# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





## 1.0 Features

- 2.4-GHz radio transceiver
- Operates in the unlicensed Industrial, Scientific, and Medical (ISM) band (2.4 GHz–2.483 GHz)
- –95-dBm receive sensitivity
- Up to 0dBm output power
- Range of up to 50 meters or more
- Data throughput of up to 62.5 kbits/sec
- Highly integrated low cost, minimal number of external components required
- Dual DSSS reconfigurable baseband correlators
- SPI microcontroller interface (up to 2-MHz data rate)
- 13-MHz input clock operation
- Low standby current < 1 μA</li>
- Integrated 32-bit Manufacturing ID
- Operating voltage from 2.7V to 3.6V
- Operating temperature from –40° to 85°C
- Offered in a small footprint 48 QFN or cost saving 28 SOIC

## 2.0 Functional Description

The CYWUSB6935 transceiver is a single-chip 2.4-GHz Direct Sequence Spread Spectrum (DSSS) Gaussian Frequency Shift Keying (GFSK) baseband modem radio that connects directly to a microcontroller.

The CYWUSB6935 is offered in an industrial temperature range 48-pin QFN, 28-pin SOIC, and a commercial temperature range 48-pin QFN.

## 3.0 Applications

- Building/Home Automation
  - Climate Control
  - Lighting Control
  - Smart Appliances
  - -On-Site Paging Systems
  - -Alarm and Security
- Industrial Control
  - Inventory Management
  - Factory Automation
  - Data Acquisition
- Automatic Meter Reading (AMR)
- Transportation
- Diagnostics
- Remote Keyless Entry
- Consumer / PC
  - -Locator Alarms
  - Presenter Tools
  - Remote Controls
  - Toys

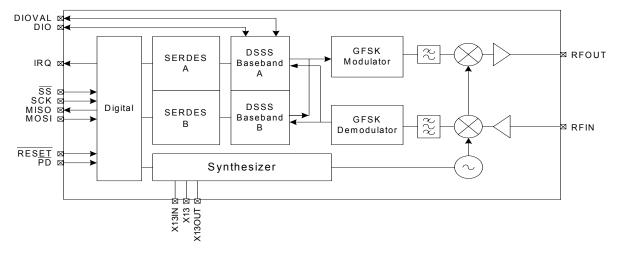



Figure 3-1. CYWUSB6935 Simplified Block Diagram



## 3.1 Applications Support

The CYWUSB6935 is supported by both the CY3632 WirelessUSB Development Kit and the CY3635 WirelessUSB N:1 Development Kit. The development kit provides all of the materials and documents needed to cut the cord on multipoint to point and point to point low bandwidth high node density applications including four small form-factor sensor boards and a hub board that connect to WirelessUSB LR RF module boards, comprehensive WirelessUSB protocol code examples and all of the associated schematics, gerber files and bill of materials. The WirelessUSB N:1 Development Kit is also supported by the WirelessUSB Listener Tool.

## 4.0 Functional Overview

The CYWUSB6935 provides a complete WirelessUSB LR SPI to antenna radio modem. The CYWUSB6935 is designed to implement wireless devices operating in the worldwide 2.4-GHz Industrial, Scientific, and Medical (ISM) frequency band (2.400GHz - 2.4835GHz). It is intended for systems compliant with world-wide regulations covered by ETSI EN 301 489-1 V1.4.1, ETSI EN 300 328-1 V1.3.1 (European Countries); FCC CFR 47 Part 15 (USA and Industry Canada) and ARIB STD-T66 (Japan).

The CYWUSB6935 contains a 2.4-GHz radio transceiver, a GFSK modem and a dual DSSS reconfigurable baseband. The radio and baseband are both code- and frequency-agile. Forty-nine spreading codes selected for optimal performance (Gold codes) are supported across 78 1-MHz channels yielding a theoretical spectral capacity of 3822 channels. The CYWUSB6935 supports a range of up to 50 meters or more.

### 4.1 2.4-GHz Radio

The receiver and transmitter are a single-conversion low-Intermediate Frequency (low-IF) architecture with fully integrated IF channel matched filters to achieve high performance in the presence of interference. An integrated Power Amplifier (PA) provides an output power control range of 30 dB in seven steps.

Both the receiver and transmitter integrated Voltage Controlled Oscillator (VCO) and synthesizer have the agility to cover the complete 2.4-GHz GFSK radio transmitter ISM band. The VCO loop filter is also integrated on-chip.

### 4.2 GFSK Modem

The transmitter uses a DSP-based vector modulator to convert the 1-MHz chips to an accurate GFSK carrier.

The receiver uses a fully integrated Frequency Modulator (FM) detector with automatic data slicer to demodulate the GFSK signal.

### 4.3 Dual DSSS Baseband

Data is converted to DSSS chips by a digital spreader. Despreading is performed by an oversampled correlator. The DSSS baseband cancels spurious noise and assembles properly correlated data bytes.

The DSSS baseband has four operating modes: 64 chips/bit Single Channel, 32 chips/bit Dual Channel, 32 chips/bit Single

Channel 2x Oversampled, and 32 chips/bit Single Channel Dual Data Rate (DDR).

#### 4.3.1 64 chips/bit Single Channel

The baseband supports a single data stream operating at 15.625 kbits/sec. The advantage of selecting this mode is its ability to tolerate a noisy environment. This is because the 15.625 kbits/sec data stream utilizes the longest PN Code resulting in the highest probability for recovering packets over the air. This mode can also be selected for systems requiring data transmissions over longer ranges.

#### 4.3.2 32 chips/bit Dual Channel

The baseband supports two non-simultaneous data streams each operating at 31.25 kbits/sec.

#### 4.3.3 32 chips/bit Single Channel 2x Oversampled

The baseband supports a single data stream operating at 31.25 kbits/sec that is sampled twice as much as the other modes. The advantage of selecting this mode is its ability to tolerate a noisy environment.

#### 4.3.4 32 chips/bit Single Channel Dual Data Rate (DDR)

The baseband spreads bits in pairs and supports a single data stream operating at 62.5 kbits/sec.

### 4.4 Serializer/Deserializer (SERDES)

CYWUSB6935 provides a data Serializer/Deserializer (SERDES), which provides byte-level framing of transmit and receive data. Bytes for transmission are loaded into the SERDES and receive bytes are read from the SERDES via the SPI interface. The SERDES provides double buffering of transmit and receive data. While one byte is being transmitted by the radio the next byte can be written to the SERDES data register insuring there are no breaks in transmitted data.

After a receive byte has been received it is loaded into the SERDES data register and can be read at any time until the next byte is received, at which time the old contents of the SERDES data register will be overwritten.

### 4.5 Application Interfaces

CYWUSB6935 has a fully synchronous SPI slave interface for connectivity to the application MCU. Configuration and byteoriented data transfer can be performed over this interface. An interrupt is provided to trigger real time events.

An optional SERDES Bypass mode (DIO) is provided for applications that require a synchronous serial bit-oriented data path. This interface is for data only.

### 4.6 Clocking and Power Management

A 13-MHz crystal is directly connected to X13IN and X13 without the need for external capacitors. The CYWUSB6935 has a programmable trim capability for adjusting the on-chip load capacitance supplied to the crystal. The Radio Frequency (RF) circuitry has on-chip decoupling capacitors. The CYWUSB6935 is powered from a 2.7V to 3.6V DC supply. The CYWUSB6935 can be shutdown to a fully static state using the PD pin.



- Nominal Frequency: 13 MHz
- Operating Mode: Fundamental Mode
- Resonance Mode: Parallel Resonant
- Frequency Stability: ± 30 ppm
- Series Resistance:  $\leq$  100 ohms
- · Load Capacitance: 10 pF
- Drive Level: 10uW-100 uW

## 4.7 Receive Signal Strength Indicator (RSSI)

The RSSI register (Reg 0x22) returns the relative signal strength of the ON-channel signal power and can be used to: 1) determine the connection quality, 2) determine the value of the noise floor, and 3) check for a quiet channel before transmitting.

The internal RSSI voltage is sampled through a 5-bit analogto-digital converter (ADC). A state machine controls the conversion process. Under normal conditions, the RSSI state machine initiates a conversion when an ON-channel carrier is detected and remains above the noise floor for over 50uS. The conversion produces a 5-bit value in the RSSI register (Reg 0x22, bits 4:0) along with a valid bit, RSSI register (Reg 0x22, bit 5). The state machine then remains in HALT mode and does not reset for a new conversion until the receive mode is toggled off and on. Once a connection has been established, the RSSI register can be read to determine the relative connection quality of the channel. A RSSI register value lower than 10 indicates that the received signal strength is low, a value greater than 28 indicates a strong signal level.

To check for a quiet channel before transmitting, first set up receive mode properly and read the RSSI register (Reg 0x22). If the valid bit is zero, then force the Carrier Detect register (Reg 0x2F, bit 7=1) to initiate an ADC conversion. Then, wait greater than 50uS and read the RSSI register again. Next, clear the Carrier Detect Register (Reg 0x2F, bit 7=0) and turn the receiver OFF. Measuring the noise floor of a quiet channel is inherently a 'noisy' process so, for best results, this procedure should be repeated several times (~20) to compute an average noise floor level. A RSSI register value of 0-10 indicates a channel that is relatively quiet. A RSSI register value greater than 10 indicates the channel is probably being used. A RSSI register value greater than 28 indicates the presence of a strong signal.

## 5.0 Application Interfaces

## 5.1 SPI Interface

The CYWUSB6935 has a four-wire SPI communication interface between an application MCU and one or more slave devices. The SPI interface supports single-byte and multi-byte serial transfers. The four-wire SPI communications interface consists of Master Out-Slave In (MOSI), Master In-Slave Out (MISO), Serial Clock (SCK), and Slave Select (SS).

The SPI receives SCK from an application MCU on the SCK pin. Data from the application MCU is shifted in on the MOSI pin. Data to the application MCU is shifted out on the MISO pin. The active-low Slave Select (SS) pin must be asserted to initiate a SPI transfer.

The application MCU can initiate a SPI data transfer via a multi-byte transaction. The first byte is the Command/Address byte, and the following bytes are the data bytes as shown in *Figure 5-1* through *Figure 5-4*. The SS signal should not be deasserted between bytes. The SPI communications is as follows:

- Command Direction (bit 7) = "0" Enables SPI read transaction. A "1" enables SPI write transactions.
- Command Increment (bit 6) = "1" Enables SPI auto address increment. When set, the address field automatically increments at the end of each data byte in a burst access, otherwise the same address is accessed.
- · Six bits of address.
- · Eight bits of data.

The SPI communications interface has a burst mechanism, where the command byte can be followed by as many data bytes as desired. A burst transaction is terminated by deasserting the slave select ( $\overline{SS} = 1$ ).

The SPI communications interface single read and burst read sequences are shown in *Figure 5-2* and *Figure 5-3*, respectively.

The SPI communications interface single write and burst write sequences are shown in *Figure 5-4* and *Figure 5-5*, respectively.



|          |     |     | Byte 1  | Byte 1+N |
|----------|-----|-----|---------|----------|
| Bit #    | 7   | 6   | [5:0]   | [7:0]    |
| Bit Name | DIR | INC | Address | Data     |

Figure 5-1. SPI Transaction Format

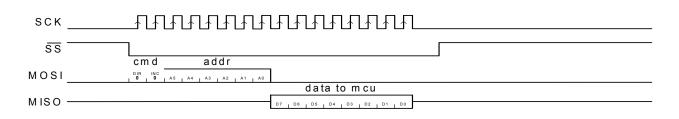



Figure 5-2. SPI Single Read Sequence

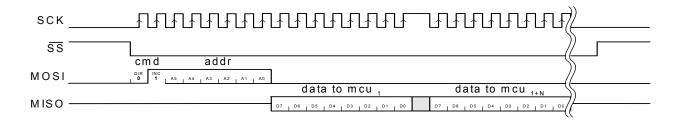
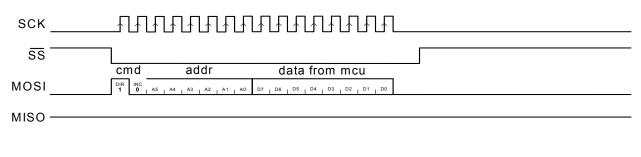
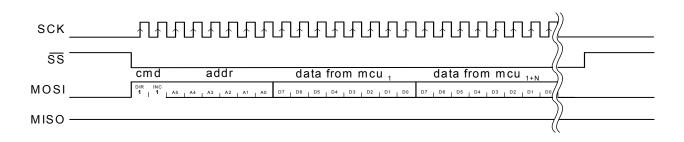





Figure 5-3. SPI Burst Read Sequence



### Figure 5-4. SPI Single Write Sequence







#### 5.2 DIO Interface

The DIO communications interface is an optional SERDES bypass data-only transfer interface. In receive mode, DIO and DIOVAL are valid after the falling edge of IRQ, which clocks

the data as shown in *Figure 5-6*. In transmit mode, DIO and DIOVAL are sampled on the falling edge of the IRQ, which clocks the data as shown in *Figure 5-7*. The application MCU samples the DIO and DIOVAL on the rising edge of IRQ.

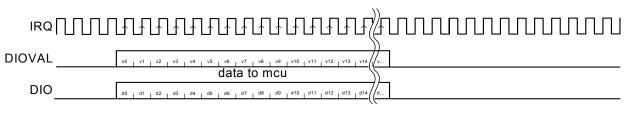
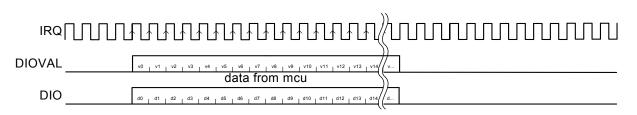




Figure 5-6. DIO Receive Sequence





### 5.3 Interrupts

The CYWUSB6935 features three sets of interrupts: transmit, received, and a wake interrupt. These interrupts all share a single pin (IRQ), but can be independently enabled/disabled. In transmit mode, all receive interrupts are automatically disabled, and in transmit mode all receive interrupts are automatically disabled. However, the contents of the enable registers are preserved when switching between transmit and receive modes.

Interrupts are enabled and the status read through 6 registers: Receive Interrupt Enable (Reg 0x07), Receive Interrupt Status (Reg 0x08), Transmit Interrupt Enable (Reg 0x0D), Transmit Interrupt Status (Reg 0x0E), Wake Enable (Reg 0x1C), Wake Status (Reg 0x1D).

If more than 1 interrupt is enabled at any time, it is necessary to read the relevant interrupt status register to determine which event caused the IRQ pin to assert. Even when a given interrupt source is disabled, the status of the condition that would otherwise cause an interrupt can be determined by reading the appropriate interrupt status register. It is therefore possible to use the devices without making use of the IRQ pin at all. Firmware can poll the interrupt status register(s) to wait for an event, rather than using the IRQ pin.

The polarity of all interrupts can be set by writing to the Configuration register (Reg 0x05), and it is possible to configure the IRQ pin to be open drain (if active low) or open source (if active high).

#### 5.3.1 Wake Interrupt

When the  $\overline{PD}$  pin is low, the oscillator is stopped. After  $\overline{PD}$  is deasserted, the oscillator takes time to start, and until it has done so, it is not safe to use the SPI interface. The wake

interrupt indicates that the oscillator has started, and that the device is ready to receive SPI transfers.

The wake interrupt is enabled by setting bit 0 of the Wake Enable register (Reg 0x1C, bit 0=1). Whether or not a wake interrupt is pending is indicated by the state of bit 0 of the Wake Status register (Reg 0x1D, bit 0). Reading the Wake Status register (Reg 0x1D) clears the interrupt.

#### 5.3.2 Transmit Interrupts

Four interrupts are provided to flag the occurrence of transmit events. The interrupts are enabled by writing to the Transmit Interrupt Enable register (Reg 0x0D), and their status may be determined by reading the Transmit Interrupt Status register (Reg 0x0E). If more than 1 interrupt is enabled, it is necessary to read the Transmit Interrupt Status register (Reg 0x0E) to determine which event caused the IRQ pin to assert.

The function and operation of these interrupts are described in detail in *Section 7.0*.

#### 5.3.3 Receive Interrupts

Eight interrupts are provided to flag the occurrence of receive events, four each for SERDES A and B. In 64 chips/bit and 32 chips/bit DDR modes, only the SERDES A interrupts are available, and the SERDES B interrupts will never trigger, even if enabled. The interrupts are enabled by writing to the Receive Interrupt Enable register (Reg 0x07), and their status may be determined by reading the Receive Interrupt Status register (Reg 0x08). If more than one interrupt is enabled, it is necessary to read the Receive Interrupt Status register (Reg 0x08) to determine which event caused the IRQ pin to assert.

The function and operation of these interrupts are described in detail in *Section 7.0*.



## 6.0 Application Examples

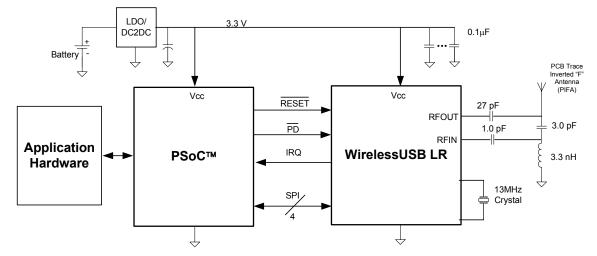
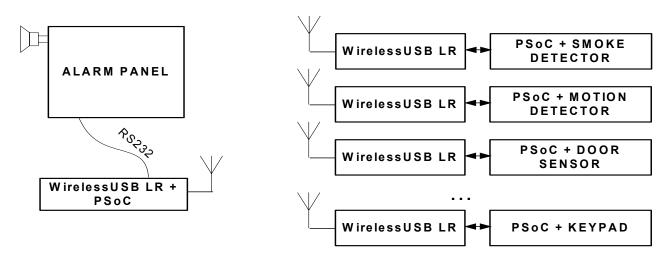




Figure 6-1. CYWUSB6935 Battery Powered Device





## 7.0 Register Descriptions

*Table 7-1* displays the list of registers inside the CYWUSB6935 that are addressable through the SPI interface. All registers are read and writable, except where noted.

| Table 7-1. | CYWUSB6935 Register Map <sup>[1]</sup> |  |
|------------|----------------------------------------|--|
|------------|----------------------------------------|--|

| Register Name         | Mnemonic      | CYWUSB6935<br>Address | Page | Default | Access |
|-----------------------|---------------|-----------------------|------|---------|--------|
| Revision ID           | REG_ID        | 0x00                  | 9    | 0x07    | RO     |
| Synthesizer A Counter | REG_SYN_A_CNT | 0x01                  | 8    | 0x00    | RW     |
| Synthesizer N Counter | REG_SYN_N_CNT | 0x02                  | 8    | 0x00    | RW     |
| Control               | REG_CONTROL   | 0x03                  | 9    | 0x00    | RW     |
| Data Rate             | REG_DATA_RATE | 0x04                  | 10   | 0x00    | RW     |
| Configuration         | REG_CONFIG    | 0x05                  | 11   | 0x01    | RW     |

Note:

1. All registers are accessed Little Endian.



# Table 7-1. CYWUSB6935 Register Map<sup>[1]</sup>

| Register Name                     | Mnemonic           | CYWUSB6935<br>Address | Page | Default            | Access |
|-----------------------------------|--------------------|-----------------------|------|--------------------|--------|
| SERDES Control                    | REG_SERDES_CTL     | 0x06                  | 11   | 0x03               | RW     |
| Receive Interrupt Enable          | REG_RX_INT_EN      | 0x07                  | 12   | 0x00               | RW     |
| Receive Interrupt Status          | REG_RX_INT_STAT    | 0x08                  | 13   | 0x00               | RO     |
| Receive Data A                    | REG_RX_DATA_A      | 0x09                  | 14   | 0x00               | RO     |
| Receive Valid A                   | REG_RX_VALID_A     | 0x0A                  | 14   | 0x00               | RO     |
| Receive Data B                    | REG_RX_DATA_B      | 0x0B                  | 14   | 0x00               | RO     |
| Receive Valid B                   | REG_RX_VALID_B     | 0x0C                  | 14   | 0x00               | RO     |
| Transmit Interrupt Enable         | REG_TX_INT_EN      | 0x0D                  | 15   | 0x00               | RW     |
| Transmit Interrupt Status         | REG_TX_INT_STAT    | 0x0E                  | 15   | 0x00               | RO     |
| Transmit Data                     | REG_TX_DATA        | 0x0F                  | 16   | 0x00               | RW     |
| Transmit Valid                    | REG_TX_VALID       | 0x10                  | 16   | 0x00               | RW     |
| PN Code                           | REG_PN_CODE        | 0x11–0x18             | 16   | 0x1E8B6A3DE0E9B222 | RW     |
| Threshold Low                     | REG_THRESHOLD_L    | 0x19                  | 17   | 0x08               | RW     |
| Threshold High                    | REG_THRESHOLD_H    | 0x1A                  | 17   | 0x38               | RW     |
| Wake Enable                       | REG_WAKE_EN        | 0x1C                  | 18   | 0x00               | RW     |
| Wake Status                       | REG_WAKE_STAT      | 0x1D                  | 18   | 0x01               | RO     |
| Analog Control                    | REG_ANALOG_CTL     | 0x20                  | 18   | 0x04               | RW     |
| Channel                           | REG_CHANNEL        | 0x21                  | 19   | 0x00               | RW     |
| Receive Signal Strength Indicator | REG_RSSI           | 0x22                  | 19   | 0x00               | RO     |
| Power Control                     | REG_PA             | 0x23                  | 19   | 0x00               | RW     |
| Crystal Adjust                    | REG_CRYSTAL_ADJ    | 0x24                  | 20   | 0x00               | RW     |
| VCO Calibration                   | REG_VCO_CAL        | 0x26                  | 20   | 0x00               | RW     |
| AGC Control                       | REG_AGC_CTL        | 0x2E                  | 21   | 0x00               | RW     |
| Carrier Detect                    | REG_CARRIER_DETECT | 0x2F                  | 21   | 0x00               | RW     |
| Clock Manual                      | REG_CLOCK_MANUAL   | 0x32                  | 21   | 0x00               | RW     |
| Clock Enable                      | REG_CLOCK_ENABLE   | 0x33                  | 21   | 0x00               | RW     |
| Synthesizer Lock Count            | REG_SYN_LOCK_CNT   | 0x38                  | 22   | 0x64               | RW     |
| Manufacturing ID                  | REG_MID            | 0x3C-0x3F             | 22   | _                  | RO     |



| Addr: 0x00 |        |       | REG | G_ID | Default: 0x07 |        |   |
|------------|--------|-------|-----|------|---------------|--------|---|
| 7          | 6      | 5     | 4   | 3    | 2             | 1      | 0 |
|            | Silico | on ID |     |      | Produ         | uct ID |   |

#### Figure 7-1. Revision ID Register

#### Bit Name Description

7:4 Silicon ID These are the Silicon ID revision bits. 0000 = Rev A, 0001 = Rev B, etc. These bits are read-only.

3:0 Product ID These are the Product ID revision bits. Fixed at value 0111. These bits are read-only.

| Addr: 0x01 |          |   | REG_SYN_A_CNT |   |       | Default: 0x00 |   |  |
|------------|----------|---|---------------|---|-------|---------------|---|--|
| 7          | 6        | 5 | 4             | 3 | 2     | 1             | 0 |  |
|            | Reserved |   |               |   | Count |               |   |  |

#### Figure 7-2. Synthesizer A Counter

#### Bit Name Description

4:0

7:5 Reserved These bits are reserved and should be written with zeros.

Count The Synthesizer A Counter register is used for diagnostic purposes and is not recommended for normal operation. The Channel register is the recommended method of setting the Synthesizer frequency.

The Synthesizer A Count along with the Synthesizer N Count can be used to generate the Synthesizer frequency. The range of valid values of the Synthesizer A Count is 0 through 31. Using the Synthesizer A and N Count register is an alternative to using the Channel register. Selection between the use of the Channel register or the A and N registers is done through the Channel register (Reg 0x21, bit 7). When in Channel mode the A and N Count bits can be used to read the A and N values derived directly from the Channel.

| Addr     | 0x02 |   | REG_SY    | Default: 0x00 |  |  |   |
|----------|------|---|-----------|---------------|--|--|---|
| 7        | 6    | 5 | 5 4 3 2 1 |               |  |  | 0 |
| Reserved |      |   |           | Count         |  |  |   |

#### Figure 7-3. Synthesizer N Counter

#### Bit Name Description

7 Reserved This bit is reserved and should be written with zero.

6:0 Count The Synthesizer N Counter register is used for diagnostic purposes and therefore is not recommended for normal operation. The Channel register is the recommended method of setting the Synthesizer frequency.

The Synthesizer N Count along with the Synthesizer A Count can be used to generate the Synthesizer frequency. The range of valid values of the Synthesizer N Count is 74 through 76. Using the Synthesizer A and N Count register is an alternative to using the Channel register. Selection between the use of the Channel register or the A and N registers is done through the Channel register (Reg 0x21, bit 7). When in Channel mode the A and N Count bits can be used to read the A and N values derived directly from the Channel.



|     | Addr: 0>                | (03                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | REG_CONTROL          |                   |                            |                      | Default: 0x00  |  |
|-----|-------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|----------------------------|----------------------|----------------|--|
|     | 7                       | 6                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                    | 3                 | 2                          | 1                    | 0              |  |
|     | RX<br>Enable            | TX<br>Enable                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                   |                            | Auto Syn<br>Disable  | Syn Enable     |  |
|     | Figure 7-4. Control     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                   |                            |                      |                |  |
| Bit | Name                    | Description                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                   |                            |                      |                |  |
| 7   | RX Enable               | 1 = Receiv                                                                 | e Enable bit is use<br>ve Enabled<br>ve Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d to place the IC i  | n receive mode.   |                            |                      |                |  |
| 6   | TX Enable               | 1 = Transı                                                                 | it Enable bit is use<br>mit Enabled<br>mit Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ed to place the IC i | in transmit mode. |                            |                      |                |  |
| 5   | PN Code Selec           | 1 = 32 Mo<br>0 = 32 Lea                                                    | The Pseudo-Noise Code Select bit selects between the upper or lower half of the 64 chips/bit PN code.<br>1 = 32 Most Significant Bits of PN code are used<br>0 = 32 Least Significant Bits of PN code are used<br>This bit applies only when the Code Width bit is set to 32 chips/bit PN codes (Reg 0x04, bit 2=1).                                                                                                                                                                                                                                                                                                      |                      |                   |                            |                      |                |  |
| 4   | Auto Syn Coun<br>Select | The two opṫi<br>of 2us, or by<br>1 = Synth<br>0 = Synth                    | The Auto Synthesizer Count Select bit is used to select the method of determining the settle time of the synthesizer.<br>The two options are a programmable settle time based on the value in Syn Lock Count register (Reg 0x38), in units of 2us, or by the auto detection of the synthesizer lock.<br>1 = Synthesizer settle time is based on a count in Syn Lock Count register (Reg 0x38)<br>0 = Synthesizer settle time is based on the internal synthesizer lock signal<br>It is recommended that the Auto Syn Count Select bit is set to 1 as that guarantees a consistent settle time for the synthesizer.        |                      |                   |                            |                      | (38), in units |  |
| 3   | Auto PA<br>Disable      | options are a<br>1 = Regisi<br>0 = Auto F<br>When this b                   | The Auto Power Amplifier Disable bit is used to determine the method of controlling the Power Amplifier. The two options are automatic control by the baseband or by firmware through register writes.<br>1 = Register controlled PA Enable.<br>0 = Auto PA Enable.<br>When this bit is set to 1 the state of PA enable is directly controlled by bit PA Enable (Reg 0x03, bit 2). It is recommended that this bit is set to 0 leaving the PA control to the baseband.                                                                                                                                                    |                      |                   |                            |                      |                |  |
| 2   | PA Enable               | 1 = Power<br>0 = Power                                                     | r Amplifier Enable<br>r Amplifier Disable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d                    |                   | r.<br>g 0x03, bit 3=1), ot | therwise this bit is | don't care.    |  |
| 1   | Auto Syn<br>Disable     | are automat<br>1 = Regisi<br>0 = Auto S<br>When this bi<br>this bit is set | The Auto Synthesizer Disable bit is used to determine the method of controlling the Synthesizer. The two options are automatic control by the baseband or by firmware through register writes.<br>1 = Register controlled Synthesizer Enable.<br>0 = Auto Synthesizer Enable.<br>When this bit is set to 1 the state of the Synthesizer is directly controlled by bit Syn Enable (Reg 0x03, bit 0). Wher this bit is set to 0 the state of the Synthesizer is controlled by the Auto Syn Count Select bit (Reg 0x03, bit 4). It is recommended that this bit is set to 0 leaving the Synthesizer control to the baseband. |                      |                   |                            | bit 0). When         |                |  |
| 0   | Syn Enable              | 1 = Synthe<br>0 = Synthe                                                   | recommended that this bit is set to 0 leaving the Synthesizer control to the baseband.<br>The Synthesizer Enable bit is used to enable or disable the Synthesizer.<br>1 = Synthesizer Enabled<br>0 = Synthesizer Disabled<br>This bit only applies when Auto Syn Disable bit is selected (Reg 0x03, bit 1=1), otherwise this bit is don't care.                                                                                                                                                                                                                                                                           |                      |                   |                            |                      | on't care.     |  |



|                  | Addr: 0x04  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | REG_DA                                                          | TA_RATE                                                                                                      | Default: 0x00                                               |                                                             |                                                |
|------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|
|                  | 7 6 5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                               | 3                                                                                                            | 2                                                           | 1                                                           | 0                                              |
|                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |                                                                                                              | Code Width                                                  | Data Rate                                                   | Sample Rate                                    |
|                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Figure 7-5                                                      | . Data Rate                                                                                                  |                                                             |                                                             |                                                |
| Bit              | Name        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |                                                                                                              |                                                             |                                                             |                                                |
| 7:3              | Reserved    | These bits are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | reserved and sho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ould be written with                                            | n zeros.                                                                                                     |                                                             |                                                             |                                                |
| 2 <sup>[2]</sup> | Code Width  | 1 = 32 chips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The Code Width bit is used to select between 32 chips/bit and 64 chips/bit PN codes.<br>1 = 32 chips/bit PN codes<br>0 = 64 chips/bit PN codes                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |                                                                                                              |                                                             |                                                             |                                                |
|                  |             | ference. By che<br>data rate is set<br>robustness to i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r of chips/bit used impacts a number of factors such as data throughput, range and robustness to inter-<br>choosing a 32 chips/bit PN-code, the data throughput can be doubled or even quadrupled (when double<br>set). A 64 chips/bit PN code offers improved range over its 32 chips/bit counterpart as well as more<br>to interference. By selecting to use a 32 chips/bit PN code a number of other register bits are impacted<br>o be addressed. These are PN Code Select (Reg 0x03, bit 5), Data Rate (Reg 0x04, bit 1), and Sample<br>0x04, bit 0). |                                                                 |                                                                                                              |                                                             |                                                             | when double<br>as more<br>e impacted           |
| 1 <sup>[2]</sup> | Data Rate   | 62.5kbits/sec.<br>1 = Double [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 = Double Data Rate - 2 bits per PN code (No odd bit transmissions)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 |                                                                                                              |                                                             |                                                             | ata rate of                                    |
|                  |             | 0 = Normal Data Rate - 1 bit per PN code<br>This bit is applicable only when using 32 chips/bit PN codes which can be selected by setting the Code Width bit (Re<br>0x04, bit 2=1). When using Double Data Rate, the raw data throughput is 62.5 kbits/sec because every 32 chips/bit<br>PN code is interpreted as 2 bits of data. When using this mode a single 64 chips/bit PN code is placed in the PN code<br>register. This 64 chips/bit PN code is then split into two and used by the baseband to offer the Double Data Rate<br>capability. When using Normal Data Rate, the raw data throughput is 32kbits/sec. Additionally, Normal Data Rate<br>enables the user to potentially correlate data using two differing 32 chips/bit PN codes. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |                                                                                                              |                                                             |                                                             | 32 chips/bit<br>the PN code<br>ata Rate        |
| 0 <sup>[2]</sup> | Sample Rate | 1 = 12x Over<br>0 = 6x Overs<br>Using 12x over<br>Rate this bit is o<br>to receive from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rsampling<br>sampling<br>sampling improve<br>don't care. When i<br>two different PN o                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s the correlators re<br>n the Normal Data<br>codes. Therefore t | npling when using<br>eceive sensitivity. V<br>Rate setting and c<br>he only time when<br>eed to receive data | Vhen using 64 chip<br>hoosing 12x overs<br>12x oversampling | s/bit PN codes or<br>ampling, eliminat<br>is to be selected | Double Data<br>tes the ability<br>is when a 32 |

Note:

2. The following Reg 0x04, bits 2:0 values are not valid:
001–Not Valid
010–Not Valid
011–Not Valid



|     | Addr: 0x05                                        |                                                                                                                                                          |                                                                  | REG_C               | ONFIG                |                     | Default: 0x01 |        |  |
|-----|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------|----------------------|---------------------|---------------|--------|--|
|     | 7                                                 | 6                                                                                                                                                        | 5                                                                | 4                   | 3                    | 2                   | 1             | 0      |  |
|     |                                                   | Reserved                                                                                                                                                 |                                                                  | Receive Invert      | Transmit Invert      | Reserved            | IRQ Pin       | Select |  |
|     |                                                   |                                                                                                                                                          |                                                                  | Figure 7-6. C       | Configuration        |                     |               |        |  |
| Bit | Name                                              | Description                                                                                                                                              |                                                                  |                     |                      |                     |               |        |  |
| 7:5 | Reserved                                          | These bits a                                                                                                                                             | re reserved and s                                                | hould be written w  | vith zeros.          |                     |               |        |  |
| 4   | Receive Invert                                    | vert The Receive Invert bit is used to invert the received data.<br>1 = Inverted over-the-air Receive data<br>0 = Non-inverted over-the-air Receive data |                                                                  |                     |                      |                     |               |        |  |
| 3   | Transmit Invert                                   | 1 = Inverte                                                                                                                                              | it Invert bit is usec<br>ed Transmit Data.<br>overted Transmit D |                     | that is to be transi | mitted.             |               |        |  |
| 2   | Reserved                                          | This bit is re                                                                                                                                           | served and should                                                | be written with z   | ero.                 |                     |               |        |  |
| 1:0 | IRQ Pin Select                                    | The Interrup                                                                                                                                             | t Request Pin Sel                                                | ect bits are used t | o determine the dri  | ive method of the I | RQ pin.       |        |  |
|     | 11 = Open Drain (asserted = 0, deasserted = Hi-Z) |                                                                                                                                                          |                                                                  |                     |                      |                     |               |        |  |
|     |                                                   | 10 = Oper                                                                                                                                                | n Source (asserted                                               | d = 1, deasserted   | = Hi-Z)              |                     |               |        |  |
|     |                                                   | 01 = CMC                                                                                                                                                 | S (asserted = 1, c                                               | leasserted = 0)     |                      |                     |               |        |  |
|     | 00 = CMOS Inverted (asserted = 0, deasserted = 1) |                                                                                                                                                          |                                                                  |                     |                      |                     |               |        |  |

| Addr: 0x06 |   |   | REG_SEF | RDES_CTL         | Default: 0x03 |            |   |
|------------|---|---|---------|------------------|---------------|------------|---|
| 7          | 6 | 5 | 4       | 3                | 2             | 1          | 0 |
| Reserved   |   |   |         | SERDES<br>Enable |               | EOF Length |   |

## Figure 7-7. SERDES Control

| Bit | Name          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:4 | Reserved      | These bits are reserved and should be written with zeros.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3   | SERDES Enable | The SERDES Enable bit is used to switch between bit-serial mode and SERDES mode.<br>1 = SERDES enabled.<br>0 = SERDES disabled, bit-serial mode enabled.<br>When the SERDES is enabled data can be written to and read from the IC one byte at a time, through the use of<br>the SERDES Data registers. The bit-serial mode requires bits to be written one bit at a time through the use of<br>the DIO/DIOVAL pins, refer to section 3.2. It is recommended that SERDES mode be used to avoid the need to<br>manage the timing required by the bit-serial mode.  |
| 2:0 | EOF Length    | The End of Frame Length bits are used to set the number of sequential bit times for an inter-frame gap without valid data before an EOF event will be generated. When in receive mode and a valid bit has been received the EOF event can then be identified by the number of bit times that expire without correlating any new data. The EOF event causes data to be moved to the proper SERDES Data Register and can also be used to generate interrupts. If 0 is the EOF length, an EOF condition will occur at the first invalid bit after a valid reception. |



|          | Addr: (     | Dx07                                        |                                           | REG_RX                                                           | LINT_EN                                                               |                       | Defaul              | t: 0x00        |
|----------|-------------|---------------------------------------------|-------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------|---------------------|----------------|
|          | 7           | 6                                           | 5                                         | 4                                                                | 3                                                                     | 2                     | 1                   | 0              |
| Ur       | nderflow B  | Overflow B                                  | EOF B                                     | Full B                                                           | Underflow A                                                           | Overflow A            | EOF A               | Full A         |
|          | ·           |                                             | Fig                                       | ure 7-8. Receiv                                                  | ve Interrupt Ena                                                      | ble                   |                     |                |
| Bit      | Name        | Description                                 |                                           |                                                                  |                                                                       |                       |                     |                |
| Біі<br>7 | Underflow B | •                                           | w B bit is used to e                      | enable the interrun                                              | t associated with a                                                   | n underflow conditi   | ion with the Receiv | /e SERDES      |
|          | Chidemow D  | Data B regist                               | er (Reg 0x0B)                             |                                                                  |                                                                       |                       |                     |                |
|          |             |                                             |                                           |                                                                  | SERDES Data B<br>SERDES Data B                                        |                       |                     |                |
|          |             | An underflow<br>empty.                      | condition occurs                          | when attempting t                                                | o read the Receive                                                    | SERDES Data B         | register (Reg 0x0I  | 3) when it is  |
| 6        | Overflow B  | Data B regist                               | er (Reg 0x0B)                             |                                                                  | t associated with a                                                   | in overflow condition | on with the Receiv  | e SERDES       |
|          |             | 1 = Overflo<br>0 = Overflo                  | ow B interrupt ena<br>ow B interrupt disa | bled for Receive S<br>bled for Receive                           | SERDES Data B<br>SERDES Data B                                        |                       |                     |                |
|          |             |                                             | condition occurs w<br>the prior data is r |                                                                  | d data is written int                                                 | o the Receive SEF     | RDES Data B regi    | ster (Reg      |
| 5        | EOF B       | 1 = EOF B                                   | interrupt enabled                         | to enable the inte<br>for Channel B Re<br>for Channel B Re       |                                                                       | with the Channel B    | Receiver EOF co     | ondition.      |
|          |             | The EOF IRC<br>been detecte<br>the EOF leng | ) asserts during a d, and then the nu     | n End of Frame co<br>umber of invalid bi<br>lition will occur at | ondition. End of Fr<br>its in the frame exc<br>the first invalid bit  | ceeds the number      | in the EOF length   | field. If 0 is |
| 4        | Full B      | data placed ii<br>1 = Full B i              | n it.<br>nterrupt enabled f               | for Receive SERD                                                 |                                                                       | eive SERDES Data      | a B register (Reg 0 | x0B) having    |
|          |             | A Full B cond<br>register (Reg              | lition occurs when                        | d occur when a co                                                | ed from the Channe<br>mplete byte is rece                             |                       |                     |                |
| 3        | Underflow A | Data A regist                               | er (Reg 0x09)                             |                                                                  | t associated with a                                                   | n underflow condit    | ion with the Receiv | ve SERDES      |
|          |             | 0 = Underf                                  | low A interrupt dis                       | abled for Receive                                                | SERDES Data A<br>SERDES Data A                                        |                       |                     | o) I '''       |
|          |             | An underflow<br>empty.                      | condition occurs                          | when attempting t                                                | o read the Receive                                                    | e SERDES Data A       | register (Reg 0x0   | 9) when it is  |
| 2        | Overflow A  | Data A regist                               | er (0x09)                                 | •                                                                | t associated with a                                                   | in overflow condition | on with the Receiv  | e SERDES       |
|          |             | 0 = Overflo                                 | w A interrupt disa                        | bled for Receive S<br>bled for Receive                           | SERDES Data A                                                         |                       |                     |                |
|          |             |                                             | condition occurs w<br>ior data is read ou |                                                                  | lata is written into t                                                | he Receive SERD       | ES Data A register  | (Reg 0x09)     |
| 1        | EOF A       | The End of F<br>A Receiver.                 | rame A bit is used                        | I to enable the inte                                             | errupt associated v                                                   | vith an End of Fran   | ne condition with t | he Channel     |
|          |             |                                             |                                           | for Channel A Re                                                 |                                                                       |                       |                     |                |
|          |             | been detecte<br>EOF length, a               | d, and then the nu                        | imber of invalid bit                                             | ondition. End of Fr<br>ts in a frame excee<br>rst invalid bit after a | ds the number in t    | he EOF length fiel  | d. If 0 is the |
| 0        | Full A      | The Full A bit<br>data written i            |                                           | e the interrupt ass                                              | ociated with the Re                                                   | eceive SERDES D       | ata A register (0x0 | 09) having     |
|          |             |                                             |                                           | for Receive SERD<br>for Receive SERD                             |                                                                       |                       |                     |                |
|          |             | A Full A cond<br>register (Reg              | lition occurs when                        | data is transferre                                               | ed from the Channe<br>mplete byte is rece                             |                       |                     |                |



|     | Addr: (       | )x08                        |                                                                | REG_RX_                                    | INT_STAT                                 |                                                               | Defaul                                  | t: 0x00                        |
|-----|---------------|-----------------------------|----------------------------------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------------------------------|-----------------------------------------|--------------------------------|
|     | 7             | 6                           | 5                                                              | 4                                          | 3                                        | 2                                                             | 1                                       | 0                              |
|     | Valid B F     | low Violation B             | EOF B                                                          | Full B                                     | Valid A                                  | Flow Violation A                                              | EOF A                                   | Full A                         |
|     |               |                             | Fig                                                            | ure 7-9. Receiv                            | e Interrupt Stat                         | us <sup>[3]</sup>                                             |                                         |                                |
| Bit | Name          | Descriptio                  | n                                                              |                                            |                                          |                                                               |                                         |                                |
| 7   | Valid B       | The Valid B                 | bit is true when a                                             |                                            |                                          | Data B register (Re                                           | g 0x0B) are valid.                      |                                |
|     |               | 0 = Not a                   | ts are valid for Reall bits are valid for                      | Receive SERDE                              | S Data B.                                |                                                               |                                         |                                |
|     |               | When data<br>byte that ha   | is written into the<br>as been written are                     | Receive SERDES<br>e valid. This bit ca     | S Data B register (<br>nnot generate an  | Reg 0x0B) this bit i<br>interrupt.                            | is set if all of the bi                 | its within the                 |
| 6   | Flow Violatio |                             | iolation B bit is use<br>ata B register (Re                    |                                            | er an overflow or                        | underflow conditior                                           | n has occurred for                      | the Receive                    |
|     |               | 1 = Overfl                  | ow/underflow inte<br>erflow/underflow i                        | rrupt pending for I                        | Receive SERDES<br>or Receive SERD        | Data B.<br>ES Data B.                                         |                                         |                                |
|     |               | Overflow co                 | onditions occur wh                                             | en the radio load                          | s new data into the                      | e Receive SERDE                                               |                                         |                                |
|     |               | register (Re<br>(Reg 0x08)  | eg 0x0B) when the                                              | e register is empty                        | . This bit is cleared                    | when trying to read<br>d by reading the Re                    | eceive Interrupt Sta                    | atus register                  |
| 5   | EOF B         | , <b>e</b> ,                |                                                                | ed to signal wheth                         | er an EOF event                          | has occurred on th                                            | e Channel B recei                       | ive.                           |
|     |               |                             | interrupt pending<br>OF interrupt pend                         |                                            |                                          |                                                               |                                         |                                |
|     |               | specified in                | ndition occurs for<br>the SERDES Con<br>the Receive Interr     | trol register (Reg (                       | 0x06) elapse witho                       | ive has begun and<br>but any valid bits be                    | then the number of ing received. This   | of bit times<br>bit is cleared |
| 4   | Full B        |                             | •                                                              |                                            |                                          | B register (Reg 0x                                            | 0B) is filled with d                    | ata.                           |
|     |               | 0 = No R                    | eceive SERDES Data<br>eceive SERDES I                          | Data B full interrup                       | ot pending.                              |                                                               |                                         |                                |
|     |               | register (Re                | ndition occurs whe<br>eg 0x0B). This cou<br>lete byte has beer | Ild occur when a c                         | red from the Chan<br>complete byte is re | nel B Receiver into<br>eceived or when an                     | the Receive SER<br>EOF event occurs     | DES Data B<br>s whether or     |
| 3   | Valid A       |                             |                                                                |                                            |                                          | S Data A Register                                             | (Reg 0x09) are va                       | llid.                          |
|     |               |                             | ts are valid for Reall bits are valid for                      |                                            |                                          |                                                               |                                         |                                |
|     |               | When data byte that ha      | is written into the<br>as been written are                     | Receive SERDES<br>e valid. This bit ca     | S Data A register (<br>nnot generate an  | Reg 0x09) this bit i<br>interrupt.                            | s set if all of the bi                  | its within the                 |
| 2   | Flow Violatio |                             | iolation A bit is use<br>lata A register (Re                   |                                            | er an overflow or                        | underflow conditior                                           | has occurred for                        | the Receive                    |
|     |               | 0 = No ov                   | ow/underflow inte<br>erflow/underflow i                        | nterrupt pending f                         | or Receive SERD                          | ES Data A.                                                    |                                         |                                |
|     |               | before the p                | prior data has bee<br>og 0x09) when the                        | n read. Underflow                          | conditions occur                         | e Receive SERDE<br>when trying to read<br>d by reading the Re | I the Receive SER                       | DES Data A                     |
| 1   | EOF A         |                             |                                                                |                                            | er an EOF event                          | has occurred on th                                            | e Channel A recei                       | ive.                           |
|     |               |                             | interrupt pending<br>OF interrupt pend                         |                                            |                                          |                                                               |                                         |                                |
|     |               | specified in                | ndition occurs for<br>the SERDES Cor<br>Receive Interrupt      | ntrol register (0x06                       | <ol><li>elapse without a</li></ol>       | ive has begun and<br>iny valid bits being                     | then the number or received. This bit i | of bit times<br>is cleared by  |
| 0   | Full A        | 1 = Rece                    | bit is used to signa<br>ive SERDES Data<br>eceive SERDES I     | a A full interrupt pe                      | ending.                                  | A register (Reg 0x                                            | 09) is filled with da                   | ata.                           |
|     |               | A Full A cor<br>Register (R | ndition occurs whe                                             | en data is transferr<br>uld occur when a d | ed from the Chan                         | nel A Receiver into<br>eceived or when ar                     |                                         |                                |

Note:

All status bits are set and readable in the registers regardless of IRQ enable status. This allows a polling scheme to be implemented without enabling IRQs. The status bits are affected by TX Enable and RX Enable (Reg 0x03, bits 7:6). For example, the receive status will read 0 if the IC is not in receive mode. These register are read-only.



PRELIMINARY

| Addr | : 0x09 |   | REG_RX |   | Default: 0x00 |   |  |  |  |  |  |  |
|------|--------|---|--------|---|---------------|---|--|--|--|--|--|--|
| 7    | 6      | 5 | 4      | 2 | 1             | 0 |  |  |  |  |  |  |
|      | Data   |   |        |   |               |   |  |  |  |  |  |  |

#### Figure 7-10. Receive SERDES Data A

#### Bit Name Description

7:0 Data Received Data for Channel A. The over-the-air received order is bit 0 followed by bit 1, followed by bit 2, followed by bit 3, followed by bit 4, followed by bit 5, followed by bit 6, followed by bit 7. This register is read-only.

| Addr: | 0x0A  |   | REG_RX |   | Default: 0x00 |   |   |  |  |  |  |  |  |
|-------|-------|---|--------|---|---------------|---|---|--|--|--|--|--|--|
| 7     | 6     | 5 | 4      | 3 | 2             | 1 | 0 |  |  |  |  |  |  |
|       | Valid |   |        |   |               |   |   |  |  |  |  |  |  |

#### Figure 7-11. Receive SERDES Valid A

#### Bit Name Description

7:0 Valid These bits indicate which of the bits in the Receive SERDES Data A register (Reg 0x09) are valid. A "1" indicates that the corresponding data bit is valid for Channel A.

If the Valid Data bit is set in the Receive Interrupt Status register (Reg 0x08) all eight bits in the Receive SERDES Data A register (Reg 0x09) are valid. Therefore, it is not necessary to read the Receive SERDES Valid A register (Reg 0x0A). The over-the-air received order is bit 0 followed by bit 1, followed by bit 2, followed by bit 3, followed by bit 4, followed by bit 5, followed by bit 6, followed by bit 7. This register is read-only.

| Addr: | 0x0B |   | REG_RX | _DATA_B |   | Default: 0x00 |   |  |  |  |  |
|-------|------|---|--------|---------|---|---------------|---|--|--|--|--|
| 7     | 6    | 5 | 4      | 3       | 2 | 1             | 0 |  |  |  |  |
| Data  |      |   |        |         |   |               |   |  |  |  |  |

#### Figure 7-12. Receive SERDES Data B

#### Bit Name Description

7:0 Data Received Data for Channel B. The over-the-air received order is bit 0 followed by bit 1, followed by bit 2, followed by bit 3, followed by bit 4, followed by bit 5, followed by bit 6, followed by bit 7. This register is read-only.

| Addr | 0x0C  |   | REG_RX_ | _VALID_B |   | Default: 0x00 |   |  |  |  |  |  |
|------|-------|---|---------|----------|---|---------------|---|--|--|--|--|--|
| 7    | 6     | 5 | 4       | 3        | 2 | 1             | 0 |  |  |  |  |  |
|      | Valid |   |         |          |   |               |   |  |  |  |  |  |

#### Figure 7-13. Receive SERDES Valid B

#### Bit Name Description

7:0 Valid These bits indicate which of the bits in the Receive SERDES Data B register (Reg 0x0B) are valid. A "1" indicates that the corresponding data bit is valid for Channel B.

If the Valid Data bit is set in the Receive Interrupt Status register (0x08) all eight bits in the Receive SERDES Data B register (Reg 0x0B) are valid. Therefore, it is not necessary to read the Receive SERDES Valid B register (Reg 0x0C). The over-theair received order is bit 0 followed by bit 1, followed by bit 2, followed by bit 3, followed by bit 4, followed by bit 5, followed by bit 6, followed by bit 7. This register is read-only.



| Ac       | ldr: 0x0D             |                                                          |                                                                                                                  | REG_TX                                                             | (_INT_EN              |                      | Defau               | t: 0x00       |
|----------|-----------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------|----------------------|---------------------|---------------|
|          | 7                     | 6                                                        | 5                                                                                                                | 4                                                                  | 3                     | 2                    | 1                   | 0             |
|          |                       | Re                                                       | served                                                                                                           |                                                                    | Underflow             | Overflow             | Done                | Empty         |
|          |                       |                                                          | Fig                                                                                                              | ure 7-14. Trans                                                    | mit Interrupt En      | able                 |                     |               |
| Bit      | Name                  | Description                                              |                                                                                                                  |                                                                    |                       |                      |                     |               |
| 7:4      | Reserved              | These bits are                                           | e reserved and sho                                                                                               | uld be written with                                                | zeros.                |                      |                     |               |
| 3        | Underflow             | SERDES Dat<br>1 = Underfi<br>0 = Underfi<br>An underflow | w bit is used to ena<br>a register (Reg 0x0<br>ow interrupt enable<br>ow interrupt disable<br>condition occurs w | IF)<br>ed.<br>ed.                                                  |                       |                      |                     |               |
| 2        | Overflow              | not have any<br>The Overflow<br>register (0x0F           | bit is used to enable                                                                                            | ed the interrupt ass                                               | sociated with an ove  | erflow condition wit | h the Transmit SE   | ERDES Data    |
|          |                       | 1 = Overflor<br>0 = Overflor                             | w interrupt enabled<br>w interrupt disabled                                                                      | ł.                                                                 |                       |                      |                     |               |
|          |                       |                                                          | ondition occurs wh<br>eceding data has be                                                                        |                                                                    |                       |                      | S Data register (   | Reg 0x0F)     |
| 1        | Done                  | 1 = Done in                                              | is used to enable th<br>terrupt enabled.<br>terrupt disabled.                                                    | ne interrupt that sig                                              | gnals the end of the  | e transmission of d  | ata.                |               |
|          |                       |                                                          | ndition occurs wher<br>ore data for it to tra                                                                    |                                                                    | RDES Data register    | r (Reg 0x0F) has tr  | ansmitted all of it | s data and    |
| 0        | Empty                 | 1 = Empty i<br>0 = Empty i<br>The Empty co               | t is used to enable<br>nterrupt enabled.<br>nterrupt disabled.<br>andition occurs whe<br>b load the next byte    | n the Transmit SE                                                  |                       |                      |                     | ,             |
|          | Addr                  | : 0x0E                                                   |                                                                                                                  | REG_TX_                                                            | INT_STAT              |                      | Defaul              | t: 0x00       |
|          | 7                     | 6                                                        | 5                                                                                                                | 4                                                                  | 3                     | 2                    | 1                   | 0             |
|          |                       | Re                                                       | served                                                                                                           |                                                                    | Underflow             | Overflow             | Done                | Empty         |
|          |                       |                                                          | Figu                                                                                                             | ire 7-15. Transn                                                   | nit Interrupt Sta     | tus <sup>[4]</sup>   |                     |               |
| Bit      | Name                  | Description                                              |                                                                                                                  |                                                                    |                       |                      |                     |               |
| 7:4<br>3 | Reserved<br>Underflow |                                                          | eserved. This regis<br>bit is used to signal                                                                     |                                                                    | w condition associ    | ated with the Trans  | mit SERDES Da       | ta register   |
| ,        | Ondernow              | (Reg 0x0F) has                                           | occurred.                                                                                                        |                                                                    |                       |                      |                     | la register   |
|          |                       | 1 = Underflov                                            | v Interrupt pending.<br>flow Interrupt pend                                                                      | ina                                                                |                       |                      |                     |               |
|          |                       | This IRQ will as<br>when the transr<br>(Reg 0x0F). Thi   | sert during an under<br>nitter is ready to sa<br>s will only assert a<br>opt Status register (                   | flow condition to th<br>mple transmit data<br>fter the transmitter | a, but there is no da | ata ready in the Tra | insmit SERDES [     | Data register |
| 2        | Overflow              | The Overflow bi<br>has occurred.                         | t is used to signal w                                                                                            | hen an overflow co                                                 | ondition associated   | l with the Transmit  | SERDES Data reg     | gister (0x0F) |
|          |                       |                                                          | Interrupt pending.<br>ow Interrupt pendir                                                                        | na.                                                                |                       |                      |                     |               |
|          |                       | This IRQ will as when the new d                          | sert during an over<br>ata is loaded into th<br>ed by reading the T                                              | flow condition to th<br>e Transmit SERDE                           | ES Data register (Re  | eg 0x0F) before the  |                     |               |
| 1        | Done                  |                                                          | used to signal the                                                                                               | •                                                                  | 0 ( 0                 | - /                  |                     |               |
|          |                       | 0 = No Done<br>This IRQ will as                          | errupt pending.<br>Interrupt pending.<br>sert when the data<br>transmitter has tran<br>(0E)                      |                                                                    |                       |                      |                     |               |
| 0        | Empty                 | The Empty bit is<br>1 = Empty Int                        | s used to signal wh<br>errupt pending.                                                                           | en the Transmit SI                                                 | ERDES Data regist     | ter (Reg 0x0F) has   | been emptied.       |               |

1 = Empty Interrupt pending.
 0 = No Empty Interrupt pending.
 This IRQ will assert when the transmit serdes is empty. When this IRQ is asserted it is ok to write to the Transmit SERDES Data register (Reg 0x0F). Writing the Transmit SERDES Data register (Reg 0x0F) will clear this IRQ. It will be set when the data is loaded into the transmitter, and it is ok to write new data.

Note:

All status bits are set and readable in the registers regardless of IRQ enable status. This allows a polling scheme to be implemented without enabling IRQs. The status bits are affected by the TX Enable and RX Enable (Reg 0x03, bits 7:6). For example, the transmit status will read 0 if the IC is not in transmit mode. These registers are read-only. 4.



PRELIMINARY

| Addr | : 0x0F |   | REG_T |   | Default: 0x00 |   |   |  |  |  |  |
|------|--------|---|-------|---|---------------|---|---|--|--|--|--|
| 7    | 6      | 5 | 4     | 3 | 2             | 1 | 0 |  |  |  |  |
| Data |        |   |       |   |               |   |   |  |  |  |  |

#### Figure 7-16. Transmit SERDES Data

#### Bit Name Description

7:0 Data Transmit Data. The over-the-air transmitted order is bit 0 followed by bit 1, followed by bit 2, followed by bit 3, followed by bit 4, followed by bit 5, followed by bit 6, followed by bit 7.

| Addr | : 0x10 |   | REG_TX | (_VALID |   | Default: 0x00 |   |  |  |  |  |  |
|------|--------|---|--------|---------|---|---------------|---|--|--|--|--|--|
| 7    | 6      | 5 | 4      | 3       | 2 | 1             | 0 |  |  |  |  |  |
|      | Valid  |   |        |         |   |               |   |  |  |  |  |  |

#### Figure 7-17. Transmit SERDES Valid

#### Bit Name Description

7:0 Valid<sup>[5]</sup> The Valid bits are used to determine which of the bits in the Transmit SERDES Data register (reg 0x0F) are valid.

1 = Valid transmit bit.

0 = Invalid transmit bit.

|    | Addr: 0x11-18                                                               |    |       |      |    |    |    |    |    |    | REG_PN_CODE |       |     |     |      |       |      |     | Default:<br>0x1E8B6A3DE0E9B222 |      |    |    |    |    |    |    |       |      |    |    |    |
|----|-----------------------------------------------------------------------------|----|-------|------|----|----|----|----|----|----|-------------|-------|-----|-----|------|-------|------|-----|--------------------------------|------|----|----|----|----|----|----|-------|------|----|----|----|
| 63 | 62                                                                          | 61 | 60    | 59   | 58 | 57 | 56 | 55 | 54 | 53 | 52          | 51    | 50  | 49  | 48   | 47    | 46   | 45  | 44                             | 43   | 42 | 41 | 40 | 39 | 38 | 37 | 36    | 35   | 34 | 33 | 32 |
|    |                                                                             | Ac | Idres | s Ox | 18 |    | •  |    |    | Ac | Idres       | s 0x′ | 17  | •   |      |       | •    | Ad  | Idres                          | s Ox | 16 | •  |    |    |    | Ad | ldres | s Ox | 15 | •  |    |
|    |                                                                             |    |       |      |    |    |    |    |    |    |             |       |     |     |      |       |      |     |                                |      |    |    |    |    |    |    |       |      |    |    |    |
| 31 | 30                                                                          | 29 | 28    | 27   | 26 | 25 | 24 | 23 | 22 | 21 | 20          | 19    | 18  | 17  | 16   | 15    | 14   | 13  | 12                             | 11   | 10 | 9  | 8  | 7  | 6  | 5  | 4     | 3    | 2  | 1  | 0  |
|    | Address 0x14         Address 0x13         Address 0x12         Address 0x11 |    |       |      |    |    |    |    |    |    |             |       |     |     |      |       |      |     |                                |      |    |    |    |    |    |    |       |      |    |    |    |
|    |                                                                             |    |       |      |    |    |    |    |    |    |             |       | Fig | ure | 7-18 | 3. PI | N Co | ode |                                |      |    |    |    |    |    |    |       |      |    |    |    |

#### Bit Name Description

63:0 PN Codes be used together for 64 chips/bit PN code register is used as the spreading code for DSSS communication. All 8 bytes can be used together for 64 chips/bit PN code communication, or the registers can be split into two sets of 32 chips/bit PN codes and these can be used alone or with each other to accomplish faster data rates. Not any 64 chips/bit value can be used as a PN code as there are certain characteristics that are needed to minimize the possibility of multiple PN codes interfering with each other or the possibility of invalid correlation. The over-the-air order is bit 0 followed by bit 1... followed by bit 62, followed by bit 63.

Note:

5. Note: The Valid bit in the Transmit SERDES Valid register (Reg 0x10) is used to mark whether the radio will send data or preamble during that bit time of the data byte. Data is sent LSB first. The SERDES will continue to send data until there are no more VALID bits in the shifter. For example, writing 0x0F to the Transmit SERDES Valid register (Reg 0x10) will send half a byte.



| Addr                   | : 0x19 |   | REG_THR | ESHOLD_L |   | Default: 0x08 |  |  |  |  |
|------------------------|--------|---|---------|----------|---|---------------|--|--|--|--|
| 7                      | 6      | 5 | 4       | 2        | 1 | 0             |  |  |  |  |
| Reserved Threshold Low |        |   |         |          |   |               |  |  |  |  |

#### Figure 7-19. Threshold Low

Bit Name 7 Reserved

Description

6:0 Threshold Low

This bit is reserved and should be written with zero.

The Threshold Low value is used to determine the number of missed chips allowed when attempting to correlate a single data bit of value '0'. A perfect reception of a data bit of '0' with a 64 chips/bit PN code would result in zero correlation matches, meaning the exact inverse of the PN code has been received. By setting the Threshold Low value to 0x08 for example, up to eight chips can be erroneous while still identifying the value of the received data bit. This value along with the Threshold High value determine the correlator count values for logic '1' and logic '0'. The threshold values used determine the sensitivity of the receiver to interference and the dependability of the received data. By allowing a minimal number of erroneous chips the dependability of the received data increases while the robustness to interference decreases. On the other hand increasing the maximum number of missed chips means reduced data integrity but increased robustness to interference and increased range.

| Addr:    | 0x1A           |   | REG_THRI |   | Default: 0x38 |   |  |  |  |  |
|----------|----------------|---|----------|---|---------------|---|--|--|--|--|
| 7        | 6              | 5 | 4        | 2 | 1             | 0 |  |  |  |  |
| Reserved | Threshold High |   |          |   |               |   |  |  |  |  |

#### Figure 7-20. Threshold High

#### Bit Name Description

7 Reserved

6:0

This bit is reserved and should be written with zero.

Threshold High The Threshold High value is used to determine the number of matched chips allowed when attempting to correlate a single data bit of value '1'. A perfect reception of a data bit of '1' with a 64 chips/bit or a 32 chips/bit PN code would result in 64 chips/bit or 32 chips/bit correlation matches, respectively, meaning every bit was received perfectly. By setting the Threshold High value to 0x38 (64-8) for example, up to eight chips can be erroneous while still identifying the value of the received data bit. This value along with the Threshold Low value determine the correlator count values for logic '1' and logic '0'. The threshold values used determine the sensitivity of the receiver to interference and the dependability of the received data. By allowing a minimal number of erroneous chips the dependability of the received data increases while the robustness to interference decreases. On the other hand increasing the maximum number of missed chips means reduced data integrity but increased robustness to interference and increased range.



| Addr: | Addr: 0x1C REG_WAKE_EN E |   |           | Defaul | efault: 0x00 |  |               |
|-------|--------------------------|---|-----------|--------|--------------|--|---------------|
| 7     | 6                        | 5 | 5 4 3 2 1 |        |              |  | 0             |
|       |                          |   | Reserved  |        |              |  | Wakeup Enable |

#### Figure 7-21. Wake Enable

## Bit Name

Description

7:1 Reserved These bits are reserved and should be written with zeros.

0 Wakeup Enable Wakeup interrupt enable.

0 = disabled

1 = enabled

A wakeup event is triggered when the PD pin is deasserted and once the IC is ready to receive SPI communications.

| Addr: | 0x1D |   | REG_WAKE_STAT Default: 0x01 |  | Default |  |               |
|-------|------|---|-----------------------------|--|---------|--|---------------|
| 7     | 6    | 5 | 5 4 3 2 1                   |  |         |  | 0             |
|       |      |   | Reserved                    |  |         |  | Wakeup Status |

#### Figure 7-22. Wake Status

#### Bit Name Description

7:1 Reserved These bits are reserved. This register is read-only.

0 Wakeup Status Wakeup status.

0 = Wake interrupt not pending 1 = Wake interrupt pending

This IRQ will assert when a wakeup condition occurs. This bit is cleared by reading the Wake Status register (Reg 0x1D). This register is read-only.

| Addr: 0x20 |             |                    | REG_ANALOG_CTL |          |                     | Default: 0x00 |     |
|------------|-------------|--------------------|----------------|----------|---------------------|---------------|-----|
| 7          | 6           | 5                  | 4              | 3        | 2                   | 1             | 0   |
| Reserved   | AGC Disable | MID Read<br>Enable | Reserved       | Reserved | PA Output<br>Enable | Palnv         | Rst |

## Figure 7-23. Analog Control

| Bit | Name             | Description                                                                                                                                                                                                                                                                                     |
|-----|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | Reserved         | This bit is reserved and should be written with zero.                                                                                                                                                                                                                                           |
| 6   | AGC RSSI Control | Enables AGC/RSSI control via Reg 0x2E and Reg 0x2F.                                                                                                                                                                                                                                             |
| 5   | MID Read Enable  | The MID Read Enable bit must be set to read the contents of the Manufacturing ID register (Reg 0x3C-0x3F).<br>Enabling the Manufacturing ID register (Reg 0x3C-0x3F) consumes power. This bit should only be set when<br>reading the contents of the Manufacturing ID register (Reg 0x3C-0x3F). |
| 4:3 | Reserved         | These bits are reserved and should be written with zeros.                                                                                                                                                                                                                                       |
| 2   | PA Output Enable | The Power Amplifier Output Enable bit is used to enable the PACTL pin for control of an external power amplifier.<br>1 = PA Control Output Enabled on PACTL pin.<br>0 = PA Control Output Disabled on PACTL pin.                                                                                |
| 1   | PA Invert        | The Power Amplifier Invert bit is used to specify the polarity of the PACTL signal when the PaOe bit is set high.<br>PA Output Enable and PA Invert cannot be simultaneously changed.<br>1 = PACTL active low<br>0 = PACTL active high                                                          |
| 0   | Reset            | The Reset bit is used to generate a self clearing device reset.<br>1 = Device Reset. All registers are restored to their default values.<br>0 = No Device Reset.                                                                                                                                |



| Addr: 0x21           |             |           | REG_CHANNEL |  |  |   | Default: 0x00 |  |  |
|----------------------|-------------|-----------|-------------|--|--|---|---------------|--|--|
| 7                    | 6           | 6 5 4 3 2 |             |  |  | 1 | 0             |  |  |
| A+N                  | A+N Channel |           |             |  |  |   |               |  |  |
| Figure 7-24. Channel |             |           |             |  |  |   |               |  |  |

#### Bit Name Description

7

A+N The A+N bit is used to specify whether the Synthesizer frequency is generated through the use of the Channel register (Reg 0x21) or through the use of the Synthesizer A Counter register (Reg 0x01) and the Synthesizer N Counter register (Reg 0x02).

1 = Synthesizer A Counter register (Reg 0x01) and the Synthesizer N Counter register (Reg 0x02) registers used to generate Synthesizer frequency.

0 = Channel register (Reg 0x21) is used to generate Synthesizer frequency.

When set to 1 the channel value is ignored and the values written in the Synthesizer A Counter register (Reg 0x01) and the Synthesizer N Counter register (Reg 0x02) are used. When set to 0 the values written to the Synthesizer A Counter register (Reg 0x02) and the Synthesizer N Counter register (Reg 0x02) are ignored and the channel value is used by the synthesizer. It is recommended that the Channel register (Reg 0x21) is used as opposed to the Synthesizer A Counter register (Reg 0x01) and the Synthesizer N Counter register (Reg 0x22) is used as opposed to the Synthesizer A Counter register (Reg 0x02) and the Synthesizer A Counter register (Reg 0x02) method.

6:0 Channel The Channel register (Reg 0x21) is used to determine the Synthesizer frequency when the A+N bit is set to 0. Use of other channels may be restricted by certain regulatory agencies. A value of 1 corresponds to a communication frequency of 2.402 GHz, while a value of 79 corresponds to a frequency of 2.479GHz. The channels are separated from each other by 1 MHz intervals.

| Addr | : 0x22 |       | REG_ | RSSI | Default: 0x |   |   |
|------|--------|-------|------|------|-------------|---|---|
| 7    | 6      | 5     | 4    | 3    | 2           | 1 | 0 |
| Rese | erved  | Valid |      |      | RSSI        |   |   |

#### Figure 7-25. Receive Signal Strength Indicator (RSSI)<sup>[6]</sup>

#### Bit Name Description

7:6 Reserved These bits are reserved. This register is read-only.

#### 5 Valid The Valid bit indicates whether the RSSI value in bits [4:0] are valid. This register is Read Only. 1 = RSSI value is valid 0 = RSSI value is invalid

4:0 RSSI The Receive Strength Signal Indicator (RSSI) value indicates the strength of the received signal. This is a read only value with the higher values indicating stronger received signals meaning more reliable transmissions.

| Addr | : 0x23 |          | REG_PA |   |   | Default: 0x00 |   |  |
|------|--------|----------|--------|---|---|---------------|---|--|
| 7    | 6      | 5        | 4      | 3 | 2 | 1             | 0 |  |
|      |        | Reserved |        |   |   | PA Bias       |   |  |

#### Figure 7-26. Power Control

#### Bit Name Description

7:3 Reserved These bits are reserved and should be written with zeros.

2:0 PA Bias The Power Amplifier Bias (PA Bias) bits are used to set the transmit power of the IC through increasing (values up to 7) or decreasing (values down to 0) the gain of the on-chip Power Amplifier. The higher the register value the higher the transmit power. By changing the PA Bias value signal strength management functions can be accomplished. For general purpose communication a value of 7 is recommended.

#### Note:

6. The RSSI will collect a single value each time the part is put into receive mode via Control register (Reg 0x03, bit 7=1).



D = f = ... 14. 0...00

| Addr:         | 0x24                    |                  | REG_CRY                                                         | 'STAL_ADJ          |                         | Defaul             | t: 0x00       |
|---------------|-------------------------|------------------|-----------------------------------------------------------------|--------------------|-------------------------|--------------------|---------------|
| 7             | 6                       | 5                | 4                                                               | 3                  | 2                       | 1                  | 0             |
| Reserved      | Clock Output<br>Disable |                  | Crystal Adjust                                                  |                    |                         |                    |               |
|               |                         |                  | Figure 7-27.                                                    | Crystal Adjust     |                         |                    |               |
| Bit Name      | Descri                  |                  |                                                                 |                    |                         |                    |               |
| 7 Reserved    | This bit                | is reserved and  | should be written w                                             | vith zero.         |                         |                    |               |
| 6 Clock Outpu | 1 = N                   | •                | ble bit disables the driven externally.                         | 13 MHz clock drive | en on the X13OUT        | pin.               |               |
|               | 5+13 <i>n</i> .         | By default the 1 | riven on the X13OU<br>3 MHz clock output<br>th channel beginnir | pin is enabled. Th | nis pin is useful for a | adjusting the 13 M | Hz clock, but |

it interfere with every 13th channel beginning with 2.405GHz channel. Therefore, it is recommended that the 13 MHz clock output pin be disabled when not in use.
 5:0 Crystal Adjust
 The Crystal Adjust value is used to calibrate the on-chip load capacitance supplied to the crystal. The Crystal Adjust value will depend on the parameters of the crystal being used. Refer to the appropriate reference material for information about choosing the optimum Crystal Adjust value.

| Addr     | : 0x26    | REG_VCO_CAL |          |   |   | Default: 0x00 |   |
|----------|-----------|-------------|----------|---|---|---------------|---|
| 7        | 6         | 5           | 4        | 3 | 2 | 1             | 0 |
| VCO Sloj | pe Enable |             | Reserved |   |   |               |   |

### Figure 7-28. VCO Calibration

Bit Name Description

7:6 VCO Slope Enable (Write-Only) The Voltage Controlled Oscillator (VCO) Slope Enable bits are used to specify the amount of variance automatically added to the VCO. 11 = -5/+5 VCO adjust. The application MCU must configure this option during initialization.

- 10 = -2/+3 VCO adjust. 01 = Reserved.
- 00 = No VCO adjust.
- These bits are undefined for read operations.

5:0 Reserved These bits are reserved and should be written with zeros.



| Addr: 0x2E |   |           | REG_AGC_CTL |          |   | Default: 0x00 |   |  |
|------------|---|-----------|-------------|----------|---|---------------|---|--|
| 7          | 6 | 6 5 4 3 2 |             |          | 2 | 1             | 0 |  |
| AGC Lock   |   |           |             | Reserved |   |               |   |  |

#### Figure 7-29. AGC Control

| Bit | Name     | Description                                                                                                                                                                                                                                                     |
|-----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | AGC Lock | When set, this bit disables the on-chip LNA AGC system, powers down unused circuitry, and locks the LNA to maximum gain. The user must set Reg 20, bit 6=1 to enable writes to Reg 0x2E. It is recommended to set this bit during initialization to save power. |
|     | _        |                                                                                                                                                                                                                                                                 |

**6:0** Reserved These bits are reserved and should be written with zeros.

| Addr: 0x2F                 |   |   | REG_CARRIER_DETECT |          |   | Default: 0x00 |   |  |
|----------------------------|---|---|--------------------|----------|---|---------------|---|--|
| 7                          | 6 | 5 | 4                  | 3        | 2 | 1             | 0 |  |
| Carrier Detect<br>Override |   |   |                    | Reserved |   |               |   |  |

#### Figure 7-30. Carrier Detect

- Bit Name Description
- 7 Carrier Detect Override When set, this bit overrides carrier detect. The user must set Reg 20, bit 6=1 to enable writes to Reg 0x2F.
  6:0 Reserved These bits are reserved and should be written with zeros.

| Addr                   | 0x32 |   | REG_CLOC |   | Default: 0x00 |   |  |  |  |  |  |  |
|------------------------|------|---|----------|---|---------------|---|--|--|--|--|--|--|
| 7                      | 6    | 5 | 4        | 2 | 1             | 0 |  |  |  |  |  |  |
| Manual Clock Overrides |      |   |          |   |               |   |  |  |  |  |  |  |

#### Figure 7-31. Clock Manual

- Bit Name Description
- 7:0 Manual Clock Overrides This register must be written with 0x41 after reset for correct operation

| Addr | : 0x33               |  | REG_CLOC |   | Default: 0x00 |   |   |  |  |  |  |  |  |
|------|----------------------|--|----------|---|---------------|---|---|--|--|--|--|--|--|
| 7    | 7 6                  |  | 4        | 3 | 2             | 1 | 0 |  |  |  |  |  |  |
|      | Manual Clock Enables |  |          |   |               |   |   |  |  |  |  |  |  |

Figure 7-32. Clock Enable

Bit Name Description

7:0 Manual Clock Enables This register must be written with 0x41 after reset for correct operation



| Addr  | 0x38 |   | REG_SYN_ | Default: 0x64 |   |   |   |  |  |  |  |  |
|-------|------|---|----------|---------------|---|---|---|--|--|--|--|--|
| 7     | 6    | 5 | 4        | 3             | 2 | 1 | 0 |  |  |  |  |  |
| Count |      |   |          |               |   |   |   |  |  |  |  |  |

#### Figure 7-33. Synthesizer Lock Count

#### Bit Name Description

Determines the length of delay in  $2\mu$ s increments for the synthesizer to lock when auto synthesizer is enabled via Control register (0x03, bit 1=0) and not using the PLL lock signal. 7:0 Count

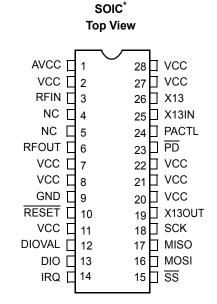
|   | Addr: 0x3C-3F |    |    |    |    |    |      |      |    |    |    |    |    | RE | G_N  | ١ID  |    |    |    |    |    |    |      |      |    |   |   |   |   |   |   |   |
|---|---------------|----|----|----|----|----|------|------|----|----|----|----|----|----|------|------|----|----|----|----|----|----|------|------|----|---|---|---|---|---|---|---|
| 3 | 51            | 30 | 29 | 28 | 27 | 26 | 25   | 24   | 23 | 22 | 21 | 20 | 19 | 18 | 17   | 16   | 15 | 14 | 13 | 12 | 11 | 10 | 9    | 8    | 7  | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|   | Address 0x3F  |    |    |    |    | Ad | dres | s 0x | 3E |    |    |    |    | Ad | dres | s 0x | 3D |    |    |    |    | Ad | dres | s 0x | 3C |   |   |   |   |   |   |   |

## Figure 7-34. Manufacturing ID

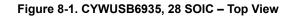
#### Description Bit Name

31:0 Address[31:0]

These bits are the Manufacturing ID (MID) for each IC. The contents of these bits cannot be read unless the MID Read Enable bit (bit 5) is set in the Analog Control register (Reg 0x20). Enabling the Manufacturing ID register (Reg 0x3C-0x3F) consumes power. The MID Read Enable bit in the Analog Control register (Reg 0x20, bit 5) should only be set when reading the contents of the Manufacturing ID register (Reg 0x3C-0x3F). This register is read-only.




# 8.0 Pin Descriptions


## Table 8-1. Pin Description Table

| Pin SOIC                              | Pin QFN                                                                                      | Name     | Туре            | Default  | Description                                                                                                                    |  |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------|----------|-----------------|----------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Analog RF                             |                                                                                              | I        |                 |          |                                                                                                                                |  |  |  |  |
| 3                                     | 46                                                                                           | RFIN     | Input           | Input    | RF Input. Modulated RF signal received.                                                                                        |  |  |  |  |
| 6                                     | 5                                                                                            | RFOUT    | Output          | N/A      | RF Output. Modulated RF signal to be transmitted.                                                                              |  |  |  |  |
| Crystal / P                           | ower Control                                                                                 |          |                 |          |                                                                                                                                |  |  |  |  |
| 26                                    | 38                                                                                           | X13      | Input           | N/A      | Crystal Input. (refer to Section 4.6).                                                                                         |  |  |  |  |
| 25                                    | 35                                                                                           | X13IN    | Input           | N/A      | Crystal Input. (refer to Section 4.6).                                                                                         |  |  |  |  |
| 19                                    | 26                                                                                           | X13OUT   | Output<br>/Hi-Z | Output   | System Clock. Buffered 13-MHz system clock.                                                                                    |  |  |  |  |
| 23                                    | 33                                                                                           | PD       | Input           | N/A      | <b>Power Down</b> . Asserting this input (low), will put the IC in the Suspend Mode (X13OUT is 0 when $\overline{PD}$ is Low). |  |  |  |  |
| 10                                    | 14                                                                                           | RESET    | Input           | N/A      | Active LOW Reset. Device reset.                                                                                                |  |  |  |  |
| 24                                    | 34                                                                                           | PACTL    | I/O             | Input    | PACTL. External Power Amplifier control. Pull-down or make output.                                                             |  |  |  |  |
| SERDES E                              | Sypass Mode C                                                                                | Communic | ations/Ir       | nterrupt |                                                                                                                                |  |  |  |  |
| 13                                    | 20                                                                                           | DIO      | I/O             | Input    | Data Input/Output. SERDES Bypass Mode Data Transmit/Receive.                                                                   |  |  |  |  |
| 12                                    | 19                                                                                           | DIOVAL   | I/O             | Input    | Data I/O Valid. SERDES Bypass Mode Data Transmit/Receive Valid.                                                                |  |  |  |  |
| 14                                    | 21                                                                                           | IRQ      | Output<br>/Hi-Z | Output   | IRQ. Interrupt and SERDES Bypass Mode DIOCLK.                                                                                  |  |  |  |  |
| SPI Comm                              | unications                                                                                   |          |                 |          |                                                                                                                                |  |  |  |  |
| 16                                    | 23                                                                                           | MOSI     | Input           | N/A      | Master-Output-Slave-Input Data. SPI data input pin.                                                                            |  |  |  |  |
| 17                                    | 24                                                                                           | MISO     | Output<br>/Hi-Z | Hi-Z     | Master-Input-Slave-Output Data. SPI data output pin.                                                                           |  |  |  |  |
| 18                                    | 25                                                                                           | SCK      | Input           | N/A      | SPI Input Clock. SPI clock.                                                                                                    |  |  |  |  |
| 15                                    | 22                                                                                           | SS       | Input           | N/A      | Slave Select Enable. SPI enable.                                                                                               |  |  |  |  |
| Power and                             | Ground                                                                                       |          |                 |          |                                                                                                                                |  |  |  |  |
| 2, 7, 8, 11,<br>20, 21, 22,<br>27, 28 | 6, 9, 16, 28,<br>29, 32, 41, 42,<br>45                                                       | VCC      | VCC             | Н        | V <sub>CC</sub> = 2.7V to 3.6V.                                                                                                |  |  |  |  |
| 1                                     | 44                                                                                           | AVCC     | AVCC            | Н        | Vcc = 2.7V to 3.6V. (Decouple separately from VCC pins)                                                                        |  |  |  |  |
| 9                                     | 13                                                                                           | GND      | GND             | L        | Ground = 0V.                                                                                                                   |  |  |  |  |
| 4, 5                                  | 1, 2, 3, 4, 7, 8,<br>10, 11, 12, 15,<br>17, 18, 27, 30,<br>31, 36, 37, 39,<br>40, 43, 47, 48 | NC       | N/A             | N/A      | Tie to Ground.                                                                                                                 |  |  |  |  |
| Expos                                 | ed paddle                                                                                    | GND      | GND             | L        | Must be tied to Ground.                                                                                                        |  |  |  |  |





\* E-PAD BOTTOM SIDE



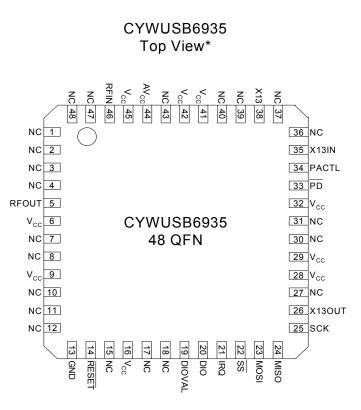



Figure 8-2. CYWUSB6935, 48 QFN – Top View

# PRELIMINARY



#### 9.0 **Absolute Maximum Ratings**

| Storage Temperature65°C to +150°C                                             |
|-------------------------------------------------------------------------------|
| Ambient Temperature with Power Applied55°C to +125°C                          |
| Supply Voltage on $V_{CC}$ relative to VSS0.3V to +3.9V                       |
| DC Voltage to Logic Inputs <sup>[7]</sup> –0.3V to V <sub>CC</sub> +0.3V      |
| DC Voltage applied to<br>Outputs in High-Z State0.3V to V <sub>CC</sub> +0.3V |
| Static Discharge Voltage (Digital)>2000V                                      |
| Static Discharge Voltage (RF) <sup>[8]</sup> 500V                             |
| Latch-up Current +200 mA, -200 mA                                             |

#### 10.0 **Operating Conditions**

| V <sub>CC</sub> (Supply Voltage)                   | 2.7V to 3.6V  |
|----------------------------------------------------|---------------|
| T <sub>A</sub> (Ambient Temperature Under Bias)    | 40°C to +85°C |
| Ground Voltage                                     | 0V            |
| F <sub>OSC</sub> (Oscillator or Crystal Frequency) | 13 MHz        |

11.0 DC Characteristics (over the operating range)

## Table 11-1. DC Parameters

| Parameter                 | Description                                                        | Conditions                            | Min.                 | <b>Typ.</b> <sup>[10]</sup> | Max.                | Unit |
|---------------------------|--------------------------------------------------------------------|---------------------------------------|----------------------|-----------------------------|---------------------|------|
| V <sub>CC</sub>           | Supply Voltage                                                     |                                       | 2.7                  | 3.0                         | 3.6                 | V    |
| V <sub>OH1</sub>          | Output High Voltage condition 1                                    | At I <sub>OH</sub> = -100.0µA         | V <sub>CC</sub> -0.1 | V <sub>CC</sub>             |                     | V    |
| V <sub>OH2</sub>          | Output High Voltage condition 2                                    | At I <sub>OH</sub> = -2.0 mA          | 2.4                  | 3.0                         |                     | V    |
| V <sub>OL</sub>           | Output Low Voltage                                                 | At I <sub>OL</sub> = 2.0 mA           |                      | 0.0                         | 0.4                 | V    |
| V <sub>IH</sub>           | Input High Voltage                                                 |                                       | 2.0                  |                             | V <sub>CC</sub> [9] | V    |
| V <sub>IL</sub>           | Input Low Voltage                                                  |                                       | -0.3                 |                             | 0.8                 | V    |
| IIL                       | Input Leakage Current                                              | 0 < V <sub>IN</sub> < V <sub>CC</sub> | -1                   | 0.26                        | +1                  | μA   |
| C <sub>IN</sub>           | Pin Input Capacitance (except X13, X13IN, RFIN)                    |                                       |                      | 3.5                         | 10                  | pF   |
| I <sub>Sleep</sub>        | Current consumption during power-down mode                         | PD = LOW                              |                      | 0.24                        | 10                  | μA   |
| IDLE I <sub>CC</sub>      | Current consumption without synthesizer                            | PD = HIGH                             |                      | 3                           |                     | mA   |
| STARTUP I <sub>CC</sub>   | ICC from PD high to oscillator stable.                             |                                       |                      | 1.8                         |                     | mA   |
| TX AVG I <sub>CC1</sub>   | Average transmitter current consumption <sup>[11]</sup>            | no handshake                          |                      | 5.9                         |                     | mA   |
| TX AVG I <sub>CC2</sub>   | Average transmitter current consumption <sup>[12]</sup>            | with handshaking                      |                      | 8.1                         |                     | mA   |
| RX I <sub>CC (PEAK)</sub> | Current consumption during receive                                 |                                       |                      | 57.7                        |                     | mA   |
| TX I <sub>CC (PEAK)</sub> | Current consumption during transmit                                |                                       |                      | 69.1                        |                     | mA   |
| SYNTH SETTLE              | Current consumption with Synthesizer on, No<br>Transmit or Receive |                                       |                      | 28.7                        |                     | mA   |

Notes:

7. It is permissible to connect voltages above Vcc to inputs through a series resistor limiting input current to 1 mA. This can't be done during power down mode. It is permissible to connect voltages above Vcc to inputs through a series resistor limiting input current to 1 mA. This can't be done durin AC timing not guaranteed.
 Human Body Model (HBM).
 It is permissible to connect voltages above Vcc to inputs through a series resistor limiting input current to 1 mA.
 It is permissible to connect voltages above Vcc to inputs through a series resistor limiting input current to 1 mA.
 Typ. values measured with Vcc = 3.0V @ 25°C
 Average Icc when transmitting a 5-byte packet (3 data bytes + 2 bytes of protocol) every 10ms using the WirelessUSB 1-way protocol.
 Average Icc when transmitting a 5-byte packet (3 data bytes + 2 bytes of protocol) every 10ms using the WirelessUSB 2-way protocol.