mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

D10040250GT

GaAs Power Doubler Hybrid 40MHz to 1000MHz

The D10040250GT is a Hybrid Power Doubler amplifier module. The part employs GaAs die and is operated from 40MHz to 1000MHz. It provides excellent linearity and superior return loss performance with low noise and optimal reliability.

Ordering Information

D10040250GT Box with 50 pieces

.

Absolute Maximum Ratings

Parameter	Rating	Unit
RF Input Voltage (single tone)	75	dBmV
DC Supply Over-Voltage (5 minutes)	30	V
Storage Temperature	-40 to +100	°C
Operating Mounting Base Temperature	-30 to +100	°C

Package: SOT-115J

Features

- Excellent Linearity
- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Low Noise
- Unconditionally Stable Under All Terminations
- 24.5dB Min. Gain at 1GHz
- 375mA Max. at 24VDC

Applications

 40MHz to 1000MHz CATV Amplifier Systems

Caution! ESD sensitive device.

RoHS (Restriction of Hazardous Substances): Compliant per EU Directive 2011/65/EU.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS131219

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. RF MICRO DEVICES® and RFMD® are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

Nominal Operating Parameters

Baramatar	Specification		llnit	Condition		
Parameter	Min	Тур	Max	Unit	Condition	
General Performance					$V_{+} = 24V; T_{MB} = 30^{\circ}C; Z_{S} = Z_{L} = 75\Omega$	
Power Gain	23.5	24.0	24.5	dB	f = 50MHz	
	24.5		26.0	dB	f = 1000MHz	
Slope ^[1]	0.5	1.0	2.0	dB	f = 40MHz to 1000MHz	
Flatness of Frequency Response			0.8	dB	f = 40MHz to 1000MHz (Peak to Valley)	
Input Return Loss	20.0			dB	f = 40MHz to 320MHz	
	19.0			dB	f = 320MHz to 640MHz	
	17.0			dB	f = 640MHz to 870MHz	
	16.0			dB	f = 870MHz to 1000MHz	
Output Return Loss	20.0			dB	f = 40MHz to 320MHz	
	19.0			dB	f = 320MHz to 640MHz	
	18.0			dB	f = 640MHz to 870MHz	
	17.0			dB	f = 870MHz to 1000MHz	
Noise Figure			5.5	dB	f = 50MHz to 1000MHz	
Total Current Consumption (DC)		350.0	375.0	mA		
Distortion Data 40MHz to 870MHz					$V_{+} = 24V; T_{MB} = 30^{\circ}C; Z_{S} = Z_{L} = 75\Omega$	
СТВ		-64	-62	dBc		
XMOD		-60	-58	dBc	132 ch flat; $V_0 = 44$ dBm $V^{(2)}$	
CSO		-65	-63	dBc		

1. The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.

2. 132 channels, NTSC frequency raster: 55.25MHz to 865.25MHz, +44dBmV flat output level.

Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by the NCTA.

Composite Triple Beat (CTB) - The CTB parameter is defined by the NCTA.

Cross Modulation (XMOD) - Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested.

Package Drawing (Dimensions in millimeters)

0 5 10mm

	Nominal	Min	Max
А	44,6 ^{± 0,2}	44,4	44,8
В	13,6 ^{± 0,2}	13,4	13,8
С	20,4 ^{± 0,5}	19,9	20,9
D	8 ^{± 0,15}	7,85	8,15
Е	12,6 ^{± 0,15}	12,45	12,75
F	38,1 ^{± 0,2}	37,9	38,3
G	4 +0,2 / -0,05	3,95	4,2
Н	4 ^{± 0,2}	3,8	4,2
T	25,4 ^{± 0,2}	25,2	25,6
J	UNC 6-32	-	-
К	4,2 ^{±0,2}	4,0	4,4
L	27,2 ^{± 0,2}	27,0	27,4
М	11,6 ^{± 0,5}	11,1	12,1
Ν	5,8 ^{± 0,4}	5,4	6,2
0	0,25 ^{± 0,02}	0,23	0,27
Р	0,45 ^{±0,03}	0,42	0,48
Q	2,54 ^{± 0,3}	2,24	2,84
R	2,54 ^{± 0,5}	2,04	3,04
S	2,54 ^{± 0,25}	2,29	2,79
Т	5,08 ^{± 0,25}	4,83	5,33
U	5,08 ^{± 0,25}	4,83	5,33

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

DS131219