
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

 CYRF69213

Programmable Radio on Chip Low Power

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document #: 001-07552 Rev. *D Revised February 13, 2009

PRoC™ LP Features

■ USB 2.0-USB-IF certified (TID # 40000552)

■ Single Device, Two Functions

❐ 8-bit, Flash based USB peripheral MCU function and 2.4 GHz
radio transceiver function in a single device

■ Flash Based Microcontroller Function

❐ M8C based 8-bit CPU, optimized for Human Interface Devic-
es (HID) applications

❐ 256 bytes of SRAM

❐ 8 Kbytes of Flash memory with EEPROM emulation

❐ In-System reprogrammable through D+/D– pins

❐ 16-bit free running timer

❐ Low power wake up timer

❐ 12-bit Programmable Interval Timer with interrupts

❐ Watchdog timer

■ Industry-Leading 2.4 GHz Radio Transceiver Function

❐ Operates in the unlicensed worldwide Industrial, Scientific
and Medical (ISM) band (2.4 GHz to 2.483 GHz)

❐ DSSS data rates of up to 250 Kbps

❐ GFSK data rate of 1 Mbps

❐ –97 dBm receive sensitivity

❐ Programmable output power of up to +4 dBm

❐ Auto Transaction Sequencer (ATS)

❐ Framing CRC and Auto ACK

❐ Received Signal Strength Indication (RSSI)

❐ Automatic Gain Control (AGC)

■ Component Reduction

❐ Integrated 3.3V regulator

❐ Integrated pull up on D–

❐ GPIOs that require no external components

❐ Operates off a single crystal

■ Flexible I/O

❐ 2 mA source current on all GPIO pins. Configurable 8 mA or
50 mA/pin current sink on designated pins

❐ Each GPIO pin supports high impedance inputs, configurable
pull up, open-drain output, CMOS/TTL inputs and CMOS out-
put

❐ Maskable interrupts on all I/O pins

■ USB Specification Compliance

❐ Conforms to USB Specification Version 2.0

❐ Conforms to USB HID Specification Version 1.1

❐ Supports one Low Speed USB device address

❐ Supports one control endpoint and two data end points

❐ Integrated USB Transceiver

■ Operating Voltage from 4.0V to 5.5V DC

■ Operating Temperature from 0 to 70°C

■ Pb-Free 40-Pin QFN Package

■ Advanced Development Tools Based on Cypress’s PSoC®
Tools

Block Diagram

M icrocontro ller
Function

Radio
Function

RFn

RFp

RFbias

X
ta

l

12M Hz

V
R

e
g

V
B

a
t0

1-2 uF

R
E

S
V

V
S

S

470nF

P0_1,3,4,7

P1_6:7

P2_0:1

470nF

G
N

D

.

IRQ/GPIO

M ISO /GPIO

XOUT/GPIO

PACTL/GPIO

G
N

D

Vbus

V
D

D
_
M

IC
R

O

D+/D-

4.7uF

P
1

.2
 /
 V

R
e

g

P1.5/M O SI

P1.4/SCK

P1.3/nSS

R
S

T

M
O

S
I

S
C

K

n
S

S

V
B

a
t1

V
B

a
t2

V
C

C
1

V
C

C
2

V
C

C
3

V
IO

G
N

D

.
2

2

2

4

1ohm

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 2 of 77

Applications

The CYRF69213 PRoC LP Low Speed is targeted for the
following applications:

■ USB Bridge for Human Interface Devices (HID)

❐ Wireless mice

❐ Wireless keyboards

❐ Remote controls

❐ Gaming applications

■ USB Bridge for General Purpose Applications

❐ Consumer electronics

❐ Industrial applications

❐ White goods

❐ Home automation

❐ Personal health

Functional Description

PRoC LP devices are integrated radio and microcontroller
functions in the same package to provide a dual role single-chip
solution.

Communication between the microcontroller and the radio is via
the SPI interface between both functions.

Functional Overview

The CYRF69213 is a complete Radio System-on-Chip device,
providing a complete RF system solution with a single device and
a few discrete components. The CYRF69213 is designed to
implement low cost wireless systems operating in the worldwide
2.4 GHz Industrial, Scientific, and Medical (ISM) frequency band
(2.400 GHz–2.4835 GHz).

2.4 GHz Radio Function

The radio meets the following world wide regulatory require-
ments:

■ Europe

❐ ETSI EN 301 489-1 V1.4.1

❐ ETSI EN 300 328-1 V1.3.1

■ North America

❐ FCC CFR 47 Part 15

■ Japan

❐ ARIB STD-T66

Data Transmission Modes

The radio supports four different data transmission modes:

■ In GFSK mode, data is transmitted at 1 Mbps without any DSSS

■ In 8DR mode, 1 byte is encoded in each PN code symbol trans-
mitted

■ In DDR mode, 2 bits are encoded in each PN code symbol
transmitted

■ In SDR mode, a single bit is encoded in each PN code symbol
transmitted

Both 64-chip and 32-chip data PN codes are supported. The four
data transmission modes apply to the data after the Start of
Packet (SOP). In particular, the packet length, data and CRC are
all sent in the same mode.

USB Microcontroller Function

The microcontroller function is based on the powerful
CYRF69213 microcontroller. It is an 8-bit Flash programmable
microcontroller with integrated low speed USB interface.

The microcontroller has up to 14 GPIO pins to support USB,
PS/2 and other applications. Each GPIO port supports high
impedance inputs, configurable pull up, open drain output,
CMOS/TTL inputs and CMOS output. Up to two pins support
programmable drive strength of up to 50 mA. Additionally each
I/O pin can be used to generate a GPIO interrupt to the micro-
controller. Each GPIO port has its own GPIO interrupt vector with
the exception of GPIO Port 0.

The microcontroller features an internal oscillator. With the
presence of USB traffic, the internal oscillator can be set to
precisely tune to USB timing requirements (24 MHz ± 1.5%).

The PRoC LP has up to 8 Kbytes of Flash for user’s firmware
code and up to 256 bytes of RAM for stack space and user
variables.

The PRoC LP includes a Watchdog timer, a vectored interrupt
controller, a 12-bit programmable interval timer with configurable
1 ms interrupt and a 16-bit free running timer with capture
registers.

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 3 of 77

Pinout

Figure 1. Pin Diagram: 40-Pin QFN 7 × 7 mm LF48A

RFBIAS

VBAT2

XTAL

P2.1

VCC

VBAT1

P0.4

VCC

P0.1

P0.3

V
R

E
G

P
0
.7

P
1
.6

V
B

A
T

0

L
/D

P
1

.7

P
A

C
T

L
 / G

P
IO

V
IO

V
D

D
_

1
.8

R
S

T

R
F

N

N
C

P
2
.0

V
C

C

N
C

N
C

R
E

S
V

N
C

G
N

D

R
F

P

VDD_Micro

P1.3 / SS

P1.4 / SCK

IRQ / GPIO

P1.5 / MOSI

MISO / GPIO

XOUT / GPIO

P1.2 / VREG_MICRO

D-

D+

* E-PAD Bottom Side

21

22

23

24

25

26

27

28

29

30

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

10

9

8

7

6

5

4

3

2

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

1

CYRF69213
WirelessUSB LP

Corner
tabs

Pin Configuration

Pin Name Function

1 P0.4 Individually configured GPIO

2 Xtal_in 12 MHz Crystal. External clock in

3, 7, 16 VCC Connected to pin 24 via 0.047 μF capacitor

4 P0.3 Individually configured GPIO

5 P0.1 Individually configured GPIO

6, 9, 39 Vbat Connected to pin 24 via 0.047 μFshunt capacitor

8 P2.1 GPIO. Port 2 Bit 1

10 RF Bias RF pin voltage reference

11 RFp Differential RF input to/from antenna

12 GND Ground

13 RFn Differential RF to/from antenna

14, 17, 18, 20, 36 NC

15 P2.0 GPIO. Port 2 Bit 0

19 RESV Reserved. Must connect to GND

21 D+ Low speed USB I/O

22 D– Low speed USB I/O

23 VDD_micro 4.0–5.5 for 12 MHz CPU/4.75–5.5 for 24 MHz CPU

24 P1.2 / VREG Must be configured as 3.3V output. It must have a 1–2 μF output capacitor

25 P1.3 / nSS Slave select SPI Pin

26 P1.4 / SCK Serial Clock Pin from MCU function to radio function

27 IRQ Interrupt output, configure high/low or GPIO

28 P1.5 / MOSI Master Out Slave In

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 4 of 77

PRoC LP Functional Overview

The SoC is designed to implement wireless device links
operating in the worldwide 2.4 GHz ISM frequency band. It is
intended for systems compliant with worldwide regulations
covered by ETSI EN 301 489-1 V1.41, ETSI EN 300 328-1
V1.3.1 (Europe), FCC CFR 47 Part 15 (USA and Industry
Canada) and TELEC ARIB_T66_March, 2003 (Japan).

The SoC contains a 2.4 GHz 1 Mbps GFSK radio transceiver,
packet data buffering, packet framer, DSSS baseband controller,
Received Signal Strength Indication (RSSI), and SPI interface
for data transfer and device configuration.

The radio supports 98 discrete 1 MHz channels (regulations may
limit the use of some of these channels in certain jurisdictions).
In DSSS modes the baseband performs DSSS
spreading/despreading, while in GFSK Mode (1 Mb/s - GFSK)
the baseband performs Start of Frame (SOF), End of Frame
(EOF) detection and CRC16 generation and checking. The
baseband may also be configured to automatically transmit
Acknowledge (ACK) handshake packets whenever a valid
packet is received.

When in receive mode, with packet framing enabled, the device
is always ready to receive data transmitted at any of the
supported bit rates, except SDR, enabling the implementation of
mixed-rate systems in which different devices use different data
rates. This also enables the implementation of dynamic data rate
systems, which use high data rates at shorter distances and/or
in a low moderate interference environment, and change to lower
data rates at longer distances and/or in high interference
environments.

The MCU function is an 8-bit Flash programmable microcon-
troller with integrated low speed USB interface. The instruction
set has been optimized specifically for USB operations, although
it can be used for a variety of other embedded applications.

The MCU function has up to eight Kbytes of Flash for user’s code
and up to 256 bytes of RAM for stack space and user variables.

In addition, the MCU function includes a Watchdog timer, a
vectored interrupt controller, a 16-bit Free-Running Timer, and
12-bit Programmable Interrupt Timer.

The MCU function supports in-system programming by using the
D+ and D– pins as the serial programming mode interface. The
programming protocol is not USB.

29 MISO Master In Slave Out, from radio function. Can be configured as GPIO

30 XOUT Bufferd CLK, PACTL_n or GPIO

31 PACTL Control for external PA or GPIO

32 P1.6 GPIO. Port 1 Bit 6

33 VIO I/O interface voltage. Connected to pin 24 via 0.047 μF

34 Reset Radio Reset. Connected to VDD via 0.47 μF capacitor or to microcontroller GPIO pin. Must have
a RESET = HIGH event the very first time power is applied to the radio otherwise the state of
the radio function control registers is unknown

35 P1.7 GPIO. Port 1 Bit 7

36 VDD_1.8 Regulated logic bypass. Connected via 0.47 μF to GND

37 L/D Connected to GND

38 P0.7 GPIO. Port 0 Bit 7

40 Vreg Connected to pin 24

41 E-pad Must be connected to GND

42 Corner Tabs Do not connect corner tabs

Pin Configuration (continued)

Pin Name Function

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 5 of 77

DDR MODE

SDR MODE

Table 1. DDR Mode

REGISTER VALUE DESCRIPTION

TX_CFG_ADR 0X16 32 chip PN Code, DDR, PA = 6

RX_CFG_ADR 0X4B AGC is enabled. LNA and attenuator are disabled. Fast turn around is disabled, the device
uses high side receive injection and Hi-Lo is disabled. Overwrite to receive buffer is enabled
and the RX buffer is configured to receive eight bytes maximum.

XACT_CFG_ADR 0X05 AutoACK is disabled. Forcing end state is disabled. The device is configured to transition to
Idle mode after a Receive or Transmit. ACK timeout is set to 128 µs.

FRAMING_CFG_AD
R

0X00 All SOP and framing features are disabled. Disable LEN_EN=0 if EOP is needed.

TX_OVERRIDE_AD
R

0X04 Disable Transmit CRC-16.

RX_OVERRIDE_AD
R

0X14 The receiver rejects packets with a zero seed. The Rx CRC-16 Checker is disabled and the
receiver accepts bad packets that do not match the seed in CRC_seed registers. Basically
this helps in communication with the first generation radio that does not have CRC capabilities.

ANALOG_CTRL_AD
R

0X01 Set ALL SLOW. When set, the synthesizer settle time for all channels is the same as the slow
channels in the first generation radio.

DATA32_THOLD_AD
R

0X03 Sets the number of allowed corrupted bits to 3.

EOP_CTRL_ADR 0x01 Sets the number of consecutive symbols for non correlation to detect end of packet.

PREAMBLE_ADR 0xAAAA05 AAAA are the two preamble bytes.Other Bytes can also be written into the preamble register
file. The number of preamble bytes to be sent should be >4.

Table 2. SDR Mode

REGISTER VALUE DESCRIPTION

TX_CFG_ADR 0X3E 64 chip PN code, SDR mode, PA = 6.

RX_CFG_ADR 0X4B AGC is enabled. LNA and attenuator are disabled. Fast turn around is disabled, the device
uses high side receive injection and Hi-Lo is disabled. Overwrite to receive buffer is enabled
and RX buffer is configured to receive eight bytes maximum. Enables RXOW to allow new
packets to be loaded into the receive buffer. This also enables the VALID bit which is used by
the first generation radio’s error correction firmware.

XACT_CFG_ADR 0X05 AutoACK is disabled. Forcing end state is disabled. The device is configured to transition to
Idle mode after Receive or Transmit. ACK timeout is set to 128 µs.

FRAMING_CFG_AD
R

0X00 All SOP and framing features are disabled. Disable LEN_EN=0 if EOP is needed.

TX_OVERRIDE_AD
R

0X04 Disable Transmit CRC-16.

RX_OVERRIDE_AD
R

0X14 The receiver rejects packets with a zero seed. The RX CRC-16 checker is disabled and the
receiver accepts bad packets that do not match the seed in the CRC_seed registers. Basically
this helps in communication with the first generation radio that does not have CRC capabilities.

ANALOG_CTRL_AD
R

0X01 Set ALL SLOW. When set, the synthesizer settle time for all channels is the same as the slow
channels in the first generation radio, for manual ACK consistency

DATA64_THOLD_AD
R

0X07 Sets the number of allowed corrupted bits to 7 which is close to the recommended 12% value.

EOP_CTRL_ADR 0xA1 Sets the number of consecutive symbols for non correlation to detect end of packet.

PREAMBLE_ADR 0xAAAA09 AAAA are the two preamble bytes. Any other byte can also be written into the preamble
register file. The number of preamble bytes to be sent should be >8.

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 6 of 77

Functional Block Overview

All the blocks that make up the PRoC LP are presented here.

2.4 GHz Radio

The radio transceiver is a dual conversion low IF architecture
optimized for power and range/robustness. The radio employs
channel-matched filters to achieve high performance in the
presence of interference. An integrated Power Amplifier (PA)
provides up to +4 dBm transmit power, with an output power
control range of 34 dB in 7 steps. The supply current of the
device is reduced as the RF output power is reduced.

Frequency Synthesizer

Before transmission or reception may commence, it is necessary
for the frequency synthesizer to settle. The settling time varies
depending on channel; 25 fast channels are provided with a
maximum settling time of 100 μs.

The ‘fast channels’ (<100 μs settling time) are every third
frequency, starting at 2400 MHz up to and including 2472 MHz
(for example, 0,3,6,9…….69 & 72).

Baseband and Framer

The baseband and framer blocks provide the DSSS encoding
and decoding, SOP generation and reception and CRC16 gener-
ation and checking, and EOP detection and length field.

Data Rates and Data Transmission Modes

The SoC supports four different data transmission modes:

■ In GFSK mode, data is transmitted at 1 Mbps, without any
DSSS.

■ In 8DR mode, 8 bits are encoded in each DATA_CODE_ADR
derived code symbol transmitted.

■ In DDR mode, 2-bits are encoded in each DATA_CODE_ADR
derived code symbol transmitted. (As in the CYWUSB6934
DDR mode).

■ In SDR mode, 1 bit is encoded in each DATA_CODE_ADR
derived code symbol transmitted. (As in the CYWUSB6934
standard modes.)

Both 64-chip and 32-chip DATA_CODE_ADR codes are
supported. The four data transmission modes apply to the data
after the SOP. In particular the length, data, and CRC16 are all

sent in the same mode. In general, lower data rates reduces
packet error rate in any given environment.

By combining the DATA_CODE_ADR code lengths and data
transmission modes described above, the CYRF69213 IC
supports the following data rates:

■ 1000 kbps (GFSK)

■ 250 kbps (32-chip 8DR)

■ 125 kbps (64-chip 8DR)

■ 62.5 kbps (32-chip DDR)

■ 31.25 kbps (64-chip DDR)

■ 15.625 kbps (64-chip SDR)

Lower data rates typically provide longer range and/or a more
robust link.

Link Layer Modes

The CYRF69213 IC device supports the following data packet
framing features:

SOP – Packets begin with a 2-symbol Start of Packet (SOP)
marker. This is required in GFSK and 8DR modes, but is optional
in DDR mode and is not supported in SDR mode; if framing is
disabled then an SOP event is inferred whenever two successive
correlations are detected. The SOP_CODE_ADR code used for
the SOP is different from that used for the ‘body’ of the packet,
and if desired may be a different length. SOP must be configured
to be the same length on both sides of the link.

EOP – There are two options for detecting the end of a packet.
If SOP is enabled, then a packet length field may be enabled.
GFSK and 8DR must enable the length field. This is the first
8 bits after the SOP symbol, and is transmitted at the payload
data rate. If the length field is enabled, an End of Packet (EOP)
condition is inferred after reception of the number of bytes
defined in the length field, plus two bytes for the CRC16 (if
enabled—see below). The alternative to using the length field is
to infer an EOP condition from a configurable number of
successive non correlations; this option is not available in GFSK
mode and is only recommended when using SDR mode.

CRC16 – The device may be configured to append a 16-bit
CRC16 to each packet. The CRC16 uses the USB CRC
polynomial with the added programmability of the seed. If
enabled, the receiver verifies the calculated CRC16 for the
payload data against the received value in the CRC16 field. The
starting value for the CRC16 calculation is configurable, and the
CRC16 transmitted may be calculated using either the loaded
seed value or a zero seed; the received data CRC16 is checked
against both the configured and zero CRC16 seeds.

CRC16 detects the following errors:

■ Any one bit in error

■ Any two bits in error (irrespective of how far apart, which col-
umn, and so on)

■ Any odd number of bits in error (irrespective of the location)

■ An error burst as wide as the checksum itself

Figure 2 on page 7 shows an example packet with SOP, CRC16
and lengths fields enabled.

Table 3. Internal PA Output Power Step Table

PA Setting Typical Output Power (dBm)

7 +4

6 0

5 –5

4 –10

3 –15

2 –20

1 –25

0 –30

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 7 of 77

Figure 2. Example Default Packet Format

Packet Buffers

Packet data and configuration registers are accessed through
the SPI interface. All configuration registers are directly
addressed through the address field in the SPI packet. Configu-
ration registers are provided to allow configuration of DSSS PN
codes, data rate, operating mode, interrupt masks, interrupt
status, and others.

Packet Buffers

All data transmission and reception uses the 16-byte packet
buffers—one for transmission and one for reception.

The transmit buffer allows a complete packet of up to 16 bytes of
payload data to be loaded in one burst SPI transaction,.This is
then transmitted with no further MCU intervention. Similarly, the
receive buffer allows an entire packet of payload data up to 16
bytes to be received with no firmware intervention required until
packet reception is complete.

The CYRF69213 IC supports packet length of up to 40 bytes;
interrupts are provided to allow an MCU to use the transmit and
receive buffers as FIFOs. When transmitting a packet longer
than 16 bytes, the MCU can load 16 bytes initially, and add
further bytes to the transmit buffer as transmission of data
creates space in the buffer. Similarly, when receiving packets
longer than 16 bytes, the MCU function must fetch received data
from the FIFO periodically during packet reception to prevent it
from overflowing.

Auto Transaction Sequencer (ATS)

The CYRF69213 IC provides automated support for trans-
mission and reception of acknowledged data packets.

When transmitting a data packet, the device automatically starts
the crystal and synthesizer, enters transmit mode, transmits the
packet in the transmit buffer, and then automatically switches to
receive mode and waits for a handshake packet—and then
automatically reverts to sleep mode or idle mode when either an
ACK packet is received, or a timeout period expires.

Similarly, when receiving in transaction mode, the device waits
in receive mode for a valid packet to be received, then automat-
ically transitions to transmit mode, transmits an ACK packet, and
then switches back to receive mode to await the next packet. The
contents of the packet buffers are not affected by the trans-
mission or reception of ACK packets.

In each case, the entire packet transaction takes place without
any need for MCU firmware action; to transmit data the MCU
simply needs to load the data packet to be transmitted, set the
length, and set the TX GO bit. Similarly, when receiving packets
in transaction mode, firmware simply needs to retrieve the fully

received packet in response to an interrupt request indicating
reception of a packet.

Interrupts

The radio function provides an interrupt (IRQ) output, which is
configurable to indicate the occurrence of various different
events. The IRQ pin may be programmed to be either active high
or active low, and be either a CMOS or open drain output. The
IRQ pin can be multiplexed on the SPI if routed to an external pin.

The radio function features three sets of interrupts: transmit,
receive, and system interrupts. These interrupts all share a
single pin (IRQ), but can be independently enabled/disabled. In
transmit mode, all receive interrupts are automatically disabled,
and in receive mode all transmit interrupts are automatically
disabled. However, the contents of the enable registers are
preserved when switching between transmit and receive modes.

If more than one radio interrupt is enabled at any time, it is
necessary to read the relevant status register to determine which
event caused the IRQ pin to assert. Even when a given interrupt
source is disabled, the status of the condition that would
otherwise cause an interrupt can be determined by reading the
appropriate status register. It is therefore possible to use the
devices without making use of the IRQ pin by polling the status
register(s) to wait for an event, rather than using the IRQ pin.

The microcontroller function supports 23 maskable interrupts in
the vectored interrupt controller. Interrupt sources include a USB
bus reset, LVR/POR, a programmable interval timer, a 1.024-ms
output from the Free Running Timer, three USB endpoints, two
capture timers, five GPIO Ports, three GPIO pins, two SPI, a
16-bit free running timer wrap, an internal wakeup timer, and a
bus active interrupt. The wakeup timer causes periodic interrupts
when enabled. The USB endpoints interrupt after a USB trans-
action complete is on the bus. The capture timers interrupt
whenever a new timer value is saved due to a selected GPIO
edge event. A total of eight GPIO interrupts support both TTL or
CMOS thresholds. For additional flexibility, on the edge sensitive
GPIO pins, the interrupt polarity is programmable to be either
rising or falling.

Clocks

The radio function has a 12 MHz crystal (30-ppm or better)
directly connected between XTAL and GND without the need for
external capacitors. A digital clock out function is provided, with
selectable output frequencies of 0.75, 1.5, 3, 6, or 12 MHz. This
output may be used to clock an external microcontroller (MCU)
or ASIC. This output is enabled by default, but may be disabled.

P S O P 1 S O P 2 L e n g th C R C 1 6P a y lo a d D a ta

P re a m b le
n x 1 6 u s

1 s t F ra m in g
S ym b o l*

2 n d F ra m in g
S ym b o l*

P a c k e t
le n g th
1 B y te
P e rio d

*N o te :3 2 o r 6 4 u s

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 8 of 77

Following are the requirements for the crystal to be directly
connected to XTAL pin and GND:

■ Nominal Frequency: 12 MHz

■ Operating Mode: Fundamental Mode

■ Resonance Mode: Parallel Resonant

■ Frequency Stability: ±30 ppm

■ Series Resistance: <60 ohms

■ Load Capacitance: 10 pF

■ Drive Level:100 μW

The MCU function features an internal oscillator. With the
presence of USB traffic, the internal oscillator can be set to
precisely tune to USB timing requirements (24 MHz ±1.5%). The
clock generator provides the 12 MHz and 24 MHz clocks that
remain internal to the microcontroller.

GPIO Interface

The MCU function features up to 20 general purpose I/O (GPIO)
pins to support USB, PS/2, and other applications. The I/O pins
are grouped into five ports (Port 0 to 4). The pins on Port 0 and
Port 1 may each be configured individually while the pins on
Ports 2, 3, and 4 may only be configured as a group. Each GPIO
port supports high impedance inputs, configurable pull up, open
drain output, CMOS/TTL inputs, and CMOS output with up to five
pins that support programmable drive strength of up to 50 mA
sink current. GPIO Port 1 features four pins that interface at a
voltage level of 3.3 volts. Additionally, each I/O pin can be used
to generate a GPIO interrupt to the microcontroller. Each GPIO
port has its own GPIO interrupt vector with the exception of GPIO
Port 0. GPIO Port 0 has three dedicated pins that have
independent interrupt vectors (P0.3–P0.4).

Power On Reset/Low Voltage Detect

The power on reset circuit detects logic when power is applied
to the device, resets the logic to a known state, and begins
executing instructions at Flash address 0x0000. When power
falls below a programmable trip voltage, it generates reset or
may be configured to generate interrupt. There is a low voltage
detect circuit that detects when VCC drops below a program-
mable trip voltage. It may be configurable to generate an LVD
interrupt to inform the processor about the low voltage event.
POR and LVD share the same interrupt. There is not a separate
interrupt for each. The Watchdog timer can be used to ensure
the firmware never gets stalled in an infinite loop.

Power Management

The device draws its power supply from the USB Vbus line. The
Vbus supplies power to the MCU function, which has an internal
3.3 V regulator. This 3.3 V is supplied to the radio function via
P1.2/VREG after proper filtering as shown in Figure 3.

Figure 3. Power Management From Internal Regulator

Timers

The free-running 16-bit timer provides two interrupt sources: the
programmable interval timer with 1 μs resolution and the
1.024 ms outputs. The timer can be used to measure the
duration of an event under firmware control by reading the timer
at the start and at the end of an event, then calculating the
difference between the two values.

USB Interface

The MCU function includes an integrated USB serial interface
engine (SIE) that allows the chip to easily interface to a USB
host. The hardware supports one USB device address with three
endpoints.

Low Noise Amplifier (LNA) and Received
Signal Strength Indication (RSSI)

The gain of the receiver may be controlled directly by clearing
the AGC EN bit and writing to the Low Noise Amplifier (LNA) bit
of the RX_CFG_ADR register. When the LNA bit is cleared, the
receiver gain is reduced by approximately 20 dB, allowing
accurate reception of very strong received signals (for example
when operating a receiver very close to the transmitter). An
additional 20 dB of receiver attenuation can be added by setting
the Attenuation (ATT) bit; this allows data reception to be limited
to devices at very short ranges. Disabling AGC and enabling
LNA is recommended unless receiving from a device using
external PA.

The RSSI register returns the relative signal strength of the
on-channel signal power.

When receiving, the device may be configured to automatically
measure and store the relative strength of the signal being
received as a 5-bit value. When enabled, an RSSI reading is

PRoC LP

V
R

e
g

V
B

a
t0

V
B

a
t1

V
B

a
t2

V
C

C
1

V
C

C
2

V
C

C
3

L
/D

V
IO

0.047µF

0.047µF

0.047µF

0.047µF

0.047µF0.047µF

0.047µF

0.047µF

VDD_MICRO

VDD

0.1µF

P1.2 / VReg

1 ohm

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 9 of 77

taken and may be read through the SPI interface. An RSSI
reading is taken automatically when the start of a packet is
detected. In addition, a new RSSI reading is taken every time the
previous reading is read from the RSSI register, allowing the
background RF energy level on any given channel to be easily
measured when RSSI is read when no signal is being received.
A new reading can occur as fast as once every 12 μs.

SPI Interface

The SPI interface between the MCU function and the radio
function is a 3-wire SPI Interface. The three pins are MOSI
(Master Out Slave In), SCK (Serial Clock), SS (Slave Select).
There is an alternate 4-wire MISO Interface that requires the
connection of two external pins. The SPI interface is controlled
by configuring the SPI Configure Register (SICR Address:
0x3D).

3-Wire SPI Interface

The radio function receives a clock from the MCU function on the
SCK pin. The MOSI pin is multiplexed with the MISO pin. Bidirec-
tional data transfer takes place between the MCU function and
the radio function through this multiplexed MOSI pin. When using
this mode the user firmware should ensure that the MOSI pin on
the MCU function is in a high impedance state, except when the
MCU is actively transmitting data. Firmware must also control the
direction of data flow and switch directions between MCU
function and radio function by setting the SWAP bit [Bit 7] of the
SPI Configure Register. The SS pin is asserted prior to initiating
a data transfer between the MCU function and the radio function.
The IRQ function may be optionally multiplexed with the MOSI
pin; when this option is enabled the IRQ function is not available
while the SS pin is low. When using this configuration, user
firmware should ensure that the MOSI function on MCU function
is in a high impedance state whenever SS is high.

Figure 4. 3-Wire SPI Mode

4-Wire SPI Interface

The 4-wire SPI communications interface consists of MOSI,
MISO, SCK, and SS.

The device receives SCK from the MCU function on the SCK pin.
Data from the MCU function is shifted in on the MOSI pin. Data

to the MCU function is shifted out on the MISO pin. The active
low SS pin must be asserted for the two functions to commu-
nicate. The IRQ function may be optionally multiplexed with the
MOSI pin; when this option is enabled the IRQ function is not
available while the SS pin is low. When using this configuration,
user firmware should ensure that the MOSI function on MCU
function is in a high impedance state whenever SS is high.

Figure 5. 4-WIRE SPI Mode

SPI Communication and Transactions

The SPI transactions can be single byte or multi-byte. The MCU
function initiates a data transfer through a Command/Address
byte. The following bytes are data bytes. The SPI transaction
format is shown in Figure 6.

The DIR bit specifies the direction of data transfer. 0 = Master
reads from slave. 1 = Master writes to slave.

The INC bit helps to read or write consecutive bytes from
contiguous memory locations in a single burst mode operation.

If Slave Select is asserted and INC = 1, then the master MCU
function reads a byte from the radio, the address is incremented
by a byte location, and then the byte at that location is read, and
so on. If Slave Select is asserted and INC = 0, then the MCU
function reads/writes the bytes in the same register in burst
mode, but if it is a register file then it reads/writes the bytes in
that register file.

The SPI interface between the radio function and the MCU is not
dependent on the internal 12 MHz oscillator of the radio.
Therefore, radio function registers can be read from or written
into while the radio is in sleep mode.

SPI I/O Voltage References

The SPI interfaces between MCU function and the radio and the
IRQ and RST have a separate voltage reference VIO, enabling
the radio function to directly interface with the MCU function,
which operates at higher supply voltage. The internal SPIO pins
between the MCU function and radio function should be
connected with a regulated voltage of 3.3V (by setting [bit4] of
Registers P13CR, P14CR, P15CR, and P16CR of the MCU
function) and the internal 3.3V regulator of the MCU function
should be turned on.

MCU Function

P1.5/MOSI

P1.4/SCK

P1.3/nSS

MOSI

SCK

nSS

Radio Function

M
O

S
I

S
C

K

n
S

S

MOSI/MISO multiplexed
 on one MOSI pin

MCU Function

P1.5/MOSI

P1.4/SCK

P1.3/nSS

P1.6/MISO

MOSI

SCK

nSS

Radio Function

MISO

M
O

S
I

S
C

K

n
S

S

This connection is external to the PRoC LP Chip

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 10 of 77

SPI Connects to External Devices

The three SPI wires, MOSI, SCK, and SS are also drawn out of
the package as external pins to allow the user to interface their
own external devices (such as optical sensors and others)

through SPI. The radio function also has its own SPI wires MISO

and IRQ, which can be used to send data back to the MCU

function or send an interrupt request to the MCU function. They

can also be configured as GPIO pins.

CPU Architecture

This family of microcontrollers is based on a high performance,
8-bit, Harvard-architecture microprocessor. Five registers
control the primary operation of the CPU core. These registers
are affected by various instructions, but are not directly acces-
sible through the register space by the user.

The 16-bit Program Counter Register (CPU_PC) allows for direct
addressing of the full eight Kbytes of program memory space.

The Accumulator Register (CPU_A) is the general purpose
register that holds the results of instructions that specify any of
the source addressing modes.

The Index Register (CPU_X) holds an offset value that is used
in the indexed addressing modes. Typically, this is used to
address a block of data within the data memory space.

The Stack Pointer Register (CPU_SP) holds the address of the
current top-of-stack in the data memory space. It is affected by
the PUSH, POP, LCALL, CALL, RETI, and RET instructions,
which manage the software stack. It can also be affected by the
SWAP and ADD instructions.

The Flag Register (CPU_F) has three status bits: Zero Flag bit
[1]; Carry Flag bit [2]; Supervisory State bit [3]. The Global
Interrupt Enable bit [0] is used to globally enable or disable inter-
rupts. The user cannot manipulate the Supervisory State status
bit [3]. The flags are affected by arithmetic, logic, and shift opera-
tions. The manner in which each flag is changed is dependent
upon the instruction being executed (for example, AND, OR,
XOR). See Table 21.

Figure 6. SPI Transaction Format

Byte 1 Byte 1+N

Bit# 7 6 [5:0] [7:0]

Bit Name DIR INC Address Data

Table 4. CPU Registers and Register Names

Register Register Name

Flags CPU_F

Program Counter CPU_PC

Accumulator CPU_A

Stack Pointer CPU_SP

Index CPU_X

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 11 of 77

CPU Registers

Flags Register

The Flags Register can only be set or reset with logical
instruction.

Accumulator Register

Table 5. CPU Flags Register (CPU_F) [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved XIO Super Carry Zero Global IE

Read/Write – – – R/W R RW RW RW

Default 0 0 0 0 0 0 1 0

Bits 7:5 Reserved

Bit 4 XIO

Set by the user to select between the register banks

0 = Bank 0

1 = Bank 1

Bit 3 Super

Indicates whether the CPU is executing user code or Supervisor Code. (This code cannot be accessed directly by the

user.)

0 = User Code

1 = Supervisor Code

Bit 2 Carry

Set by CPU to indicate whether there has been a carry in the previous logical/arithmetic operation

0 = No Carry

1 = Carry

Bit 1 Zero

Set by CPU to indicate whether there has been a zero result in the previous logical/arithmetic operation

0 = Not Equal to Zero

1 = Equal to Zero

Bit 0 Global IE

Determines whether all interrupts are enabled or disabled

0 = Disabled

1 = Enabled

Note CPU_F register is only readable with explicit register address 0xF7. The OR F, expr and AND F, expr instructions must be used
to set and clear the CPU_F bits

Table 6. CPU Accumulator Register (CPU_A)

Bit # 7 6 5 4 3 2 1 0

Field CPU Accumulator [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bits 7:0 CPU Accumulator [7:0]

8-bit data value holds the result of any logical/arithmetic instruction that uses a source addressing mode

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 12 of 77

Index Register

Stack Pointer Register

CPU Program Counter Low Register

Table 7. CPU X Register (CPU_X)

Bit # 7 6 5 4 3 2 1 0

Field X [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bits 7:0 X [7:0]

8-bit data value holds an index for any instruction that uses an indexed addressing mode

Table 8. CPU Stack Pointer Register (CPU_SP)

Bit # 7 6 5 4 3 2 1 0

Field Stack Pointer [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bits 7:0 Stack Pointer [7:0]

8-bit data value holds a pointer to the current top-of-stack

CPU Program Counter High Register

Table 9. CPU Program Counter High Register (CPU_PCH)

Bit # 7 6 5 4 3 2 1 0

Field Program Counter [15:8]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bits 7:0 Program Counter [15:8]

8-bit data value holds the higher byte of the program counter

Table 10. CPU Program Counter Low Register (CPU_PCL)

Bit # 7 6 5 4 3 2 1 0

Field Program Counter [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bits 7:0 Program Counter [7:0]

8-bit data value holds the lower byte of the program counter

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 13 of 77

Addressing Modes

Examples of the different addressing modes are discussed in
this section and example code is given.

Source Immediate

The result of an instruction using this addressing mode is placed
in the A register, the F register, the SP register, or the X register,
which is specified as part of the instruction opcode. Operand 1
is an immediate value that serves as a source for the instruction.
Arithmetic instructions require two sources. Instructions using
this addressing mode are two bytes in length.

Examples

Source Direct

The result of an instruction using this addressing mode is placed
in either the A register or the X register, which is specified as part
of the instruction opcode. Operand 1 is an address that points to
a location in either the RAM memory space or the register space
that is the source for the instruction. Arithmetic instructions
require two sources; the second source is the A register or X
register specified in the opcode. Instructions using this
addressing mode are two bytes in length.

Examples

Source Indexed

The result of an instruction using this addressing mode is placed
in either the A register or the X register, which is specified as part
of the instruction opcode. Operand 1 is added to the X register
forming an address that points to a location in either the RAM
memory space or the register space that is the source for the
instruction. Arithmetic instructions require two sources; the
second source is the A register or X register specified in the
opcode. Instructions using this addressing mode are two bytes
in length.

Examples

Destination Direct

The result of an instruction using this addressing mode is placed
within either the RAM memory space or the register space.
Operand 1 is an address that points to the location of the result.
The source for the instruction is either the A register or the X
register, which is specified as part of the instruction opcode.
Arithmetic instructions require two sources; the second source is
the location specified by Operand 1. Instructions using this
addressing mode are two bytes in length.

Examples

Table 11. Source Immediate

Opcode Operand 1

Instruction Immediate Value

ADD A, 7 ;In this case, the immediate value

;of 7 is added with the Accumulator,

;and the result is placed in the

;Accumulator.

MOV X, 8 ;In this case, the immediate value

;of 8 is moved to the X register.

AND F, 9 ;In this case, the immediate value

;of 9 is logically ANDed with the F

;register and the result is placed

;in the F register.

Table 12. Source Direct

Opcode Operand 1

Instruction Source Address

ADD A, [7] ;In this case, the value in

;the RAM memory location at

;address 7 is added with the

;Accumulator, and the result

;is placed in the Accumulator.

MOV X, REG[8] ;In this case, the value in

;the register space at address

;8 is moved to the X register.

Table 13. Source Indexed

Opcode Operand 1

Instruction Source Index

ADD A, [X+7] ;In this case, the value in

;the memory location at

;address X + 7 is added with

;the Accumulator, and the

;result is placed in the

;Accumulator.

MOV X, REG[X+8] ;In this case, the value in

;the register space at

;address X + 8 is moved to

;the X register.

Table 14. Destination Direct

Opcode Operand 1

Instruction Destination Address

ADD [7], A ;In this case, the value in

;the memory location at

;address 7 is added with the

;Accumulator, and the result

;is placed in the memory

;location at address 7. The

;Accumulator is unchanged.

MOV REG[8], A ;In this case, the Accumula-

;tor is moved to the regis-

;ter space location at

;address 8. The Accumulator

;is unchanged.

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 14 of 77

Destination Indexed

The result of an instruction using this addressing mode is placed
within either the RAM memory space or the register space.
Operand 1 is added to the X register forming the address that
points to the location of the result. The source for the instruction
is the A register. Arithmetic instructions require two sources; the
second source is the location specified by Operand 1 added with
the X register. Instructions using this addressing mode are two
bytes in length.

Example

Destination Direct Source Immediate

The result of an instruction using this addressing mode is placed
within either the RAM memory space or the register space.
Operand 1 is the address of the result. The source for the
instruction is Operand 2, which is an immediate value. Arithmetic
instructions require two sources; the second source is the
location specified by Operand 1. Instructions using this
addressing mode are three bytes in length.

Examples

Destination Indexed Source Immediate

The result of an instruction using this addressing mode is placed
within either the RAM memory space or the register space.
Operand 1 is added to the X register to form the address of the
result. The source for the instruction is Operand 2, which is an
immediate value. Arithmetic instructions require two sources; the
second source is the location specified by Operand 1 added with
the X register. Instructions using this addressing mode are three
bytes in length.

Examples

Destination Direct Source Direct

The result of an instruction using this addressing mode is placed
within the RAM memory. Operand 1 is the address of the result.
Operand 2 is an address that points to a location in the RAM
memory that is the source for the instruction. This addressing
mode is only valid on the MOV instruction. The instruction using
this addressing mode is three bytes in length.

Example

Table 15. Destination Indexed

Opcode Operand 1

Instruction Destination Index

ADD [X+7], A ;In this case, the value in the

;memory location at address X+7

;is added with the Accumulator,

;and the result is placed in

;the memory location at address

;x+7. The Accumulator is

;unchanged.

Table 16. Destination Direct Immediate

Opcode Operand 1 Operand 2

Instruction Destination Address Immediate Value

ADD [7], 5 ;In this case, value in the mem-

;ory location at address 7 is

;added to the immediate value of

;5, and the result is placed in

;the memory location at address 7.

MOV REG[8], 6 ;In this case, the immediate

;value of 6 is moved into the

;register space location at

;address 8.

Table 17. Destination Indexed Immediate

Opcode Operand 1 Operand 2

Instruction Destination Index Immediate Value

ADD [X+7], 5 ;In this case, the value in

;the memory location at

;address X+7 is added with

;the immediate value of 5,

;and the result is placed

;in the memory location at

;address X+7.

MOV REG[X+8], 6 ;In this case, the immedi-

;ate value of 6 is moved

;into the location in the

;register space at

;address X+8.

Table 18. Destination Direct Source Direct

Opcode Operand 1 Operand 2

Instruction Destination Address Source Address

MOV [7], [8] ;In this case, the value in the

;memory location at address 8 is

;moved to the memory location at

;address 7.

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 15 of 77

Source Indirect Post Increment

The result of an instruction using this addressing mode is placed
in the Accumulator. Operand 1 is an address pointing to a
location within the memory space, which contains an address
(the indirect address) for the source of the instruction. The
indirect address is incremented as part of the instruction
execution. This addressing mode is only valid on the MVI
instruction. The instruction using this addressing mode is two
bytes in length. Refer to the PSoC Designer: Assembly
Language User Guide for further details on MVI instruction.

Example

Destination Indirect Post Increment

The result of an instruction using this addressing mode is placed
within the memory space. Operand 1 is an address pointing to a
location within the memory space, which contains an address
(the indirect address) for the destination of the instruction. The
indirect address is incremented as part of the instruction
execution. The source for the instruction is the Accumulator. This
addressing mode is only valid on the MVI instruction. The
instruction using this addressing mode is two bytes in length.

Example

Table 19. Source Indirect Post Increment

Opcode Operand 1

Instruction Source Address Address

MVI A, [8] ;In this case, the value in the

;memory location at address 8 is

;an indirect address. The memory

;location pointed to by the indi-

;rect address is moved into the

;Accumulator. The indirect

;address is then incremented.

Table 20. Destination Indirect Post Increment

Opcode Operand 1

Instruction Destination Address Address

MVI [8], A ;In this case, the value in

;the memory location at

;address 8 is an indirect

;address. The Accumulator is

;moved into the memory loca-

;tion pointed to by the indi-

;rect address. The indirect

;address is then incremented.

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 16 of 77

Instruction Set Summary

The instruction set is summarized in Table 21 numerically and
serves as a quick reference. If more information is needed, the
Instruction Set Summary tables are described in detail in the

PSoC Designer Assembly Language User Guide (available on
www.cypress.com).

Table 21. Instruction Set Summary Sorted Numerically by Opcode Order[1, 2]

O
p

c
o

d
e

 H
e

x

C
y

c
le

s

B
y
te

s

Instruction Format Flags

O
p

c
o

d
e

 H
e

x

C
y

c
le

s

B
y
te

s

Instruction Format Flags

O
p

c
o

d
e

 H
e

x

C
y

c
le

s

B
y
te

s

Instruction Format Flags

00 15 1 SSC 2D 8 2 OR [X+expr], A Z 5A 5 2 MOV [expr], X

01 4 2 ADD A, expr C, Z 2E 9 3 OR [expr], expr Z 5B 4 1 MOV A, X Z

02 6 2 ADD A, [expr] C, Z 2F 10 3 OR [X+expr], expr Z 5C 4 1 MOV X, A

03 7 2 ADD A, [X+expr] C, Z 30 9 1 HALT 5D 6 2 MOV A, reg[expr] Z

04 7 2 ADD [expr], A C, Z 31 4 2 XOR A, expr Z 5E 7 2 MOV A, reg[X+expr] Z

05 8 2 ADD [X+expr], A C, Z 32 6 2 XOR A, [expr] Z 5F 10 3 MOV [expr], [expr]

06 9 3 ADD [expr], expr C, Z 33 7 2 XOR A, [X+expr] Z 60 5 2 MOV reg[expr], A

07 10 3 ADD [X+expr], expr C, Z 34 7 2 XOR [expr], A Z 61 6 2 MOV reg[X+expr], A

08 4 1 PUSH A 35 8 2 XOR [X+expr], A Z 62 8 3 MOV reg[expr], expr

09 4 2 ADC A, expr C, Z 36 9 3 XOR [expr], expr Z 63 9 3 MOV reg[X+expr], expr

0A 6 2 ADC A, [expr] C, Z 37 10 3 XOR [X+expr], expr Z 64 4 1 ASL A C, Z

0B 7 2 ADC A, [X+expr] C, Z 38 5 2 ADD SP, expr 65 7 2 ASL [expr] C, Z

0C 7 2 ADC [expr], A C, Z 39 5 2 CMP A, expr if (A=B)
Z=1
if (A<B)
C=1

66 8 2 ASL [X+expr] C, Z

0D 8 2 ADC [X+expr], A C, Z 3A 7 2 CMP A, [expr] 67 4 1 ASR A C, Z

0E 9 3 ADC [expr], expr C, Z 3B 8 2 CMP A, [X+expr] 68 7 2 ASR [expr] C, Z

0F 10 3 ADC [X+expr], expr C, Z 3C 8 3 CMP [expr], expr 69 8 2 ASR [X+expr] C, Z

10 4 1 PUSH X 3D 9 3 CMP [X+expr], expr 6A 4 1 RLC A C, Z

11 4 2 SUB A, expr C, Z 3E 10 2 MVI A, [[expr]++] Z 6B 7 2 RLC [expr] C, Z

12 6 2 SUB A, [expr] C, Z 3F 10 2 MVI [[expr]++], A 6C 8 2 RLC [X+expr] C, Z

13 7 2 SUB A, [X+expr] C, Z 40 4 1 NOP 6D 4 1 RRC A C, Z

14 7 2 SUB [expr], A C, Z 41 9 3 AND reg[expr], expr Z 6E 7 2 RRC [expr] C, Z

15 8 2 SUB [X+expr], A C, Z 42 10 3 AND reg[X+expr], expr Z 6F 8 2 RRC [X+expr] C, Z

16 9 3 SUB [expr], expr C, Z 43 9 3 OR reg[expr], expr Z 70 4 2 AND F, expr C, Z

17 10 3 SUB [X+expr], expr C, Z 44 10 3 OR reg[X+expr], expr Z 71 4 2 OR F, expr C, Z

18 5 1 POP A Z 45 9 3 XOR reg[expr], expr Z 72 4 2 XOR F, expr C, Z

19 4 2 SBB A, expr C, Z 46 10 3 XOR reg[X+expr], expr Z 73 4 1 CPL A Z

1A 6 2 SBB A, [expr] C, Z 47 8 3 TST [expr], expr Z 74 4 1 INC A C, Z

1B 7 2 SBB A, [X+expr] C, Z 48 9 3 TST [X+expr], expr Z 75 4 1 INC X C, Z

1C 7 2 SBB [expr], A C, Z 49 9 3 TST reg[expr], expr Z 76 7 2 INC [expr] C, Z

1D 8 2 SBB [X+expr], A C, Z 4A 10 3 TST reg[X+expr], expr Z 77 8 2 INC [X+expr] C, Z

1E 9 3 SBB [expr], expr C, Z 4B 5 1 SWAP A, X Z 78 4 1 DEC A C, Z

1F 10 3 SBB [X+expr], expr C, Z 4C 7 2 SWAP A, [expr] Z 79 4 1 DEC X C, Z

20 5 1 POP X 4D 7 2 SWAP X, [expr] 7A 7 2 DEC [expr] C, Z

21 4 2 AND A, expr Z 4E 5 1 SWAP A, SP Z 7B 8 2 DEC [X+expr] C, Z

22 6 2 AND A, [expr] Z 4F 4 1 MOV X, SP 7C 13 3 LCALL

23 7 2 AND A, [X+expr] Z 50 4 2 MOV A, expr Z 7D 7 3 LJMP

24 7 2 AND [expr], A Z 51 5 2 MOV A, [expr] Z 7E 10 1 RETI C, Z

25 8 2 AND [X+expr], A Z 52 6 2 MOV A, [X+expr] Z 7F 8 1 RET

26 9 3 AND [expr], expr Z 53 5 2 MOV [expr], A 8x 5 2 JMP

27 10 3 AND [X+expr], expr Z 54 6 2 MOV [X+expr], A 9x 11 2 CALL

28 11 1 ROMX Z 55 8 3 MOV [expr], expr Ax 5 2 JZ

29 4 2 OR A, expr Z 56 9 3 MOV [X+expr], expr Bx 5 2 JNZ

2A 6 2 OR A, [expr] Z 57 4 2 MOV X, expr Cx 5 2 JC

2B 7 2 OR A, [X+expr] Z 58 6 2 MOV X, [expr] Dx 5 2 JNC

2C 7 2 OR [expr], A Z 59 7 2 MOV X, [X+expr] Ex 7 2 JACC

Fx 13 2 INDEX Z

Notes
1. Interrupt routines take 13 cycles before execution resumes at interrupt vector table.
2. The number of cycles required by an instruction is increased by one for instructions that span 256-byte boundaries in the Flash memory space.

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 17 of 77

Memory Organization

Flash Program Memory Organization

Table 22. Program Memory Space with Interrupt Vector Table

after reset Address

 16-bit PC 0x0000 Program execution begins here after a reset

0x0004 POR/LVD

0x0008 INT0

0x000C SPI Transmitter Empty

0x0010 SPI Receiver Full

0x0014 GPIO Port 0

0x0018 GPIO Port 1

0x001C INT1

0x0020 EP0

0x0024 EP1

0x0028 EP2

0x002C USB Reset

0x0030 USB Active

0x0034 1 ms Interval Timer

0x0038 Programmable Interval Timer

0x003C Reserved

0x0040 Reserved

0x0044 16-bit Free Running Timer Wrap

0x0048 INT2

0x004C Reserved

0x0050 GPIO Port 2

0x0054 Reserved

0x0058 Reserved

0x005C Reserved

0x0060 Reserved

0x0064 Sleep Timer

0x0068 Program Memory begins here (if below interrupts not used,
program memory can start lower)

0x1FFF 8 KB ends here

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 18 of 77

Data Memory Organization

The MCU function has 256 bytes of data RAM

Figure 7. Data Memory Organization

Flash

This section describes the Flash block of the CYRF69213. Much
of the user-visible Flash functionality, including programming
and security, are implemented in the M8C Supervisory Read
Only Memory (SROM). CYRF69213 Flash has an endurance of
1000 cycles and 10 year data retention.

Flash Programming and Security

All Flash programming is performed by code in the SROM. The
registers that control the Flash programming are only visible to
the M8C CPU when it is executing out of SROM. This makes it
impossible to read, write, or erase the Flash by bypassing the
security mechanisms implemented in the SROM.

Customer firmware can only program the Flash via SROM calls.
The data or code images can be sourced by way of any interface
with the appropriate support firmware. This type of programming
requires a ‘boot-loader’—a piece of firmware resident on the
Flash. For safety reasons this boot-loader should not be
overwritten during firmware rewrites.

The Flash provides four auxiliary rows that are used to hold Flash
block protection flags, boot time calibration values, configuration
tables, and any device values. The routines for accessing these
auxiliary rows are documented in the SROM section. The
auxiliary rows are not affected by the device erase function.

In-System Programming

Most designs that include an CYRF69213 part have a USB
connector attached to the USB D+/D– pins on the device. These
designs require the ability to program or reprogram a part
through these two pins alone.

CYRF69213 device enables this type of in-system programming
by using the D+ and D– pins as the serial programming mode
interface. This allows an external controller to cause the
CYRF69213 part to enter serial programming mode and then to
use the test queue to issue Flash access functions in the SROM.
The programming protocol is not USB.

SROM

The SROM holds code that is used to boot the part, calibrate
circuitry, and perform Flash operations. (Table 23 lists the SROM
functions.) The functions of the SROM may be accessed in
normal user code or operating from Flash. The SROM exists in
a separate memory space from user code. The SROM functions
are accessed by executing the Supervisory System Call
instruction (SSC), which has an opcode of 00h. Prior to
executing the SSC, the M8C’s accumulator needs to be loaded
with the desired SROM function code from Table 23. Undefined
functions causes a HALT if called from user code. The SROM
functions are executing code with calls; therefore, the functions
require stack space. With the exception of Reset, all of the
SROM functions have a parameter block in SRAM that must be
configured before executing the SSC. Table 24 lists all possible
parameter block variables. The meaning of each parameter, with
regards to a specific SROM function, is described later in this
section.

Two important variables that are used for all functions are KEY1
and KEY2. These variables are used to help discriminate
between valid SSCs and inadvertent SSCs. KEY1 must always
have a value of 3Ah, while KEY2 must have the same value as
the stack pointer when the SROM function begins execution.
This would be the Stack Pointer value when the SSC opcode is
executed, plus three. If either of the keys do not match the

after reset Address

8-bit PSP 0x00 Stack begins here and grows upward.

Top of RAM Memory 0xFF

Table 23. SROM Function Codes

Function Code Function Name Stack Space

00h SWBootReset 0

01h ReadBlock 7

02h WriteBlock 10

03h EraseBlock 9

05h EraseAll 11

06h TableRead 3

07h CheckSum 3

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 19 of 77

expected values, the M8C halts (with the exception of the
SWBootReset function). The following code puts the correct
value in KEY1 and KEY2. The code starts with a halt, to force the
program to jump directly into the setup code and not run into it.

halt

SSCOP: mov [KEY1], 3ah

mov X, SP

mov A, X

add A, 3

mov [KEY2], A

The SROM also features Return Codes and Lockouts.

Return Codes

Return codes aid in the determination of success or failure of a
particular function. The return code is stored in KEY1’s position
in the parameter block. The CheckSum and TableRead functions
do not have return codes because KEY1’s position in the
parameter block is used to return other data.

Read, write, and erase operations may fail if the target block is
read or write protected. Block protection levels are set during
device programming.

The EraseAll function overwrites data in addition to leaving the
entire user Flash in the erase state. The EraseAll function loops
through the number of Flash macros in the product, executing
the following sequence: erase, bulk program all zeros, erase.
After all the user space in all the Flash macros are erased, a
second loop erases and then programs each protection block
with zeros.

SROM Function Descriptions

All SROM functions are described in the following sections.

SWBootReset Function

The SROM function, SWBootReset, is the function that is
responsible for transitioning the device from a reset state to
running user code. The SWBootReset function is executed
whenever the SROM is entered with an M8C accumulator value
of 00h; the SRAM parameter block is not used as an input to the
function. This happens, by design, after a hardware reset,
because the M8C's accumulator is reset to 00h or when user
code executes the SSC instruction with an accumulator value of
00h. The SWBootReset function does not execute when the
SSC instruction is executed with a bad key value and a nonzero
function code. A CYRF69213 device executes the HALT
instruction if a bad value is given for either KEY1 or KEY2.

The SWBootReset function verifies the integrity of the calibration
data by way of a 16-bit checksum, before releasing the M8C to
run user code.

ReadBlock Function

The ReadBlock function is used to read 64 contiguous bytes
from Flash—a block.

The first thing this function does is to check the protection bits
and determine if the desired BLOCKID is readable. If read
protection is turned on, the ReadBlock function exits, setting the
accumulator and KEY2 back to 00h. KEY1 has a value of 01h,
indicating a read failure. If read protection is not enabled, the
function reads 64 bytes from the Flash using a ROMX instruction
and store the results in SRAM using an MVI instruction. The first
of the 64 bytes is stored in SRAM at the address indicated by the
value of the POINTER parameter. When the ReadBlock
completes successfully, the accumulator, KEY1, and KEY2 all
have a value of 00h.

WriteBlock Function

The WriteBlock function is used to store data in the Flash. Data
is moved 64 bytes at a time from SRAM to Flash using this
function. The first thing the WriteBlock function does is to check
the protection bits and determine if the desired BLOCKID is
writable. If write protection is turned on, the WriteBlock function
exits, setting the accumulator and KEY2 back to 00h. KEY1 has
a value of 01h, indicating a write failure. The configuration of the
WriteBlock function is straightforward. The BLOCKID of the
Flash block, where the data is stored, must be determined and
stored at SRAM address FAh.

Table 24. SROM Function Parameters

Variable Name SRAM Address

Key1/Counter/Return Code 0,F8h

Key2/TMP 0,F9h

BlockID 0,FAh

Pointer 0,FBh

Clock 0,FCh

Mode 0,FDh

Delay 0,FEh

PCL 0,FFh

Table 25. SROM Return Codes

Return Code Description

00h Success

01h Function not allowed due to level of protection
on block

02h Software reset without hardware reset

03h Fatal error, SROM halted

Table 26. ReadBlock Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value, when SSC is
executed

BLOCKID 0,FAh Flash block number

POINTER 0,FBh First of 64 addresses in SRAM
where returned data should be
stored

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 20 of 77

The SRAM address of the first of the 64 bytes to be stored in

Flash must be indicated using the POINTER variable in the

parameter block (SRAM address FBh). Finally, the CLOCK and

DELAY values must be set correctly. The CLOCK value deter-

mines the length of the write pulse that is used to store the data

in the Flash. The CLOCK and DELAY values are dependent on

the CPU speed. Refer to ‘Clocking’ Section for additional infor-

mation.

EraseBlock Function

The EraseBlock function is used to erase a block of 64

contiguous bytes in Flash. The first thing the EraseBlock function

does is to check the protection bits and determine if the desired

BLOCKID is writable. If write protection is turned on, the Erase-

Block function exits, setting the accumulator and KEY2 back to

00h. KEY1 has a value of 01h, indicating a write failure. The

EraseBlock function is only useful as the first step in

programming. Erasing a block does not cause data in a block to

be one hundred percent unreadable. If the objective is to oblit-

erate data in a block, the best method is to perform an Erase-

Block followed by a WriteBlock of all zeros.

To set up the parameter block for the EraseBlock function,

correct key values must be stored in KEY1 and KEY2. The block

number to be erased must be stored in the BLOCKID variable

and the CLOCK and DELAY values must be set based on the

current CPU speed.

ProtectBlock Function

The CYRF69213 device offers Flash protection on a

block-by-block basis. Table 29 lists the protection modes

available. In the table, ER and EW are used to indicate the ability

to perform external reads and writes. For internal writes, IW is

used. Internal reading is always permitted by way of the ROMX

instruction. The ability to read by way of the SROM ReadBlock

function is indicated by SR. The protection level is stored in two

bits according to Table 29. These bits are bit packed into the 64

bytes of the protection block. Therefore, each protection block

byte stores the protection level for four Flash blocks. The bits are

packed into a byte, with the lowest numbered block’s protection

level stored in the lowest numbered bits.

The first address of the protection block contains the protection

level for blocks 0 through 3; the second address is for blocks 4

through 7. The 64th byte stores the protection level for blocks

252 through 255.

The level of protection is only decreased by an EraseAll, which

places zeros in all locations of the protection block. To set the

level of protection, the ProtectBlock function is used. This

function takes data from SRAM, starting at address 80h, and

ORs it with the current values in the protection block. The result

of the OR operation is then stored in the protection block. The

EraseBlock function does not change the protection level for a

block. Because the SRAM location for the protection data is fixed

and there is only one protection block per Flash macro, the

ProtectBlock function expects very few variables in the

parameter block to be set prior to calling the function. The

parameter block values that must be set, besides the keys, are

the CLOCK and DELAY values.

Table 27. WriteBlock Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value, when SSC is
executed

BLOCKID 0,FAh 8 KB Flash block number (00h–7Fh)
4 KB Flash block number (00h–3Fh)
3 KB Flash block number (00h–2Fh)

POINTER 0,FBh First of 64 addresses in SRAM, where
the data to be stored in Flash is located
prior to calling WriteBlock

CLOCK 0,FCh Clock divider used to set the write
pulse width

DELAY 0,FEh For a CPU speed of 12 MHz set to 56h

Table 28. EraseBlock Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed

BLOCKID 0,FAh Flash block number (00h–7Fh)

CLOCK 0,FCh Clock divider used to set the erase
pulse width

DELAY 0,FEh For a CPU speed of 12 MHz set to 56h

Table 29. Protection Modes

Mode Settings Description Marketing

00b SR ER EW IW Unprotected Unprotected

01b SR ER EW IW Read protect Factory upgrade

10b SR ER EW IW Disable external
write

Field upgrade

11b SR ER EW IW Disable internal
write

Full protection

7 6 5 4 3 2 1 0

Block n+3 Block n+2 Block n+1 Block n

Table 30. ProtectBlock Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed

CLOCK 0,FCh Clock divider used to set the write
pulse width

DELAY 0,FEh For a CPU speed of 12 MHz set to 56h

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 21 of 77

EraseAll Function

The EraseAll function performs a series of steps that destroy the
user data in the Flash macros and resets the protection block in
each Flash macro to all zeros (the unprotected state). The
EraseAll function does not affect the three hidden blocks above
the protection block in each Flash macro. The first of these four
hidden blocks is used to store the protection table for its eight
Kbytes of user data.

The EraseAll function begins by erasing the user space of the
Flash macro with the highest address range. A bulk program of
all zeros is then performed on the same Flash macro, to destroy
all traces of the previous contents. The bulk program is followed
by a second erase that leaves the Flash macro in a state ready
for writing. The erase, program, erase sequence is then
performed on the next lowest Flash macro in the address space
if it exists. Following the erase of the user space, the protection
block for the Flash macro with the highest address range is
erased. Following the erase of the protection block, zeros are
written into every bit of the protection table. The next lowest
Flash macro in the address space then has its protection block
erased and filled with zeros.

The end result of the EraseAll function is that all user data in the
Flash is destroyed and the Flash is left in an unprogrammed
state, ready to accept one of the various write commands. The
protection bits for all user data are also reset to the zero state.

The parameter block values that must be set, besides the keys,
are the CLOCK and DELAY values.

TableRead Function

The TableRead function gives the user access to part specific
data stored in the Flash during manufacturing. It also returns a
Revision ID for the die (not to be confused with the Silicon ID).

The table space for the CYRF69213 is simply a 64-byte row
broken up into eight tables of eight bytes. The tables are

numbered zero through seven. All user and hidden blocks in the
CYRF69213 parts consist of 64 bytes.

An internal table holds the Silicon ID and returns the Revision ID.
The Silicon ID is returned in SRAM, while the Revision ID is
returned in the CPU_A and CPU_X registers. The Silicon ID is a
value placed in the table by programming the Flash and is
controlled by Cypress Semiconductor Product Engineering. The
Revision ID is hard coded into the SROM. The Revision ID is
discussed in more detail later in this section.

An internal table holds alternate trim values for the device and
returns a one-byte internal revision counter. The internal revision
counter starts out with a value of zero and is incremented each
time one of the other revision numbers is not incremented. It is
reset to zero each time one of the other revision numbers is
incremented. The internal revision count is returned in the
CPU_A register. The CPU_X register is always set to FFh when
trim values are read. The BLOCKID value, in the parameter
block, is used to indicate which table should be returned to the
user. Only the three least significant bits of the BLOCKID
parameter are used by the TableRead function for the
CYRF69213. The upper five bits are ignored. When the function
is called, it transfers bytes from the table to SRAM addresses
F8h–FFh.

The M8C’s A and X registers are used by the TableRead function
to return the die’s Revision ID. The Revision ID is a 16-bit value
hard coded into the SROM that uniquely identifies the die’s
design.

Checksum Function

The Checksum function calculates a 16-bit checksum over a
user specifiable number of blocks, within a single Flash macro
(Bank) starting from block zero. The BLOCKID parameter is
used to pass in the number of blocks to calculate the checksum
over. A BLOCKID value of 1 calculates the checksum of only
block 0, while a BLOCKID value of 0 calculates the checksum of
all 256 user blocks. The 16-bit checksum is returned in KEY1 and
KEY2. The parameter KEY1 holds the lower eight bits of the
checksum and the parameter KEY2 holds the upper eight bits of
the checksum.

The checksum algorithm executes the following sequence of
three instructions over the number of blocks times 64 to be
checksummed.

romx

add [KEY1], A

adc [KEY2], 0

Table 31. EraseAll Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed

CLOCK 0,FCh Clock divider used to set the write pulse
width

DELAY 0,FEh For a CPU speed of 12 MHz set to 56h

Table 32. Table Read Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed

BLOCKID 0,FAh Table number to read

Table 33. Checksum Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed

BLOCKID 0,FAh Number of Flash blocks to calculate
checksum on

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 22 of 77

SROM Table Read Description

Figure 8. SROM Table

The Silicon IDs for enCoRe II devices are stored in SROM tables in the part, as shown in Figure 8.

The Silicon ID can be read out from the part using SROM Table reads. This is demonstrated in the following pseudo code. As
mentioned in the section SROM on page 18, the SROM variables occupy address F8h through FFh in the SRAM. Each of the variables
and their definition in given in the section SROM on page 18.

AREA SSCParmBlkA(RAM,ABS)

 org F8h // Variables are defined starting at address F8h

SSC_KEY1: ; F8h supervisory key

SSC_RETURNCODE: blk 1 ; F8h result code

SSC_KEY2 : blk 1 ;F9h supervisory stack ptr key

SSC_BLOCKID: blk 1 ; FAh block ID

SSC_POINTER: blk 1 ; FBh pointer to data buffer

SSC_CLOCK: blk 1 ; FCh Clock

SSC_MODE: blk 1 ; FDh ClockW ClockE multiplier

SSC_DELAY: blk 1 ; FEh flash macro sequence delay count

SSC_WRITE_ResultCode: blk 1 ; FFh temporary result code

_main:

 mov A, 0

 mov [SSC_BLOCKID], A// To read from Table 0 - Silicon ID is stored in Table 0

//Call SROM operation to read the SROM table

mov X, SP ; copy SP into X

 mov A, X ; A temp stored in X

 add A, 3 ; create 3 byte stack frame (2 + pushed A)

 mov [SSC_KEY2], A ; save stack frame for supervisory code

 ; load the supervisory code for flash operations

 mov [SSC_KEY1], 3Ah ;FLASH_OPER_KEY - 3Ah

 mov A,6 ; load A with specific operation. 06h is the code for Table read Table 23

 SSC ; SSC call the supervisory ROM

// At the end of the SSC command the silicon ID is stored in F8 (MSB) and F9(LSB) of the SRAM

.terminate:

 jmp .terminate

F8h

Table 0

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

F9h F8h F8h F8h F8h F8h F8h

Silicon ID

[15-8]

Silicon ID

[7-0]

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 23 of 77

Clocking

The CYRF69213 internal oscillator outputs two frequencies, the Internal 24 MHz Oscillator and the 32 kHz Low power Oscillator.

The Internal 24 MHz Oscillator is designed such that it may be trimmed to an output frequency of 24 MHz over temperature and voltage
variation. With the presence of USB traffic, the Internal 24 MHz Oscillator can be set to precisely tune to USB timing requirements (24
MHz ± 1.5%). Without USB traffic, the Internal 24 MHz Oscillator accuracy is 24 MHz ± 5% (between 0°–70°C). No external compo-
nents are required to achieve this level of accuracy.

The internal low speed oscillator of nominally 32 KHz provides a slow clock source for the CYRF69213 in suspend mode, particularly
to generate a periodic wakeup interrupt and also to provide a clock to sequential logic during power up and power down events when
the main clock is stopped. In addition, this oscillator can also be used as a clocking source for the Interval Timer clock (ITMRCLK)
and Capture Timer clock (TCAPCLK). The 32 kHz Low power Oscillator can operate in low power mode or can provide a more accurate
clock in normal mode. The Internal 32 kHz Low power Oscillator accuracy ranges (between 0° – 70° C) as follows:

5V Normal mode: –8% to + 16%

5V LP mode: +12% to + 48%

When using the 32 kHz oscillator the PITMRL/H should be read until two consecutive readings match before sending/receiving data.
The following firmware example assumes the developer is interested in the lower byte of the PIT.

Read_PIT_counter:

mov A, reg[PITMRL]

mov [57h], A

mov A, reg[PITMRL]

mov [58h], A

mov [59h], A

mov A, reg{PITMRL]

mov [60h], A

;;;Start comparison

mov A, [60h]

mov X, [59h]

sub A, [59h]

jz done

mov A, [59h]

mov X, [58h]

sub A, [58h]

jz done

mov X, [57h]

;;;correct data is in memory location 57h

done:

mov [57h], X

ret

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 24 of 77

Clock Architecture Description

The CYRF69213 clock selection circuitry allows the selection of
independent clocks for the CPU, USB, Interval Timers, and
Capture Timers.

The CPU clock, CPUCLK, can be sourced from the external
crystal oscillator or the Internal 24 MHz Oscillator. The selected
clock source can optionally be divided by 2n where n is 0–5,7
(see Table 37).

USBCLK, which must be 12 MHz for the USB SIE to function
properly, can be sourced by the Internal 24 MHz Oscillator or the
external crystal oscillator. An optional divide-by-two allows the
use of the 24 MHz source.

The Interval Timer clock (ITMRCLK), can be sourced from the
external crystal oscillator, the Internal 24 MHz Oscillator, the

Internal 32 kHz Low power Oscillator, except when in sleep
mode, or from the timer capture clock (TCAPCLK). A program-
mable prescaler of 1, 2, 3, 4 then divides the selected source.

The Timer Capture clock (TCAPCLK) can be sourced from the
external crystal oscillator, Internal 24 MHz Oscillator, or the
Internal 32 kHz Low power Oscillator except when in sleep
mode.

When it is not being used by the external crystal oscillator, the
CLKOUT pin can be driven from one of many sources. This is
used for test and can also be used in some applications.

Figure 9. Clock Block Diagram

CPU_CLK

EXT

24 MHz

MUX CLK_USB

SEL SCALE

CLK_24MHz

CLK_EXT

CPUCLK

SEL

MUX

SCALE (divide by 2n,

n = 0-5,7)

CLK_32
KHz

LP OSC
32 KHz

SEL SCALE OUT

0 X 12 MHz

0 X 12 MHz

1 1 EXT/2

1 1 EXT

[+] Feedback

 CYRF69213

Document #: 001-07552 Rev. *D Page 25 of 77

The sources that can drive the CLKOUT are:

■ CLKIN after the optional EFTB filter

■ Internal 24 MHz Oscillator

■ Internal 32 kHz Low power Oscillator except when in sleep
mode

■ CPUCLK after the programmable divider

Table 34. IOSC Trim (IOSCTR) [0x34] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field foffset[2:0] Gain[4:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Default 0 0 0 D D D D D

The I/OSC Calibrate register is used to calibrate the internal oscillator. The reset value is undefined, but during boot the SROM writes
a calibration value that is determined during manufacturing test. This value should not require change during normal use. This is the
meaning of ‘D’ in the Default field

Bits 7:5 foffset [2:0]

This value is used to trim the frequency of the internal oscillator. These bits are not used in factory calibration and is

zero. Setting each of these bits causes the appropriate fine offset in oscillator frequency

foffset bit 0 = 7.5 KHz

foffset bit 1 = 15 KHz

foffset bit 2 = 30 KHz

Bits 4:0 Gain [4:0]

The effective frequency change of the offset input is controlled through the gain input. A lower value of the gain setting

increases the gain of the offset input. This value sets the size of each offset step for the internal oscillator. Nominal

gain change (KHz/offsetStep) at each bit, typical conditions (24 MHz operation):

Gain bit 0 = –1.5 KHz

Gain bit 1 = –3.0 KHz

Gain bit 2 = –6 KHz

Gain bit 3 = –12 KHz

Gain bit 4 = –24 KHz

Table 35. LPOSC Trim (LPOSCTR) [0x36] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field
32 kHz Low
Power

Reserved 32 kHz Bias Trim [1:0] 32 kHz Freq Trim [3:0]

Read/Write R/W – R/W R/W R/W R/W R/W R/W

Default 0 D D D D D D D

This register is used to calibrate the 32 kHz Low speed Oscillator. The reset value is undefined, but during boot the SROM writes a calibration
value that is determined during manufacturing test. This value should not require change during normal use. This is the meaning of ‘D’ in
the Default field. If the 32 kHz Low power bit needs to be written, care should be taken not to disturb the 32 kHz Bias Trim and the 32 kHz
Freq Trim fields from their factory calibrated values
Bit 7 32 kHz Low Power

0 = The 32 kHz Low speed Oscillator operates in normal mode

1 = The 32 kHz Low speed Oscillator operates in a low power mode. The oscillator continues to function normally but with

reduced accuracy

Bit 6 Reserved

Bits 5:4 32 kHz Bias Trim [1:0]

These bits control the bias current of the low power oscillator.

0 0 = Mid bias

0 1 = High bias

1 0 = Reserved

1 1 = Reserved

Important Note Do not program the 32 kHz Bias Trim [1:0] field with the reserved 10b value, as the oscillator does not oscillate at all corner
conditions with this setting
Bits 3:0 32 kHz Freq Trim [3:0]

These bits are used to trim the frequency of the low power oscillator

[+] Feedback

	Contact us
	PRoC™ LP Features
	Block Diagram
	Applications
	Functional Description
	Functional Overview
	2.4 GHz Radio Function
	Data Transmission Modes
	USB Microcontroller Function

	Pinout
	Pin Configuration
	PRoC LP Functional Overview
	Functional Block Overview
	2.4 GHz Radio
	Frequency Synthesizer
	Baseband and Framer
	Data Rates and Data Transmission Modes
	Link Layer Modes

	Packet Buffers
	Packet Buffers

	Auto Transaction Sequencer (ATS)
	Interrupts
	Clocks
	GPIO Interface
	Power On Reset/Low Voltage Detect
	Power Management
	Timers
	USB Interface
	Low Noise Amplifier (LNA) and Received Signal Strength Indication (RSSI)

	SPI Interface
	3-Wire SPI Interface
	4-Wire SPI Interface
	SPI Communication and Transactions
	SPI I/O Voltage References
	SPI Connects to External Devices

	CPU Architecture
	CPU Registers
	Flags Register
	Accumulator Register
	Index Register
	Stack Pointer Register

	CPU Program Counter High Register
	Addressing Modes
	Source Immediate
	Source Direct
	Source Indexed
	Destination Direct
	Destination Indexed
	Destination Direct Source Immediate
	Destination Indexed Source Immediate
	Destination Direct Source Direct

	Source Indirect Post Increment
	Destination Indirect Post Increment

	Instruction Set Summary
	Memory Organization
	Flash Program Memory Organization
	Data Memory Organization
	Flash
	Flash Programming and Security
	In-System Programming

	SROM
	Return Codes

	SROM Function Descriptions
	SWBootReset Function
	ReadBlock Function
	WriteBlock Function
	EraseBlock Function
	ProtectBlock Function
	EraseAll Function
	TableRead Function
	

	SROM Table Read Description
	Clocking
	Clock Architecture Description

