: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Sealed Subminiature Basic Switch

Ultra-small and Highly Sealed

- Degree of protection conforms to JIS Waterproof standard and IEC IP67.
(Excluding the terminals on terminal models)
- Wide range of operating temperatures from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
- Gold-alloy crossbar contact and coil spring offer long durability and high contact reliability.

RoHS Compliant

Model Number Legend

1. Actuator- D2JW-01	
None : Pin plunger	2. Contact form
K1A : Short hinge lever	1: SPDT
K1 : Hinge lever	2: SPST-NC (Molded lead wire models only)
K2 : Hinge roller Lever	3: SPST-NO (Molded lead wire models only)
K3 : Simulated roller hinge lever	3. Terminals
	None: Solder terminals
	-MD : Molded lead wires

List of Models

Actuator	Terminals	Contact form	Model
Pin plunger	Solder terminals	SPDT	D2JW-011
	Molded lead wires	SPDT	D2JW-011-MD
		SPST-NC	D2JW-012-MD
		SPST-NO	D2JW-013-MD
Short hinge lever	Solder terminals	SPDT	D2JW-01K1A1
	Molded lead wires	SPDT	D2JW-01K1A1-MD
		SPST-NC	D2JW-01K1A2-MD
		SPST-NO	D2JW-01K1A3-MD
Hinge Lever Models	Solder terminals	SPDT	D2JW-01K11
	Molded lead wires	SPDT	D2JW-01K11-MD
		SPST-NC	D2JW-01K12-MD
		SPST-NO	D2JW-01K13-MD
Hinge Roller Lever Models	Solder terminals	SPDT	D2JW-01K21
	Molded lead wires	SPDT	D2JW-01K21-MD
		SPST-NC	D2JW-01K22-MD
		SPST-NO	D2JW-01K23-MD
Simulated Roller Hinge Lever Models	Solder terminals	SPDT	D2JW-01K31
	Molded lead wires	SPDT	D2JW-01K31-MD
		SPST-NC	D2JW-01K32-MD
		SPST-NO	D2JW-01K33-MD

Contact form

(BPT

Contact Specifications

Contact	Specification	Crossbar
	Material	Gold alloy
	Gap (standard value)	0.5 mm
Inrush current	NC	$0.1 \mathrm{~A} \mathrm{max}$.
	NO	$0.1 \mathrm{~A} \mathrm{max}$.
Minimum applicable load (see note)	5 VDC 1 mA	

Ratings

Rated voltage	Resistive load
30 VDC	0.1 A

Note. The above rating values apply under the following test conditions.
(1) Ambient temperature: $20 \pm 2^{\circ} \mathrm{C}$
(2) Ambient humidity: $65 \pm 5 \%$
(3) Operating frequency: 30 operations $/ \mathrm{min}$

Characteristics

Permissible operating speed		1 mm to $250 \mathrm{~mm} / \mathrm{s}$ (for pin plunger models)
Permissible operating frequency	Mechanical	240 operations/min
	Electrical	30 operations/min
Insulation resistance		$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC with insulation tester)
Contact resistance (initial value)	Solder terminal models	$100 \mathrm{~m} \Omega$ max.
	Molded lead wire models	$140 \mathrm{~m} \Omega$ max.
Dielectric strength * 1	Between terminals of the same polarity	600 VAC 50/60 Hz 1min
	Between current-carrying metal parts and ground	1,000 VAC 50/60 Hz 1 min
	Between each terminal and non-current-carrying metal parts	1,000 VAC 50/60 Hz 1 min
Vibration resistance *2	Malfunction	10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude
Shock resistance	Durability	1,000 m/s ${ }^{2}$ \{approx. 100G\} max.
	Malfunction *2	$200 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. 20G\} max.
Durability * 3	Mechanical	1,000,000 operations min. (60 operations/min)
	Electrical	100,000 operations min. (30 operations/min)
Degree of protection	Solder terminal models	IEC IP67 (excluding the terminals on terminal models)
	Molded lead wire models	IEC IP67
Ambient operating temperature		```\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) (at ambient humidity of \(60 \%\) max.) (with no icing or condensation)```
Ambient operating humidity		35% to 98% (for $+5^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$)
Weight		Approx. 0.6 g (for pin plunger models with terminals)

Note. The data given above are initial values.
*1. The dielectric strength values shown apply for use with Separator (refer to page 4).
*2. For the pin plunger models, the above values apply for use at the free position and total travel position. For the lever models, they apply at the total travel position. Close or open circuit of the contact is 1 ms max.
*3. For testing conditions, consult your OMRON sales representative.

Mounting Holes (Unit: mm)

Dimensions (Unit: mm) /Operating Characteristics

Dimensions and operating characteristics of other actuator models for lead wire models are omitted in the illustration below, as the dimensions other than the termial part and operatiing characteristics is common with Solder terminal models.

-Pin plunger models

D2JW-011

Operating characteristics

Operating Force	OF Max.	$2.45 \mathrm{~N}\{250 \mathrm{gf}\}$
Releasing Force	RF Min.	$0.98 \mathrm{~N}\{100 \mathrm{gf}\}$
Pretravel	PT Max.	0.6 mm
Overtravel	OT Min.	0.3 mm
Movement Differential	MD Max.	0.1 mm
Operating Position	OP	$8.1 \pm 0.3 \mathrm{~mm}$

-Short hinge lever models D2JW-01K1A1

Operating Force Releasing Force	$\begin{aligned} & \hline \mathrm{OF} \\ & \mathrm{RF} \end{aligned}$	Max. Min.	$\begin{gathered} \hline 1.15 \mathrm{~N}\{117 \mathrm{gf}\} \\ 0.23 \mathrm{~N}\{23 \mathrm{gf}\} \end{gathered}$
Pretravel	PT	Max.	5.4 mm
Overtravel	OT	Min.	0.7 mm
Movement Differential	MD	Max.	0.5 mm
Operating Position	OP		$8.4 \pm 0.8 \mathrm{~mm}$

Note 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
Note 2. The operating characteristics are for operation in the A direction (\downarrow).
-Hinge lever models D2JW-01K11

Operating Force	OF	Max.	$0.80 \mathrm{~N}\{82 \mathrm{gf}\}$
Releasing Force	RF	Min.	$0.15 \mathrm{~N}\{16 \mathrm{gf}\}$
Pretravel	PT	Max.	6.4 mm
Overtravel	OT	Min.	1.4 mm
Movement Differential	MD	Max.	0.7 mm
Operating Position	OP		$8.4 \pm 0.8 \mathrm{~mm}$

-Simulated roller lever hinge models

D2JW-01K31

-Hinge roller lever models D2JW-01K21

- Molded lead wire models D2JW-01 \square []-MD

Note. When ordering, replace \square with the code for the actuator and contact form that you need.

Operating Force	OF	Max.	$2.45 \mathrm{~N}\{250 \mathrm{gf}\}$
Releasing Force	RF	Min.	$0.98 \mathrm{~N}\{100 \mathrm{gf}\}$
Pretravel	PT	Max.	0.6 mm
Overtravel	OT	Min.	0.3 mm
Movement Differential	MD	Max.	0.1 mm
Operating Position	OP	$8.1 \pm 0.3 \mathrm{~mm}$	

[^0]
Precautions

太Please refer to "Basic Switches Common Precautions" for correct use.

Cautions
-Terminal Connection

Before soldering the lead wire to the terminal, first insert the lead wire conductor through the terminal hole.
Complete the soldering at the iron tip temperature till $250^{\circ} \mathrm{C}$ within 3 seconds, and do not apply any external force for 1

Correct Use
 -Mounting

Use M2.3 mounting screw with plane washers or spring washers to securely mount the Switch. Tighten the screws to a torque of 0.20 to $0.29 \mathrm{~N} \cdot \mathrm{~m}$ \{2 to $3 \mathrm{kgf} \cdot \mathrm{cm}\}$.

-Wiring Molded Lead Wire Models

When wiring molded lead wire models, ensure that there is no weight applied on the wire and that the wire is not bent.
Otherwise, damage to the Switch or deterioration in the sealing may result.

©Using Micro Loads

Even when using micro load models within the operating range shown below, if inrush/surge current occurs, it may increase the contact wear and so decrease durability. Therefore, insert a contact protection circuit where necessary.

-Protection Against Chemicals

Prevent the Switch from coming into contact with oil or chemicals.
Otherwise, damage to or deterioration of Switch materials may result.

Separator (sold separately)

SEPARATOR FOR D2JW

Note. The material of the separator is EAVTC (epoxy alkyd/varnish tetron cloth).

[^1]Note: Do not use this document to operate the Unit.

OMRON Corporation

[^0]: Note 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
 Note 2. The operating characteristics are for operation in the A direction (\downarrow).

[^1]: - Application examples provided in this document are for reference only. In actual applications, confirm equipment functions and safety before using the product.
 - Consult your OMRON representative before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems or equipment that may have a serious influence on lives and property if used improperly. Make sure that the ratings and performance characteristics of the product provide a margin of safety for the system or equipment, and be sure to provide the system or equipment with double safety mechanisms.

