: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

rfmd

D10040220GT

GaAs Power Doubler Hybrid 40 MHz to 1000 MHz

The D10040220GT is a Hybrid Power Doubler amplifier module. The part employs GaAs die and is operated from 40 MHz to 1000 MHz . It provides excellent linearity and superior return loss performance with low noise and optimal reliability.

Ordering Information
D10040220GT
Box with 50 pieces

Absolute Maximum Ratings

Parameter	Rating	Unit
RF Input Voltage (single tone)	75	dBmV
DC Supply Over-Voltage (5 minutes)	30	V
Storage Temperature	-40 to +100	${ }^{\circ} \mathrm{C}$
Operating Mounting Base Temperature	-30 to +100	${ }^{\circ} \mathrm{C}$

Caution! ESD sensitive device.

RoHS (Restriction of Hazardous Substances): Compliant per EU Directive 2011/65/EU.

RoHS

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implie

Nominal Operating Parameters

Parameter	Specification			Unit	Condition
	Min	Typ	Max		
General Performance					$\mathrm{V}+=\mathbf{2 4 V} ; \mathrm{T}_{\mathrm{MB}}=30^{\circ} \mathrm{C} ; \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=75 \Omega$
Power Gain	21.0	21.5	22.0	dB	$\mathrm{f}=50 \mathrm{MHz}$
	22.5	23.0	24.0	dB	$\mathrm{f}=1000 \mathrm{MHz}$
Slope ${ }^{[1]}$	1.0	1.5	2.5	dB	$\mathrm{f}=40 \mathrm{MHz}$ to 1000 MHz
Flatness of Frequency Response			0.8	dB	$\mathrm{f}=40 \mathrm{MHz}$ to 1000 MHz (Peak to Valley)
Input Return Loss	20.0			dB	$\mathrm{f}=40 \mathrm{MHz}$ to 320 MHz
	19.0			dB	$\mathrm{f}=320 \mathrm{MHz}$ to 640 MHz
	17.0			dB	$\mathrm{f}=640 \mathrm{MHz}$ to 870 MHz
	16.0			dB	$\mathrm{f}=870 \mathrm{MHz}$ to 1000 MHz
Output Return Loss	20.0			dB	$f=40 \mathrm{MHz}$ to 320 MHz
	19.0			dB	$\mathrm{f}=320 \mathrm{MHz}$ to 640 MHz
	18.0			dB	$\mathrm{f}=640 \mathrm{MHz}$ to 870 MHz
	17.0			dB	$\mathrm{f}=870 \mathrm{MHz}$ to 1000 MHz
Noise Figure		5.5	6.5	dB	$\mathrm{f}=50 \mathrm{MHz}$ to 1000 MHz
Total Current Consumption (DC)		350.0	375.0	mA	
Distortion Data 40MHz to 870MHz					$\mathrm{V}+=24 \mathrm{~V} ; \mathrm{T}_{\mathrm{MB}}=30^{\circ} \mathrm{C} ; \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=75 \Omega$
CTB		-64	-62	dBc	132 ch flat; $\mathrm{V}_{0}=44 \mathrm{dBmV}{ }^{[2]}$
XMOD		-60	-58	dBc	
Cso		-65	-63	dBc	

1. The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.
2. 132 channels, NTSC frequency raster: 55.25 MHz to $865.25 \mathrm{MHz}, 44 \mathrm{dBmV}$ flat output level.

Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by the NCTA.
Composite Triple Beat (CTB) - The CTB parameter is defined by the NCTA.
Cross Modulation (XMOD) - Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested.

Package Drawing (Dimensions in millimeters)

0510 mm

Pinning:

Pin	Name
1	Input
$2-3$	GND
4	
5	+VB
6	
$7-8$	GND
9	Output

	Nominal	Min	Max
A	$44,6^{ \pm 0,2}$	44,4	44,8
B	$13,6^{ \pm 0,2}$	13,4	13,8
C	$20,4^{ \pm 0,5}$	19,9	20,9
D	$8^{ \pm 0,15}$	7,85	8,15
E	$12,6^{ \pm 0,15}$	12,45	12,75
F	$38,1^{ \pm 0,2}$	37,9	38,3
G	$4^{+0,2 /-0,05}$	3,95	4,2
H	$4^{ \pm 0,2}$	3,8	4,2
I	$25,4^{ \pm 0,2}$	25,2	25,6
J	$4,2^{ \pm 0,32}$	-	-
K	$27,2^{ \pm 0,2}$	4,0	4,4
L	$11,6^{ \pm 0,5}$	27,0	27,4
M	$5,8^{ \pm 0,4}$	11,1	12,1
N	$0,25^{ \pm 0,02}$	5,4	6,2
O	$0,45^{ \pm 0,03}$	0,23	0,27
P	$2,54^{ \pm 0,3}$	0,42	0,48
Q	$2,54^{ \pm 0,5}$	2,24	2,84
R	$2,54^{ \pm 0,25}$	2,04	3,04
S	$5,08^{ \pm 0,25}$	2,29	2,79
T	$5,08^{ \pm 0,25}$	4,83	5,33
U		4,83	5,33

