
IDAC2	DNL for 7-bit resolution	-1	_	1	LSB	_
IDAC2	INL for 7-bit resolution	-3	_	3	LSB	_
SNR	Ratio of counts of finger to noise	5	-	_	Ratio	Capacitance range of 9 pF to 35 pF, 0.1-pF sensitivity. Radio is not operating during the scan
I _{DAC1_CRT1}	Output current of IDAC1 (8 bits) in High range	_	612	_	μА	-
I _{DAC1_CRT2}	Output current of IDAC1 (8 bits) in Low range	_	306	_	μА	_

Table 22. CSD Block Specifications (continued)

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
I _{DAC2_CRT1}	Output current of IDAC2 (7 bits) in High range	_	305	-	μΑ	-
I _{DAC2_CRT2}	Output current of IDAC2 (7 bits) in Low range	_	153	-	μΑ	-

Digital Peripherals

Timer

Table 23. Timer DC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
I _{TIM1}	Block current consumption at 3 MHz	_	_	42	μΑ	16-bit timer
I _{TIM2}	Block current consumption at 12 MHz	_	_	130	μΑ	16-bit timer
I _{TIM3}	Block current consumption at 48 MHz	_	_	535	μΑ	16-bit timer

Table 24. Timer AC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
T _{TIMFREQ}	Operating frequency	F _{CLK}	_	48	MHz	_
T _{CAPWINT}	Capture pulse width (internal)	2 × T _{CLK}	-	_	ns	_
T _{CAPWEXT}	Capture pulse width (external)	2 × T _{CLK}	_	_	ns	_
T _{TIMRES}	Timer resolution	T _{CLK}	_	_	ns	_
T _{TENWIDINT}	Enable pulse width (internal)	2 × T _{CLK}	_	_	ns	_
T _{TENWIDEXT}	Enable pulse width (external)	2 × T _{CLK}	_	_	ns	_
T _{TIMRESWINT}	Reset pulse width (internal)	2 × T _{CLK}	_	_	ns	_
T _{TIMRESEXT}	Reset pulse width (external)	2 × T _{CLK}		_	ns	_

Counter

Table 25. Counter DC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
I _{CTR1}	Block current consumption at 3 MHz	_	_	42	μΑ	16-bit counter
I _{CTR2}	Block current consumption at 12 MHz	-	_	130	μΑ	16-bit counter
I _{CTR3}	Block current consumption at 48 MHz	-	_	535	μΑ	16-bit counter

Table 26. Counter AC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
T _{CTRFREQ}	Operating frequency	F _{CLK}	_	48	MHz	_
T _{CTRPWINT}	Capture pulse width (internal)	2 × T _{CLK}	_	_	ns	_
T _{CTRPWEXT}	Capture pulse width (external)	2 × T _{CLK}	_	_	ns	_
T _{CTRES}	Counter Resolution	T _{CLK}	_	_	ns	_
T _{CENWIDINT}	Enable pulse width (internal)	2 × T _{CLK}	_	_	ns	_
T _{CENWIDEXT}	Enable pulse width (external)	2 × T _{CLK}	_	_	ns	_
T _{CTRRESWINT}	Reset pulse width (internal)	2 × T _{CLK}	_	_	ns	_
T _{CTRRESWEXT}	Reset pulse width (external)	2 × T _{CLK}	-	_	ns	_

Pulse Width Modulation (PWM)

Table 27. PWM DC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
I _{PWM1}	Block current consumption at 3 MHz	_	1	42	μΑ	16-bit PWM
I _{PWM2}	Block current consumption at 12 MHz	_	-	130	μΑ	16-bit PWM
I _{PWM3}	Block current consumption at 48 MHz	1	_	535	μΑ	16-bit PWM

Table 28. PWM AC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
T _{PWMFREQ}	Operating frequency	F _{CLK}	-	48	MHz	_
T _{PWMPWINT}	Pulse width (internal)	2 × T _{CLK}	-	_	ns	_
T _{PWMEXT}	Pulse width (external)	2 × T _{CLK}	-	_	ns	_
T _{PWMKILLINT}	Kill pulse width (internal)	2 × T _{CLK}	-	_	ns	_
T _{PWMKILLEXT}	Kill pulse width (external)	2 × T _{CLK}	-	_	ns	_
T _{PWMEINT}	Enable pulse width (internal)	2 × T _{CLK}	_	_	ns	_
T _{PWMENEXT}	Enable pulse width (external)	2 × T _{CLK}	_	_	ns	_
T _{PWMRESWINT}	Reset pulse width (internal)	2 × T _{CLK}	_	_	ns	_
T _{PWMRESWEXT}	Reset pulse width (external)	2 × T _{CLK}	-	-	ns	-

LCD Direct Drive

Table 29. LCD Direct Drive DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID228	I _{LCDLOW}	Operating current in low-power mode	-	17.5	-	μΑ	16 × 4 small segment display at 50 Hz
SID229	C _{LCDCAP}	LCD capacitance per segment/common driver	_	500	5000	pF	_
SID230	LCD _{OFFSET}	Long-term segment offset	_	20	_	mV	_
SID231	I _{LCDOP1}	LCD system operating current V _{BIAS} = 5 V	_	2	_	mA	32 × 4 segments. 50 Hz at 25 °C
SID232	I _{LCDOP2}	LCD system operating current V _{BIAS} = 3.3 V	_	2	_	mA	32 × 4 segments 50 Hz at 25 °C

Table 30. LCD Direct Drive AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID233	F _{LCD}	LCD frame rate	10	50	150	Hz	_

Serial Communication

Table 31. Fixed I²C DC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
I _{I2C1}	Block current consumption at 100 kHz	_	-	50	μΑ	_
I _{I2C2}	Block current consumption at 400 kHz	_	_	155	μΑ	_
I _{I2C3}	Block current consumption at 1 Mbps	_	_	390	μΑ	_
I _{I2C4}	I ² C enabled in Deep-Sleep mode	-	_	1.4	μΑ	-

Table 32. Fixed I²C AC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
F _{I2C1}	Bit rate	_	_	400	kHz	_

Table 33. Fixed UART DC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
I _{UART1}	Block current consumption at 100 kbps	_	_	55	μΑ	-
I _{UART2}	Block current consumption at 1000 kbps	_	_	312	μΑ	-

Table 34. Fixed UART AC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
F _{UART}	Bit rate	_	_	1	Mbps	-

Table 35. Fixed SPI DC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
I _{SPI1}	Block current consumption at 1 Mbps	_	_	360	μΑ	-
I _{SPI2}	Block current consumption at 4 Mbps	_	_	560	μΑ	-
I _{SPI3}	Block current consumption at 8 Mbps	_	_	600	μΑ	-

Table 36. Fixed SPI AC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
F _{SPI}	SPI operating frequency (master; 6x over sampling)	_	-	8	MHz	-

Table 37. Fixed SPI Master Mode AC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
T_{DMO}	MOSI valid after SCLK driving edge	-	_	18	ns	_
	MISO valid before SCLK capturing edge Full clock, late MISO sampling used	20	_	_	ns	Full clock, late MISO sampling
T _{HMO}	Previous MOSI data hold time	0	ı	_	ns	Referred to Slave capturing edge

Table 38. Fixed SPI Slave Mode AC Specifications

Parameter	Description	Min	Тур	Max	Unit	
T _{DMI}	MOSI valid before SCLK capturing edge	40	_	-	ns	
T _{DSO}	MISO valid after SCLK driving edge	-	_	42 + 3 × T _{CPU}	ns	
T _{DSO_ext}	MISO Valid after SCLK driving edge in external clock mode. V _{DD} < 3.0 V	-	_	50	ns	
T _{HSO}	Previous MISO data hold time	0	_	_	ns	
T _{SSELSCK}	SSEL valid to first SCK valid edge	100	_	_	ns	

Document Number: 002-09714 Rev. *E

Memory

Table 39. Flash DC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
V_{PE}	Erase and program voltage	1.71	_	5.5	V	_
T _{WS48}	Number of Wait states at 32–48 MHz	2	_	_	_	CPU execution from flash
T _{WS32}	Number of Wait states at 16-32 MHz	1	_	_	_	CPU execution from flash
T _{WS16}	Number of Wait states for 0–16 MHz	0	_	_	_	CPU execution from flash

Table 40. Flash AC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
T _{ROWWRITE} ^[6]	Row (block) write time (erase and program)	_	_	20	ms	Row (block) = 256 bytes
T _{ROWERASE} ^[6]	Row erase time	_	_	13	ms	_
T _{ROWPROGRAM} ^[6]	Row program time after erase	_	_	7	ms	_
T _{BULKERASE} ^[6]	Bulk erase time (256 KB)	_	_	35	ms	_
T _{DEVPROG} ^[6]	Total device program time	_	_	25	seconds	_
F _{END}	Flash endurance	100 K	_	_	cycles	_
F _{RET}	Flash retention. $T_A \le 55$ °C, 100 K P/E cycles.	20	_	_	years	_
F _{RET2}	Flash retention. $T_A \le 85$ °C, 10 K P/E cycles.	10	1	_	years	_

System Resources

Power-on-Reset (POR)

Table 41. POR DC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
V _{RISEIPOR}	Rising trip voltage	0.80	_	1.45	V	_
V _{FALLIPOR}	Falling trip voltage	0.75	_	1.40	V	_
V _{IPORHYST}	Hysteresis	15	_	200	mV	-

Table 42. POR AC Specifications

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
	Precision power-on reset (PPOR) response time in Active and Sleep modes	_	-	1	μs	-

Table 43. Brown-Out Detect

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
V _{FALLPPOR}	BOD trip voltage in Active and Sleep modes	1.64	_	_	V	_
V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.4	_	_	V	_

Table 44. Hibernate Reset

I	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
	V _{HBRTRIP}	BOD trip voltage in Hibernate	1.1	-	_	V	_

Note

^{6.} It can take as much as 20 ms to write to flash. During this time, the device should not be reset, or flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.