imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CYW20732A0

Single-Chip Bluetooth Low-Energy Only SoC

The Cypress CYW20732A0 is a Bluetooth Low-Energy (BLE)-only SoC. The CYW20732A0 radio has been designed to provide low power, low cost, and robust communications for applications operating in the globally available 2.4 GHz unlicensed Industrial, Scientific, and Medical (ISM) band.

The single-chip BLE SoC is a monolithic component implemented in a standard digital CMOS process and requires minimal external components to make a fully compliant Bluetooth device. The CYW20732A0 is available in a 32-pin, 5 mm × 5 mm 32-QFN package.

Cypress Part Numbering Scheme

Cypress is converting the acquired IoT part numbers from Broadcom to the Cypress part numbering scheme. Due to this conversion, there is no change in form, fit, or function as a result of offering the device with Cypress part number marking. The table provides Cypress ordering part number that matches an existing IoT part number.

Table 1. Mapping Table for Part Number between Broadcom and Cypress

Broadcom Part Number	Cypress Part Number
BCM20732	CYW20732
BCM20732A0KML2G	CYW20732A0KML2G

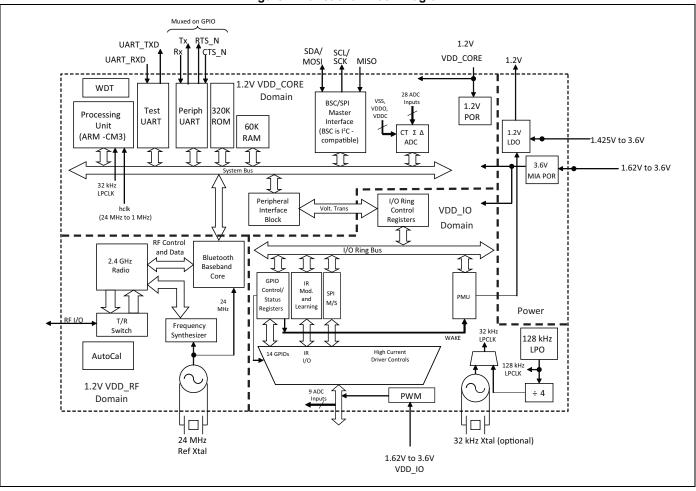
Features

- Bluetooth Low-Energy (BLE)-compliant
- Infrared modulator
- IR learning
- Supports Adaptive Frequency Hopping
- Excellent receiver sensitivity
- 10-bit auxiliary ADC with nine analog channels
- On-chip support for serial peripheral interface (master and slave modes)
- Cypress CypressSerial Control (BSC) interface (compatible with NXP I²C slaves)
- Programmable output power control
- Integrated ARM Cortex-M3 based microprocessor core
- On-chip power-on reset (POR)
- Support for EEPROM and serial flash interfaces
- Integrated Low DropOut (LDO) regulator
- On-chip, software controlled power management unit
- 32-pin 32-QFN (5 mm × 5 mm) package
- RoHS compliant

Applications

The following profiles are supported in ROM:

- Battery status
- Blood pressure monitor
- Find me
- Heart rate monitor
- Proximity
- Thermometer
- Weight scale
- Time


Additional profiles that can be supported from RAM include:

- Blood glucose monitor
- Temperature alarm
- Location

Full qualification and use of these profiles may require firmware updates from Cypress. Some profiles are under development/ approval at Bluetooth SIG and conformity with the final approved version is pending. Contact your supplier for updates and the latest list of profiles.

198 Champion Court

Figure 1. Functional Block Diagram

IoT Resources

Cypress provides a wealth of data at http://www.cypress.com/internet-things-iot to help you to select the right IoT device for your design, and quickly and effectively integrate the device into your design. Cypress provides customer access to a wide range of information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software updates. Customers can acquire technical documentation and software from the Cypress Support Community website (http://community.cypress.com/).

CYW20732A0

Contents

1. Functional Description	4
1.1 Bluetooth Baseband Core	
1.2 Infrared Modulator	5
1.3 Infrared Learning	5
1.4 ADC Port	6
1.5 Serial Peripheral Interface	6
1.6 Microprocessor Unit	7
1.7 Integrated Radio Transceiver	8
1.8 Peripheral Transport Unit	
1.9 Clock Frequencies	
1.10 GPIO Port	
1.11 PWM	
1.12 Power Management Unit	

2. Pin Assignments	15
2.1 Pin Descriptions	
2.2 Ball Maps	19
3. Specifications	
3.1 Electrical Characteristics	
3.2 RF Specifications	23
3.3 Timing and AC Characteristics	24
3.4 ESD Test Models	
4. Mechanical Information	
5. Ordering Information	
A. Appendix: Acronyms and Abbreviations	32
Document History	33

1. Functional Description

1.1 Bluetooth Baseband Core

The Bluetooth Baseband Core (BBC) implements all of the time-critical functions required for high performance Bluetooth operation. The BBC manages the buffering, segmentation, and data routing for all connections. It also buffers data that passes through it, handles data flow control, schedules ACL TX/RX transactions, monitors Bluetooth slot usage, optimally segments and packages data into baseband packets, manages connection status indicators, and composes and decodes HCI packets. In addition to these functions, it independently handles HCI event types and HCI command types.

The following transmit and receive functions are also implemented in the BBC hardware to increase TX/RX data reliability and security before sending over the air:

- Receive Functions: symbol timing recovery, data deframing, forward error correction (FEC), header error control (HEC), cyclic redundancy check (CRC), data decryption, and data dewhitening.
- Transmit Functions: data framing, FEC generation, HEC generation, CRC generation, link key generation, data encryption, and data whitening.

1.1.1 Frequency Hopping Generator

The frequency hopping sequence generator selects the correct hopping channel number depending on the link controller state, Bluetooth clock, and device address.

1.1.2 E0 Encryption

The encryption key and the encryption engine are implemented using dedicated hardware to reduce software complexity and provide minimal processor intervention.

1.1.3 Link Control Layer

The link control layer is part of the Bluetooth link control functions that are implemented in dedicated logic in the link control unit (LCU). This layer consists of the Command Controller, which takes software commands, and other controllers that are activated or configured by the Command Controller to perform the link control tasks. Each task performs a different Bluetooth link controller state. STANDBY and CONNECTION are the two major states. In addition, there are five substates: page, page scan, inquiry, and inquiry scan.

1.1.4 Adaptive Frequency Hopping

The CYW20732 gathers link quality statistics on a channel-by-channel basis to facilitate channel assessment and channel map selection. The link quality is determined by using both RF and baseband signal processing to provide a more accurate frequency hop map.

1.1.5 Bluetooth Low Energy Profiles

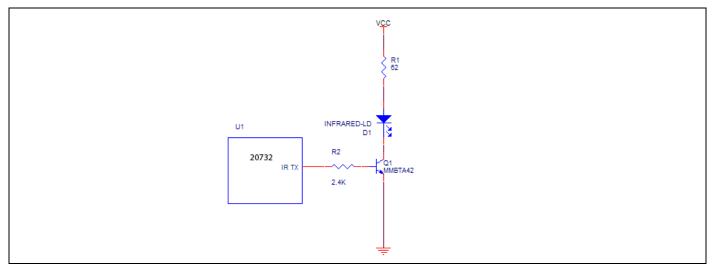
The CYW20732 supports Bluetooth low-energy, including the following profiles that are supported¹ in ROM:

- Battery status
- Blood pressure monitor
- Find me
- Heart rate monitor
- Proximity
- Thermometer
- Weight scale
- Time

The following additional profiles can be supported¹ from RAM:

- Blood glucose monitor
- Temperature alarm
- Location
- Custom profile

^{1.} Full qualification and use of these profiles may require firmware updates from Cypress. Some of these profiles are under development/approval at the Bluetooth SIG and conformity with the final approved version is pending. Contact your supplier for updates and the latest list of profiles.


1.1.6 Test Mode Support

The CYW20732 fully supports Bluetooth Test mode, as described in the Bluetooth low energy specification.

1.2 Infrared Modulator

The CYW20732 includes hardware support for infrared TX. The hardware can transmit both modulated and un-modulated waveforms. For modulated waveforms, hardware inserts the desired carrier frequency into all IR transmissions. IR TX can be sourced from firmware-supplied descriptors, a programmable bit, or the peripheral UART transmitter.

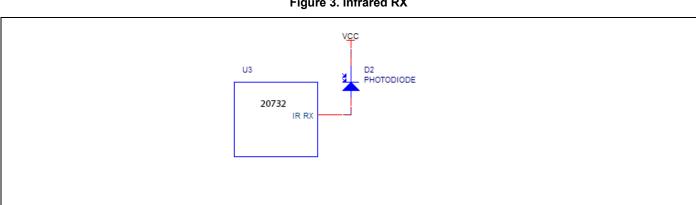

If descriptors are used, they include IR on/off state and the duration between 1 and 32,767 µsec. The CYW20732 IR TX firmware driver inserts this information in a hardware FIFO and makes sure that all descriptors are played out without a glitch due to under run (see Figure 2 on page 5).

Figure 2. Infrared TX

1.3 Infrared Learning

The CYW20732 includes hardware support for infrared learning. The hardware can detect both modulated and unmodulated signals. For modulated signals, the CYW20732 can detect carrier frequencies between 10 kHz- 500 kHz and the duration that the signal is present or absent. The CYW20732 firmware driver supports further analysis and compression of learned signal. The learned signal can then be played back through the CYW20732 IR TX subsystem (see Figure 3).

Figure 3. Infrared RX

1.4 ADC Port

The CYW20732 contains a 16-bit ADC (effective number of bits is 10). Additionally:

- There are nine analog input channels in the 32-pin package
- The following GPIOs can be used as ADC inputs:

```
P0
P1
P8/P33 (select only one)
P11
P12
P13/P28 (select only one)
P14/P38 (select only one)
P15
P32
```

- The conversion time is 10 µs.
- There is a built-in reference with supply- or bandgap-based reference modes.
- The maximum conversion rate is 187 kHz.
- There is a rail-to-rail input swing.

The ADC consists of an analog ADC core that performs the actual analog-to-digital conversion and digital hardware that processes the output of the ADC core into valid ADC output samples. Directed by the firmware, the digital hardware also controls the input multiplexers that select the ADC input signal V_{inp} and the ADC reference signals V_{ref} .

The ADC input range is selectable by firmware control:

- When an input range of 0–3.6V is used, the input impedance is 3 M Ω .
- When an input range of 0–2.4V is used, the input impedance is 1.84 MΩ.
- When an input range of 0–1.2V is used, the input impedance is 680 kΩ.

ADC modes are defined in Table 2.

Table 2. ADC Modes

Mode	ENOB (Typical)	Maximum Sampling Rate (kHz)	Latency ^a (µs)
0	13	5.859	171
1	12.6	11.7	85
2	12	46.875	21
3	11.5	93.75	11
4	10	187	5

a.Settling time after switching channels.

1.5 Serial Peripheral Interface

The CYW20732 has two independent SPI interfaces. One is a master-only interface and the other can be either a master or a slave. Each interface has a 16-byte transmit buffer and a 16-byte receive buffer. To support more flexibility for user applications, the CYW20732 has optional I/O ports that can be configured individually and separately for each functional pin as shown in Table 3, Table 4, and Table 5. The CYW20732 acts as a SPI master device that supports 1.8V or 3.3V SPI slaves. The CYW20732 can also act as an SPI slave device that supports a 1.8V or 3.3V SPI master.

Table 3. CYW20732 First SPI Set (Master Mode)

Pin Name	SPI_CLK	SPI_MOSI	SPI_MISO	SPI_CS ^a
Configured Pin Name	SCL	SDA	P24	-
	-	-	P26	-
	-	-	P32	-

a. Any GPIO can be used as SPI_CS when SPI is in master mode.

Table 4. CYW20732 Second SPI Set (Master Mode)

Pin Name	SPI_CLK	SPI_MOSI	SPI_MISO	SPI_CS ^a
Configured Pin Name	P3	P0	P1	-
	-	P4	P25	-
	P24	P27	-	-

a. Any GPIO can be used as SPI_CS when SPI is in master mode.

Table 5. CYW20732 Second SPI Set (Slave Mode)

Pin Name	SPI_CLK	SPI_MOSI	SPI_MISO	SPI_CS
Configured Pin Name	P3	P0	P1	P2
	-	P27	-	-
	P24	P33	P25	P26
	-	-	-	P32

1.6 Microprocessor Unit

The CYW20732 microprocessor unit (μ PU) executes software from the link control (LC) layer up to the application layer components. The microprocessor is based on an ARM Cortex-M3, 32-bit RISC processor with embedded ICE-RT debug and JTAG interface units. The μ PU has 320 KB of ROM for program storage and boot-up, 60 KB of RAM for scratch-pad data, and patch RAM code. The SoC has a total storage of 380 KB, including RAM and ROM.

The internal boot ROM provides power-on reset flexibility, which enables the same device to be used in different HID applications with an external serial EEPROM or with an external serial flash memory. At power-up, the lowest layer of the protocol stack is executed from the internal ROM memory.

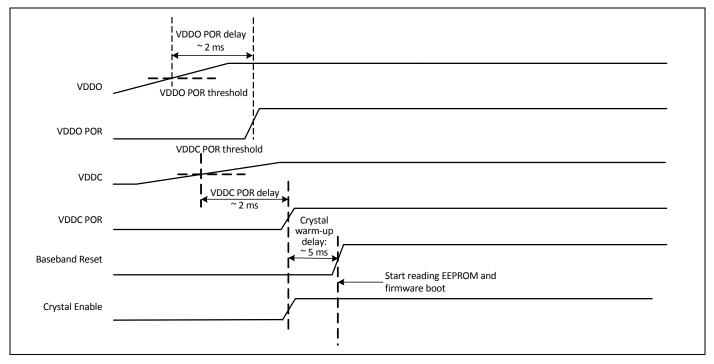
External patches may be applied to the ROM-based firmware to provide flexibility for bug fixes and feature additions. The device can also support the integration of user applications.

1.6.1 EEPROM Interface

The CYW20732 provides a Cypress Serial Control (CSC) master interface. BSC is programmed by the CPU to generate four types of bus transfers: read-only, write-only, combined read/write, and combined write/read. BSC supports both low-speed and fast mode devices. BSC is compatible with an NXP I²C slave device, except that master arbitration (multiple I²C masters contending for the bus) is not supported.

The EEPROM can contain customer application configuration information including application code, configuration data, patches, pairing information, BD_ADDR, baud rate, SDP service record, and file system information used for code.

Native support for the Microchip 24LC128, Microchip 24AA128, and the STMicroelectronics M24128-BR is included.


1.6.2 Serial Flash Interface

The CYW20732 includes an SPI master controller that can be used to access serial flash memory. The SPI master contains an AHB slave interface, transmit and receive FIFOs, and the SPI core PHY logic.

Devices natively supported include the following:

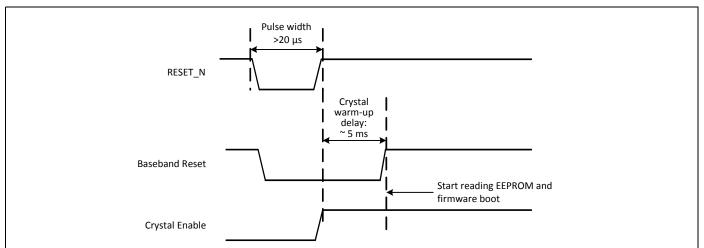

- Atmel AT25BCM512B
- MXIC MX25V512ZUI-20G
- 1.6.3 Internal Reset

Figure 4. Internal Reset Timing

1.6.4 External Reset

The CYW20732 has an integrated power-on reset circuit that completely resets all circuits to a known power-on state. An external active low reset signal, RESET_N, can be used to put the CYW20732 in the reset state. The RESET_N pin has an internal pull-up resistor and, in most applications, it does not require that anything be connected to it. RESET_N should only be released after the VDDO supply voltage level has been stabilized.

Figure 5. External Reset Timing

1.7 Integrated Radio Transceiver

The CYW20732 has an integrated radio transceiver that is optimized for 2.4 GHz Bluetooth wireless systems. It has been designed to provide low power, low cost, and robust communications for applications operating in the globally available 2.4 GHz unlicensed ISM band. It is fully compliant with Bluetooth Radio Specification 4.0 and meets or exceeds the requirements to provide the highest communication link quality of service.

1.7.1 Transmitter Path

The CYW20732 features a fully integrated transmitter. The baseband transmit data is GFSK modulated in the 2.4 GHz ISM band.

1.7.2 Digital Modulator

The digital modulator performs the data modulation and filtering required for the GFSK signal. The fully digital modulator minimizes any frequency drift or anomalies in the modulation characteristics of the transmitted signal.

1.7.3 Power Amplifier

The CYW20732 has an integrated power amplifier (PA) that can transmit up to +4 dBm for class 2 operation.

1.7.4 Receiver Path

The receiver path uses a low IF scheme to downconvert the received signal for demodulation in the digital demodulator and bit synchronizer. The receiver path provides a high degree of linearity, an extended dynamic range, and high-order, on-chip channel filtering to ensure reliable operation in the noisy 2.4 GHz ISM band. The front-end topology, which has built-in out-of-band attenuation, enables the CYW20732 to be used in most applications without off-chip filtering.

1.7.5 Digital Demodulator and Bit Synchronizer

The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency tracking and bit synchronization algorithm.

1.7.6 Receiver Signal Strength Indicator

The radio portion of the CYW20732 provides a receiver signal strength indicator (RSSI) to the baseband. This enables the controller to take part in a Bluetooth power-controlled link by providing a metric of its own receiver signal strength to determine whether the transmitter should increase or decrease its output power.

1.7.7 Local Oscillator

The local oscillator (LO) provides fast frequency hopping (1600 hops/second) across the 79 maximum available channels. The CYW20732 uses an internal loop filter.

1.7.8 Calibration

The CYW20732 radio transceiver features a self-contained automated calibration scheme. No user interaction is required during normal operation or during manufacturing to provide optimal performance. Calibration compensates for filter, matching network, and amplifier gain and phase characteristics to yield radio performance within 2% of what is optimal. Calibration takes process and temperature variations into account, and it takes place transparently during normal operation and hop setting times.

1.7.9 Internal LDO Regulator

The CYW20732 has an integrated 1.2V LDO regulator that provides power to the digital and RF circuits. The 1.2V LDO regulator operates from a 1.425V to 3.63V input supply with a 30 mA maximum load current.

Note: Always place the decoupling capacitors near the pins as closely together as possible.

1.8 Peripheral Transport Unit

1.8.1 Cypress Serial Communications Interface

The CYW20732 provides a 2-pin master BSC interface, which can be used to retrieve configuration information from an external EEPROM or to communicate with peripherals such as track-ball or touch-pad modules, and motion tracking ICs used in mouse devices. The BSC interface is compatible with I²C slave devices. The BSC does not support multimaster capability or flexible wait-state insertion by either master or slave devices.

The following transfer clock rates are supported by the BSC:

- 100 kHz
- 400 kHz
- 800 kHz (not a standard I²C-compatible speed.)

■ 1 MHz (Compatibility with high-speed I²C-compatible devices is not guaranteed.)

The following transfer types are supported by the BSC:

- Read (Up to 16 bytes can be read.)
- Write (Up to 16 bytes can be written.)
- Read-then-Write (Up to 16 bytes can be read and up to 16 bytes can be written.)
- Write-then-Read (Up to 16 bytes can be written and up to 16 bytes can be read.)

Hardware controls the transfers, requiring minimal firmware setup and supervision.

The clock pin (SCL) and data pin (SDA) are both open-drain I/O pins. Pull-up resistors external to the CYW20732 are required on both the SCL and SDA pins for proper operation.

1.8.2 UART Interface

The UART is a standard 2-wire interface (RX and TX) and has adjustable baud rates from 9600 bps to 115.2 Kbaud. The baud rate can be selected via a vendor-specific UART HCI command. The interface supports the Bluetooth 3.0 UART HCI (H4) specification. The default baud rate for H4 is 115.2 Kbaud.

Both high and low baud rates can be supported by running the UART clock at 24 MHz.

The CYW20732 UART operates correctly with the host UART as long as the combined baud rate error of the two devices is within ±5 percent

1.9 Clock Frequencies

The CYW20732 is set with a crystal frequency of 24 MHz.

1.9.1 Crystal Oscillator

The crystal oscillator requires a crystal with an accuracy of ± 20 ppm as defined by the Bluetooth specification. Two external load capacitors in the range of 5 pF to 30 pF (see Figure 6) are required to work with the crystal oscillator. The selection of the load capacitors is crystal-dependent.

Figure 6. Recommended Oscillator Configuration—12 pF Load Crystal

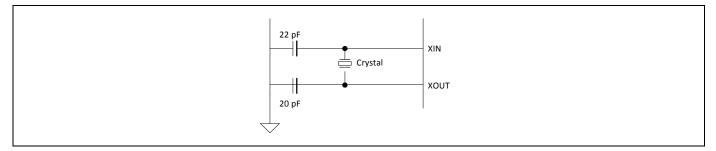
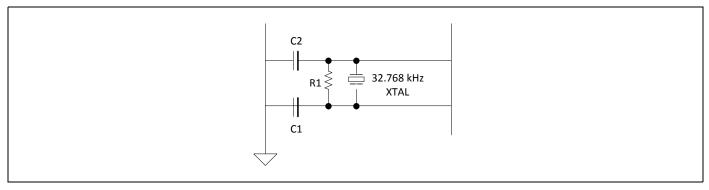


Table 6 shows the recommended crystal specifications.

Table 6. Reference	Crvsta	al Electrical	I Specificat	ions

Parameter	Conditions	Minimum	Typical	Maximum	Unit	
Nominal frequency	-	-	– 24.000 –			
Oscillation mode	-		Fundamental		-	
Frequency tolerance	@25°C	-	±10		ppm	
Tolerance stability over temp	@0°C to +70°C	-	±10	—	ppm	
Equivalent series resistance	-	-	-	60	Ω	
Load capacitance	-	-	12	—	pF	
Operating temperature range	-	0	-	+70	°C	
Storage temperature range	-	-40	-	+125	°C	
Drive level	-	-	-	200	μW	
Aging	_	_	_	±10	ppm/year	
Shunt capacitance	_	-	-	2	pF	

1.9.2 Peripheral Block


The CYW20732 peripheral blocks all run from a single 128 kHz low-power RC oscillator. The oscillator can be turned on at the request of any of the peripherals. If the peripheral is not enabled, it shall not assert its clock request line.

The keyboard scanner is a special case, in that it may drop its clock request line even when enabled, and then reassert the clock request line if a keypress is detected.

1.9.3 32 kHz Crystal Oscillator

Figure 7 shows the 32 kHz crystal (XTAL) oscillator with external components and Table 7 on page 11 lists the oscillator's characteristics. It is a standard Pierce oscillator using a comparator with hysteresis on the output to create a single-ended digital output. The hysteresis was added to eliminate any chatter when the input is around the threshold of the comparator and is ~100 mV. This circuit can be operated with a 32 kHz or 32.768 kHz crystal oscillator or be driven with a clock input at similar frequency. The default component values are: R1 = 10 M Ω , C1 = C2 = ~10 pF. The values of C1 and C2 are used to fine-tune the oscillator.

Table 7. XTAL Oscillator Characteristics

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Output frequency	F _{oscout}	-	-	32.768	-	kHz
Frequency tolerance	-	Crystal dependent	-	100	-	ppm
Start-up time	T _{startup}	-	-	-	500	ms
XTAL drive level	P _{drv}	For crystal selection	0.5	-	-	μW

Table 7. XTAL Oscillator Characteristics (Cont.)

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
XTAL series resis- tance	R _{series}	For crystal selection	-	_	70	kΩ
XTAL shunt capaci- tance	C _{shunt}	For crystal selection	-	_	1.3	pF

1.10 GPIO Port

The CYW20732 has 14 general-purpose I/Os (GPIOs) in the 32-pin package. All GPIOs support programmable pull-up and pull-down resistors, and all support a 2 mA drive strength except P26, P27, and P28, which provide a 16 mA drive strength at 3.3V supply.

The following GPIOs are available:

- P0–P4
- P8/P33 (Dual bonded, only one of two is available.)
- P11/P27 (Dual bonded, only one of two is available.)
- P12/P26 (Dual bonded, only one of two is available.)
- P13/P28 (Dual bonded, only one of two is available.)
- P14/P38 (Dual bonded, only one of two is available.)
- P15
- P24
- P25
- P32

For a description of all GPIOs, see Table 9 on page 16.

1.11 PWM

The CYW20732 has four internal PWM channels. The PWM module is described as follows:

- PWM0-3
- The following GPIOs can be mapped as PWMs:
- 🗆 P26
- 🗆 P27
- □ P14/P28 (Dual bonded, only one of two is available.)
- 🗆 P13
- Each of the PWM channels, PWM0–3, contains the following registers:
- □ 10-bit initial value register (read/write)
- □ 10-bit toggle register (read/write)
- □ 10-bit PWM counter value register (read)
- The PWM configuration register is shared among PWM0–3 (read/write). The 12-bit register is used:
- □ To configure each PWM channel.
- □ To select the clock of each PWM channel.
- To change the phase of each PWM channel.

Figure 8 shows the structure of one PWM channel.

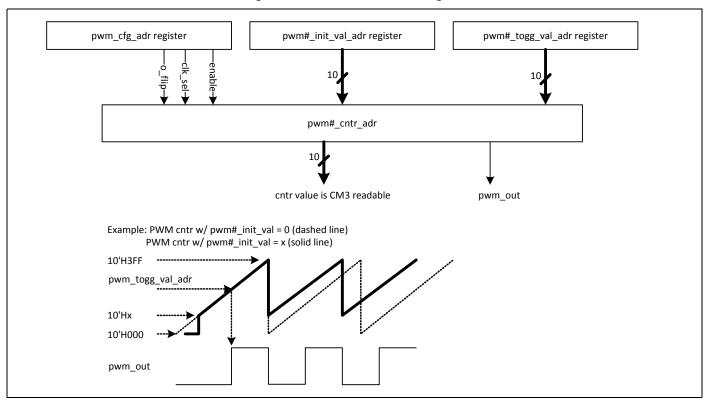


Figure 8. PWM Channel Block Diagram

1.12 Power Management Unit

The power management unit (PMU) provides power management features that can be invoked by software through power management registers or packet-handling in the baseband core.

1.12.1 RF Power Management

The BBC generates power-down control signals for the transmit path, receive path, PLL, and power amplifier to the 2.4 GHz transceiver, which then processes the power-down functions accordingly.

1.12.2 Host Controller Power Management

Power is automatically managed by the firmware based on input device activity. As a power-saving task, the firmware controls the disabling of the on-chip regulator when in deep sleep mode.

1.12.3 BBC Power Management

There are several low-power operations for the BBC:

- Physical layer packet handling turns RF on and off dynamically within packet TX and RX.
- Bluetooth-specified low-power connection mode. While in these low-power connection modes, the CYW20732 runs on the low power oscillator (LPO) and wakes up after a predefined time period.

The CYW20732 automatically adjusts its power dissipation based on user activity. The following power modes are supported:

- Active mode
- Idle mode
- Sleep mode
- HIDOFF (Deep Sleep) mode

The CYW20732 transitions to the next lower state after a programmable period of user inactivity. Busy mode is immediately entered when user activity resumes.

In HIDOFF (Deep Sleep) mode, the CYW20732 baseband and core are powered off by disabling power to LDOOUT. The VDDO domain remains powered up and will turn the remainder of the chip on when it detects user events. This mode minimizes chip power consumption and is intended for long periods of inactivity.

2. Pin Assignments

2.1 Pin Descriptions

Table 8. Pin Descriptions

Pin Number	Pin Name	I/O	Power Domain	Description
Radio I/O				
6	RF	I/O	VDD_RF	RF antenna port
RF Power Suppl	ies			
4	VDDIF	Ι	VDD_RF	IFPLL power supply
5	VDDFE	I	VDD_RF	RF front-end supply
7	VDDVCO	Ι	VDD_RF	VCO, LOGEN supply
8	VDDPLL	I	VDD_RF	RFPLL and crystal oscillator supply
Power Supplies				-
11	VDDC	Ι	VDDC	Baseband core supply
28	VDDO	I	VDDO	I/O pad and core supply
14	VDDM	1	VDDM	I/O pad supply
Clock Generator	and Crystal Interfa	ice		
9	XTALI	1	VDD_RF	Crystal oscillator input. See page 10 for options.
10	XTALO	0	VDD_RF	Crystal oscillator output.
1	XTALI32K	I	VDDO	LPO input is used. Alternative Function:
				■ P11
				■ P27
32	XTALO32K	0	VDDO	LPO output. Alternative Function:
				■ P12
				■ P26
Core				
18	RESET_N	I/O PU	VDDO	Active-low system reset with open-drain output & internal pull-up resistor
17	ТМС	I	VDDO	Test mode control High: test mode Connect to GND if not used.
UART				
12	UART_RXD	I	VDDM	UART serial input – Serial data input for the HCI UART interface. Leave unconnected if not used. Alternative function:
				■ GPIO3
13	UART_TXD	O, PU	VDDM	UART serial output – Serial data output for the HCI UART interface. Leave unconnected if not used. Alternative Function:
				■ GPIO2
BSC		1		

Table 8. Pin Descriptions (Cont.)

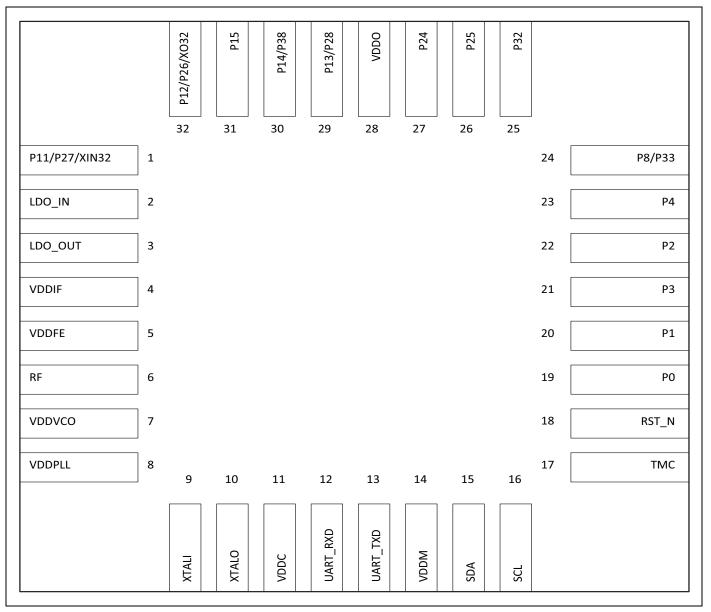
Pin Number	Pin Name	I/O	Power Domain	Description
15	SDA	I/O, PU	VDDM	Data signal for an external I ² C device. Alternative function:
				SPI_1: MOSI (master only)
				■ GPIO0
				■ CTS
16	SCL	I/O, PU	VDDM	Clock signal for an external I ² C device. Alternative function:
				SPI_1: SPI_CLK (master only)
				■ GPIO1
				■ RTS
LDO Regulator	Power Supplies			
2	LDOIN	Ι	N/A	Battery input supply for the LDO
3	LDOOUT	0	N/A	LDO output

Table 9. GPIO Pin Descriptions^a

Pin Number	Pin Name	Default Di- rection	After POR State	Power Do- main	Alternate Function Description
19	P0	Input	Input	VDDO	■ GPIO: P0
			floating		A/D converter input
					Peripheral UART: puart_tx
					SPI_2: MOSI (master and slave)
					■ IR_RX
					■ 60Hz_main
					Not available during TMC=1
20	P1	Input	Input	VDDO	■ GPIO: P1
			floating		A/D converter input
					Peripheral UART: puart_rts
					SPI_2: MISO (master and slave)
					■ IR_TX
21	P3	Input	Input	VDDO	■ GPIO: P3
			floating		Peripheral UART: puart_cts
					SPI_2: SPI_CLK (master and slave)
22	P2	Input	Input	VDDO	■ GPIO: P2
			floating		Peripheral UART: puart_rx
					■ SPI_2: SPI_CS (slave only)
					SPI_2: SPI_MOSI (master only)

Table 9. GPIO Pin Descriptions^a (Cont.)

Pin Number	Pin Name	Default Di- rection	After POR State	Power Do- main	Alternate Function Description
23	P4	Input	Input	VDDO	■ GPIO: P4
			floating		Peripheral UART: puart_rx
					SPI_2: MOSI (master and slave)
					■ IR_TX
24	P8	Input	Input	VDDO	■ GPIO: P8
			floating		A/D converter input
					External T/R switch control: ~tx_pd
	P33	Input	Input	VDDO	■ GPIO: P33
			floating		■ A/D converter input
					■ SPI_2: MOSI (slave only)
					Auxiliary clock output: ACLK1
					■ Peripheral UART: puart_rx
1	P11	Input	Input	VDDO	GPIO: P11
			floating		A/D converter input
					■ XTALI32K
	P27 PWM1	Input	Input floating	VDDO	■ GPIO: P27
			noaung		 SPI_2: MOSI (master and slave)
					Current: 16 mA
32	P12	Input	Input floating	VDDO	GPIO: P12
			libating		A/D converter input
					■ XTALO32K
	P26 PWM0	Input	Input floating	VDDO	■ GPIO: P26
			nouting		■ SPI_2: SPI_CS (slave only)
					■ SPI_1: MISO (master only)
					■ Current: 16 mA
29	P13	Input	Input	VDDO	
20	PWM3	input	floating	1000	■ GPIO: P13
					A/D converter input
	P28	Input	Input	VDDO	■ GPIO: P28
	PWM2		floating		A/D converter input
					■ LED1
					■ IR_TX
					Current: 16 mA


Table 9. GPIO Pin Descriptions^a (Cont.)

Pin Number	Pin Name	Default Di- rection	After POR State	Power Do- main	Alternate Function Description
30	P14 PWM2	Input	Input floating	VDDO	■ GPIO: P14
					A/D converter input
	P38	Input	Input	VDDO	■ GPIO: P38
			floating		A/D converter input
					SPI_2: MOSI (master and slave)
					■ IR_TX
31	P15	Input	Input	VDDO	■ GPIO: P15
			floating		A/D converter input
					■ IR_RX
					■ 60 Hz_main
27	P24	Input	Input	VDDO	■ GPIO: P24
			floating		SPI_2: SPI_CLK (master and slave)
					SPI_1: MISO (master only)
					Peripheral UART: puart_tx
26	P25	Input	Input	VDDO	■ GPIO: P25
			floating		SPI_2: MISO (master and slave)
					■ Peripheral UART: puart_rx
25	P32	Input	Input	VDDO	■ GPIO: P32
			floating		■ A/D converter input
					■ SPI_2: SPI_CS (slave only)
					■ SPI_1: MISO (master only)
					Auxiliary clock output: ACLK0
					■ Peripheral UART: puart_tx

a. During power-on reset, all inputs are disabled.

2.2 Ball Maps

3. Specifications

3.1 Electrical Characteristics

Table 10 shows the maximum electrical rating for voltages referenced to VDD pin.

Table 10. Maximum Electrical Rating

Rating	Symbol	Value	Unit
DC supply voltage for RF domain	-	1.4	V
DC supply voltage for core domain	-	1.4	V
DC supply voltage for VDDM domain (UART/I ² C)	-	3.8	V
DC supply voltage for VDDO domain	-	3.8	V
DC supply voltage for VR3V	-	3.8	V
DC supply voltage for VDDFE	-	1.4	V
Voltage on input or output pin	-	Vss – 0.3 to Vdd + 0.3	V
Operating ambient temperature range	Topr	-30 to +85	°C
Storage temperature range	Tstg	-40 to +125	°C

Table 11 shows the power supply characteristics for the range $T_J = 0$ to $125^{\circ}C$.

Table 11. Power Supply

Parameter	Minimum ^a	Typical	Maximum ^a	Unit
DC supply voltage for RF	1.14	1.2	1.26	V
DC supply voltage for Core	1.14	1.2	1.26	V
DC supply voltage for VDDM (UART/I ² C)	1.62	-	3.63	V
DC supply voltage for VDDO	1.62	-	3.63	V
DC supply voltage for LDOIN	1.425	-	3.63	V
DC supply voltage for VDDFE	1.14	1.2 ^b	1.26	V

a. Overall performance degrades beyond minimum and maximum supply voltages.

b. 1.2V for Class 2 output with internal VREG.

Table 12 shows the digital level characteristics for (VSS = 0V).

Table 12.	. LDO Regulator	Electrical S	pecifications
	- LDO Rogulator		poontoutiono

Parameter	Conditions	Min.	Тур.	Max.	Unit
Input voltage range	-	1.425	-	3.63	V
Default output voltage	-	-	1.2	-	V
Output voltage	Range	0.8	-	1.4	V
	Step size	-	40 or 80	-	mV
	Accuracy at any step	-5	-	+5	%
Load current	-	-	-	30	mA
Line regulation	Vin from 1.425 to 3.63V, I _{load} = 30 mA	-0.2	-	0.2	%V _O /V
Load regulation	I_{load} from 1 μA to 30 mA, Vin = 3.3V, Bonding R = 0.3Ω	-	0.1	0.2	%V _O /mA
Quiescent current	No load @Vin = 3.3V *Current limit enabled	-	6	-	μA
Power-down current	Vin = 3.3V, worst@70°C	-	5	200	nA

Table 13 shows the specifications for the ADC characteristics.

Table 13. ADC Specifications

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Number of Input channels	-	-	-	9	-	-
Channel switching rate	f _{ch}	-	-	-	133.33	kch/s
Input signal range	V _{inp}	-	0	-	3.63	V
Reference settling time	-	Changing refsel	7.5	-	-	μS
Input resistance	R _{inp}	Effective, single ended	-	500	-	kΩ
Input capacitance	C _{inp}	-	-	-	5	pF
Conversion rate	f _C	-	5.859	-	187	kHz
Conversion time	Т _С	-	5.35	-	170.7	μS
Resolution	R	-	-	16	-	bits
Effective number of bits	-	In specified performance range	-	See Table 2 on page 6	-	-
Absolute voltage measurement error	-	Using on-chip ADC firmware driver	-	±2	-	%
Current	Ι	I _{avdd1p2} + I _{avdd3p3}	-	-	1	mA
Power	Р	-	-	1.5	-	mW
Leakage current	I _{leakage}	T = 25°C	-	-	100	nA
Power-up time	Tpowerup	-	-	-	200	μs
Integral nonlinearity ³	INL	In guaranteed performance range	-1	-	1	LSB ^a
Differential nonlinearity ^a	DNL	In guaranteed performance range	-1	-	1	LSB ^a

a. LSBs are expressed at the 10-bit level.

Table 14 shows the specifications for the digital voltage levels.

Table 14. Digital Levels^a

Characteristics	Symbol	Min	Тур	Max	Unit
Input low voltage	V _{IL}	-	-	0.4	V
Input high voltage	V _{IH}	0.75 × VDDO	-	-	V
Input low voltage (VDDO = 1.62V)	V _{IL}	-	-	0.4	V
Input high voltage (VDDO = 1.62V)	V _{IH}	1.2	-	-	V
Output low voltage ^b	V _{OL}	-	-	0.4	V
Output high voltage ^b	V _{OH}	VDDO - 0.4	-	-	V
Input capacitance (VDDMEM domain)	C _{IN}	-	0.12	-	pF

a. This table is also applicable to VDDMEM domain.

b. At the specified drive current for the pad.

Table 15 shows the specifications for current consumption.

Table 15. Current Consumption ^a

Operational Mode	Conditions	Min	Тур	Max	Unit
Receive	Receiver and baseband are both operating, 100% ON.	-	9.8	-	mA
Transmit	Transmitter and baseband are both operating, 100% ON.	-	9.1	-	mA
Sleep	Internal LPO is in use.	-	12.0	-	μA
	-	_	0.65	-	

a. Currents measured between power terminals (Vdd) using 90% efficient DC-DC converter at 3V.

3.2 RF Specifications

Table 16. Receiver RF Specifications

Parameter	Mode and Conditions	Min	Тур	Мах	Unit
Receiver Section ^a					
Frequency range	-	2402	-	2480	MHz
RX sensitivity (standard)	0.1%BER, 1Mbps, dirty transmitter OFF	-	-93	-	dBm
RX sensitivity (low current)		-	-90	-	dBm
Input IP3	-	-16	-	-	dBm
Maximum input	-	-10	-	-	dBm
Interference Performance ^{a,b}			-		
C/I cochannel	0.1%BER	-	-	21	dB
C/I 1 MHz adjacent channel	0.1%BER	-	-	15	dB
C/I 2 MHz adjacent channel	0.1%BER	-	-	-17	dB
$C/I \ge 3 \text{ MHz}$ adjacent channel	0.1%BER	-	-	-27	dB
C/I image channel	0.1%BER	-	-	-9.0	dB
C/I 1 MHz adjacent to image channel	0.1%BER	-	-	-15	dB
Out-of-Band Blocking Performance (CW) ^{a,b}				
30 MHz to 2000 MHz	0.1%BER ^c	-	-30.0	-	dBm
2003 MHz to 2399 MHz	0.1%BER ^d	-	-35	-	dBm
2484 MHz to 2997 MHz	0.1%BER ^d	-	-35	-	dBm
3000 MHz to 12.75 GHz	0.1%BER ^e	-	-30.0	_	dBm
Spurious Emissions	•		·	·	
30 MHz to 1 GHz	_	-	-	-57.0	dBm
1 GHz to 12.75 GHz	-	-	-	-55.0	dBm

a.30.8% PER.

b. Desired signal is 3 dB above the reference sensitivity level (defined as -70 dBm).

c. Measurement resolution is 10 MHz.

d. Measurement resolution is 3 MHz.

e. Measurement resolution is 25 MHz.

Table 17. Transmitter RF Specifications

Parameter	Minimum	Typical	Maximum	Unit
Transmitter Section	·	·	·	·
Frequency range	2402	-	2480	MHz
Output power adjustment range	-20	-	4	dBm
Default output power	-	4.0	-	dBm
Output power variation	-	2.0	-	dB
Adjacent Channel Power				
M – N = 2	-	-	-20	dBm
$ M - N \ge 3$	-	-	-30	dBm
Out-of-Band Spurious Emission				
30 MHz to 1 GHz	-	-	-36.0	dBm
1 GHz to 12.75 GHz	-	-	-30.0	dBm
1.8 GHz to 1.9 GHz	-	-	-47.0	dBm
5.15 GHz to 5.3 GHz	-	-	-47.0	dBm
LO Performance				
Initial carrier frequency tolerance	-	-	±150	kHz
Frequency Drift				
Frequency drift	-	-	±50	kHz
Drift rate	-	-	20	kHz/50 µs
Frequency Deviation				
Average deviation in payload (sequence used is 00001111)	225	-	275	kHz
Maximum deviation in payload (sequence used is 10101010)	185	-	-	kHz
Channel spacing	-	2	_	MHz

3.3 Timing and AC Characteristics

In this section, use the numbers listed in the **Reference** column of each table to interpret the following timing diagrams.

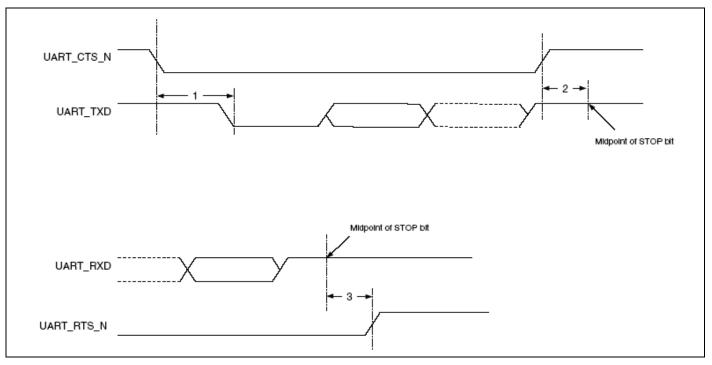

3.3.1 UART Timing

Table 18. UART Timing Specifications

Reference	Characteristics	Min	Max	Unit
1	Delay time, UART_CTS_N low to UART_TXD valid	-	24	Baud out cycles
2	Setup time, UART_CTS_N high before midpoint of stop bit	-	10	ns
3	Delay time, midpoint of stop bit to UART_RTS_N high	_	2	Baud out cycles

Figure 10. UART Timing

3.3.2 SPI Timing

The SPI interface supports clock speeds up to 12 MHz with VDDIO \geq 2.2V. The supported clock speed is 6 MHz when 2.2V > VDDIO \geq 1.62V.

Table 19. SPI Interface Timing Specifications

Reference	Characteristics	Min	Тур	Max
1	Time from CSN asserted to first clock edge	1 SCK	100	∞
2	Master setup time	-	½ SCK	-
3	Master hold time	½ SCK	-	-
4	Slave setup time	-	½ SCK	-
5	Slave hold time	½ SCK	-	-
6	Time from last clock edge to CSN deasserted	1 SCK	10 SCK	100

Figure 11 and Figure 12 on page 26 show the timing requirements when operating in SPI Mode 0 and 2, and SPI Mode 1 and 3, respectively.