: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China
mpman^{2}

Murata Power Solutions

FEATURES

RoHS compliant
2000W (220Vac), 1200W (110Vac) Output power

48V Main output,
3.3V, 5 V or 12 V standby output
1U sized; dimensions 4.75 "x12.00"x1.61"
21.9 Watts per cubic inch density
$\mathrm{N}+1$ redundancy capable, including hot-docking
Active current sharing on main output
Over-voltage, over-current,
over-temperature protection
Internal cooling fans
${ }^{2} \mathrm{C}$ Bus Interface with status indicators

25

For full details go to www.murata-ps.com/rohs

D1U-W-2000-48-Hx Series

AC/DC Front End Power Supply

PRODUCT OVERVIEW

The D1U-W-2000 is a 2000 Watt, power-factor-corrected (PFC) front-end power supply for hot-swapping redundant systems. The main output is 48 V and standby output of either $12 \mathrm{~V}, 5 \mathrm{~V}$ or 3.3 V . Packaged in 1 U low profile, it is designed to deliver reliable bulk power to servers, workstations, storage systems or any 48 V distributed power architecture systems requiring high power density. The highly efficient electrical and thermal design with internal cooling fans supports reliable operation conditions. The D1U-W-2000 is designed to auto-recover from over-temperature faults. Status information is provided with front panel LEDs, logic signals and $I^{2} C$ management interface. Three units can be packaged into a 19 " 1 U power shelf to provide up to 6.0 kW of power.

SELECTION GUIDE	Power Output High Line AC	Power Output Low Line AC	Main Output	Standby Output	Airflow
Part Number	2000 W	1200 W	48 V	3.3 V	Back to front
D1U-W-2000-48-HC2C	2000 W	1200 W	48 V	5 V	Back to front
D1U-W-2000-48-HA2C	2000 W	1200 W	48 V	12 V	Back to front
D1U-W-2000-48-HB2C	2000 W	1200 W	48 V	12 V	Back to front; variable speed fan
D1U-W-2000-48-HB4C					

| INPUT CHARACTERISTICS | Conditions | Min. | Typ. | Max. | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Parameter | | 90 | $115 / 230$ | 264 | Vac |
| Input Voltage Operating Range | | 47 | $50 / 60$ | 63 | Hz |
| Input Frequency | Ramp up | 78.5 | | 86.5 | Vac |
| Turn-on Input Voltage | Ramp down | 70.5 | | 78 | |
| Turn-off Input Voltage | Low Line AC 90Vac | | | 15 | Arms |
| Maximum Input Current | High Line AC 180Vac | | | 10 | |
| | Cold start between 0-1msec | | | 90 | Apk |
| Power Factor | Output load $>90 \%$ | 95% | | | |
| | Output load $>50 \%$ | 75% | | | |

OUTPUT VOLTAGE CHARACTERISTICS

Output Voltage	Parameter	Conditions	Min.	Typ.	Max.	Units
48 V	Voltage Set Point Accuracy			48		Vdc
	Line and Load Regulation		46.54		49.44	
	Ripple Voltage \& Noise ${ }^{1}$	20MHz Bandwidth			480	$\mathrm{mV} p-\mathrm{p}$
	Output Current		2		41.3	A
	Load Capacitance				10000	$\mu \mathrm{F}$
3.3 Vsb	Voltage Set Point Accuracy			3.3		Vdc
	Line and Load Regulation		3.2		3.4	
	Ripple Voltage \& Noise ${ }^{1}$	20MHz Bandwidth			50	mV p-p
	Operating Range		0		4.5	A
	Load Capacitance				1530	$\mu \mathrm{F}$
5Vsb	Voltage Set Point Accuracy			5		Vdc
	Line and Load Regulation		4.85		5.15	
	Ripple Voltage \& Noise ${ }^{1}$	20MHz Bandwidth			50	mV p-p
	Operating Range		0		4	A
	Load Capacitance				1530	$\mu \mathrm{F}$
12Vsb	Voltage Set Point Accuracy			12		Vdc
	Line and Load Regulation		11.6		12.4	
	Ripple Voltage \& Noise ${ }^{1}$	20MHz Bandwidth			120	mV p-p
	Operating Range		0		1.7	A
	Load Capacitance				1530	$\mu \mathrm{F}$

AC/DC Front End Power Supply

OUTPUT CHARACTERISTICS						
Parameter		Conditions	Min.	Typ.	Max.	Units
Remote Sense				240		mV
Efficiency		220Vac		90.6		\%
Output Rise Monotonicity		Overshoot less than 10\% for all outputs, no voltage negative between 10% to 95% during ramp up				
Start-up Time		AC ramp up		1.5		s
		PS_On activated		150		ms
Transient Response		48V Ramp 1A/ $/$ s, 50% load step			± 2700	mV
		3.3Vsb Ramp 1A/ $/ \mathrm{s}$, 50% load step			± 165	
		5Vsb Ramp 1A/us, 50\% load step			± 250	
		12Vsb Ramp 1A/ Hs , 50% load step			± 600	
Current sharing accuracy (up to 6 in parallel)		At 100\% load			± 10	\%
Hot Swap Transients		All outputs within regulation				
Hold-up Time		Max. Ioad, nominal Vin	17			ms
GENERAL CHARACTERISTICS						
Parameter		Conditions	Min.	Typ.	Max.	Units
Storage Temperature Range		Non-condensing	-40		70	${ }^{\circ} \mathrm{C}$
Operating Temperature Range			0		50	
Operating Humidity		Non-condensing	10		90	\%
Storage Humidity			5		90	
Shock		30G non operating				
Sinusoidal Vibration		$0.5 \mathrm{G}, 5-500 \mathrm{~Hz}$ operating				
MTBF		Calculated per Bellcore at $\mathrm{Ta}=30^{\circ} \mathrm{C}$	200			Khrs
		Demonstrated	200			Khrs
Acoustic		ISO 7779-1999			60	dB LpAm
Safety Approvals		c-CSA-us (CSA 60950-1-03/UL 60950-1, Second Edition) TUV approval (Bauart) EN 60950-1:2001				
Input Fuse		Power Supply has internal 20A/250V fast blow fuse on the AC line input				
Material Flammability		UL 94V-0				
Switching Frequency		90KHz for Boost PFC Converter 165KHz for Main Output Converter 200KHz for Standby Output Converter				
Weight		2.1 kg				
PROTECTION CHARACTERISTICS						
Output Voltage	Parameter	Conditions	Min.	Typ.	Max.	Units
	Over-temperature	Auto-restart	55		65	${ }^{\circ} \mathrm{C}$
48 V	Over Voltage	Latching	54		59	V
	Over Current	Latching	44		50	A
12Vsb	Over Voltage	Latching	13		14	V
	Over Current	Latching	2.5		3	A
3.3Vsb	Over Voltage	Latching	3.57		4.02	V
	Over Current	Latching	6.5		8	A
5Vsb	Over Voltage	Latching	5.6		6	V
	Over Current	Latching	5		7	A

[^0]| ISOLATION CHARACTERISTICS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Conditions | Min. | Typ. | Max. | Units |
| Insulation Safety Rating / Test Voltage | Input to Output - Reinforced | 3000 | | | Vrms |
| | Input to Chassis - Basic | 1500 | | | Vrms |
| Isolation | Output to Chassis | | | | |
| | Output to Output | | | | |
| Material Flammability | UL 94V-0 | | | | |
| Grounding | Main Output Return and Standby Output Return are connected internally. 100k Ω resistor parallel with 100 nF capacitor is connected between Return and power supply chassis. Main Output Return should be connected to the System Chassis. | | | | |
| CONTROL SICNALS | | | | | |
| Status | Conditions | Descriptio | | | |
| LED | Off | No AC input to all PS | | | |
| | Flashing Yellow | Power Supply Failure | | | |
| | Flashing Green | Main Output Absent | | | |
| | Green | Power Supply Good | | | |
| $1^{2} \mathrm{C}$ Registers | Status | PS-ON, PGOOD, ACOK, PS_BAD, FANFAIL, OT Warning \& shutdown, AC Range | | | |
| | Output Fault | 48 V 0V, 48 V UV, 48V 0C, Vsb Fail, Fan1 Fail, Fan2 Fail | | | |
| | 48V Output | 8 bit scaled output voltage | | | |
| | 48 V | 8 bit scaled output current | | | |
| | Fan1 Monitor | 8 bit scaled output current | | | |
| | Fan2 Monitor | 8 bit scaled output current | | | |
| EMISSIONS AND IMMUNITY | | | | | |
| Characteristic | Description | | Criteria | | |
| Harmonics | IEC/EN 61000-3-2 | | | | |
| Voltage Fluctuation and Flicker | IEC/EN 61000-3-3 | | | | |
| Emission Conducted | FCC 47 CFR Parts 15/CISPR 22/EN55022 | | Class A, 6dB margin | | |
| Emission Radiated | FCC 47 CFR Parts 15/CISPR 22/EN55022 | | Class A, 6dB margin | | |
| ESD | IEC/EN 61000-4-2 | | 4 kV contact discharge | | |
| | | | 8 kV operational air discharge | | |
| | | | 15 kV non-0 | air dis | |
| Electromagnetic Field | IEC/EN 61000-4-3 | | | | |
| Electrical Fast Transients/Burst | IEC/EN 61000-4-4 | | | | |
| Surge | IEC/EN 61000-4-5 | | $1 \mathrm{kV} / 2 \mathrm{kV}$, Performance Criteria B | | |
| RF Conducted Immunity | IEC/EN 61000-4-6 | | $3 \mathrm{Vac}, 80 \% \mathrm{AM}, 1 \mathrm{kHz}$, Performance Criteria A | | |
| Magnetic Immunity | IEC/EN 61000-4-8 | | $3 \mathrm{~A} / \mathrm{m}$ | | |
| Voltage dips, interruptions | IEC/EN 61000-4-11 | | | | |

OUTPUT CONNECTOR AND SIGNAL SPECIFICATION												
DC and Signal Connector: Tyco Part \# 1-6450332-7, or FCI PowerBlade \# 51732-028												
	P1	P2	P3	P4	P5	P6	x1	x2	x3	x4 ${ }^{\text {4 }}$		D
	Vout	Vout	Vout	Vrin	Vkin	Vktn	AC_OK	P_G00D	$\begin{gathered} \text { V_sB } \\ +0 U T \end{gathered}$	V_sB RETURN	V_sb RETURN	
							PS_ON	$\begin{aligned} & \text { V_SB } \\ & +O U T \end{aligned}$	$\begin{aligned} & \text { V_sB } \\ & +O U T \end{aligned}$	V_sB RETURN	V_sb RETURN	C
							I_SHARE	I 2 C ADRO	$1^{2} \mathrm{C}$ ADR1	$I^{2} C$ ADR2	PS PRESEN	B
							PS_KILL	$\begin{aligned} & \text { Vout } \\ & \text { SENSE+ } \end{aligned}$	Vout SENSE-	$1^{2} C$ DATA	$\begin{aligned} & { }^{\text {I } 2} \mathrm{C} \\ & \text { CLOCK } \end{aligned}$	A
Pin Assignment	Signal Name			Description					High Level Low Level			1 Max
P1, P2, P3	Vout			Main output voltage								
P4, P5, P6	Vtin			Main output voltage, return								
A2	Sense +			Vout remote sense, positive node input, connected to the +ve load point								
A3	Sense -			Vout remote sense, negative node input, connected to the -ve load point								
C2, C3, D3	V_sB			Standby voltage output								
C4, C5, D4, D5	V_sb Return			Standby voltage, return, tied internally to Output Return								
B1	I_Share			Active load sharing bus					0-8V			$-4 \mathrm{~mA} /+5 \mathrm{~mA}$
D1	AC_OK			Input AC Voltage "OK" signal output (Internal pull up is $10 \mathrm{k} \Omega$ to Vsb)					$\begin{aligned} & >2.4 \mathrm{~V} \text { (active, OK) } \\ & <0.4 \mathrm{~V} \end{aligned}$			$\begin{aligned} & +4 \mathrm{~mA} \\ & -2 \mathrm{~mA} \end{aligned}$
D2	P_Good			Power good signal output (Internal pull up is $10 \mathrm{k} \Omega$ to Vsb)					$\begin{aligned} & >2.4 \mathrm{~V} \text { (active, Good) } \\ & <0.4 \mathrm{~V} \end{aligned}$			$\begin{aligned} & +4 \mathrm{~mA} \\ & -2 \mathrm{~mA} \end{aligned}$
A1	PS_Kill			Floating pin will turn off P/S (shorter pin, last-make and first-break contact for hot plugging). This signal overrides PS-On in disabling the Main Output					$>2.1 \mathrm{~V}$ (open, or Vsb) $<0.7 \mathrm{~V}$ (active, PS:On)			N/A
B5	PS_Present			Internally tied to Vsb return					OV			
C1	PS_0n			Internal 1 K ohm pull-up to Vsb, (accepts open collector/ drain drive), This signal to be pulled low to turn-on power supply					$>2.1 \mathrm{~V}$ (open, or Vsb) $<0.7 \mathrm{~V}$ (active, PS:On)			$\begin{aligned} & -4 \mathrm{~mA} \\ & -1 \mathrm{~mA} \end{aligned}$
A4	$1^{2} \mathrm{C}$ Data			$1^{2} \mathrm{C}$ serial data bus					Vsb			
A5	$1^{2} \mathrm{C}$ Clock			$1^{2} \mathrm{C}$ serial clock bus					Vsb			
B2	$1^{2} \mathrm{C}$ Adr0			Address input 0 , internal pull-up to Vsb					$\begin{aligned} & >2.1 \mathrm{~V},<\mathrm{Vsb} \\ & <0.8 \mathrm{~V} \end{aligned}$			$\pm 1 \mathrm{~mA}$
B3	$1^{2} \mathrm{C}$ Adr1			Address input 1, internal pull-up to Vsb					$\begin{aligned} & >2.1 \mathrm{~V},<\mathrm{Vsb} \\ & <0.8 \mathrm{~V} \end{aligned}$			$\pm 1 \mathrm{~mA}$
B4	$1^{2} \mathrm{C}$ Adr2			Address input 2, internal pull-up to Vsb					$\begin{aligned} & >2.1 \mathrm{~V},<\mathrm{Vsb} \\ & <0.8 \mathrm{~V} \end{aligned}$			$\pm 1 \mathrm{~mA}$

D1U MATING CONNECTORS				
48V D1U mating connector	Press Fit		Solder ${ }^{2}$	
	Straight	Right Angle	Straight	Right Angle
MPS	N/A	Pending	N/A	36-0440026-0
FCI	51742-10602000CALF	51762-10602000CBLF	51742-10602000AALF	51762-10602000ABLF
Tyco	TBD	TBD	TBD	TBD

[^1]

OPTIONAL ACCESSORIES	
Description	Part Number
48 V D1U-48 output connector card	D1U-48-CONC

APPLICATION NOTES		
Document Number	Description	Link
ACAN-25	D1U System Connection	www.murata-ps.com/data/apnotes/acan-25.pdf
ACAN-26	D1U-48 Output Connector Card	www.murata-ps.com/data/apnotes/acan-26.pdf
ACAN-29	D1U Communications Protocol	www.murata-ps.com/data/apnotes/acan-29.pdf

Murata Power Solutions, Inc.
11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A.
ISO 9001 and 14001 REGISTERED

4This product is subject to the following operating requirements and the Life and Safety Critical Application Sales Policy: Refer to: http://www.murata-ps.com/requirements/

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other
technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

[^0]: ${ }^{1}$ Ripple and noise are measured with 0.1 uF of ceramic capacitance and 10 uF of tantalum capacitance on each of the power supply outputs. The output noise requirements apply over a 0 Hz to 20 MHz bandwidth. A short coaxial cable with 500hm scope termination is used.

[^1]: ${ }^{2}$ Solder connector recommended for board thickness of <0.090

