imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Title	Engineering Prototype Report for EP-54 – 2.75 W Charger/Adapter Using LNK520P (LinkSwitch)
Specification	85-265 VAC Input, 5.5 V, 500 mA, 2.75 W Output
Application	Low Cost Charger / Adapter
Author	Power Integrations Applications Department
Document Number	EPR-54
Date	07-May-2004
Revision	1.1

Summary and Features

- Low cost, low component count battery charger/adapter replaces linear transformer based solutions
- Optimized switching characteristics and low-side configuration of LNK520 minimizes EMI
 - Achieves greater than 10 dBµV margin to composite conducted limits
 - No Y1 safety capacitor required for EMI compliance
 - Ultra-low earth leakage current, <5 µA
- Small low cost EE16 transformer
 - Provision for EE13 transformer for smaller size
- Approximate constant voltage, constant current (CV/CC) primary sensed output characteristic
- Efficiency greater than 65% across all line/load conditions

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at <u>www.powerint.com</u>.

Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com

Table Of Contents

1	Intro	oduction	4
2	Pov	ver Supply Specification	5
3	Sch	ematic	6
4	Circ	cuit Description	7
	4.1	Input EMI Filtering	7
	4.2	LinkSwitch Primary and Output Feedback	.7
	4.3	Output Rectification	.9
5		3 Layout	
6		Of Materials	
7	Tra	nsformer Specification	11
	7.1	Electrical Diagram	
	7.2	Electrical Specifications	11
	7.3	Materials	
	7.4	Transformer Build Diagram	13
	7.5	Transformer Construction	
	7.6	Transformer Bobbing Drawing	
8	Per	formance Data	17
	8.1	Efficiency	17
	8.2	No-load Input Power	18
	8.3	Regulation	19
	8.3.	1 Line and Load	19
	8.4	Thermal Performance	20
9	Wa	veforms	
	9.1	Drain Voltage and Current, Normal Operation	
	9.2	Output Voltage Start-up Profile (Battery Load)	
	9.3	Drain Voltage and Current Start-up Profile	
	9.4	Load Transient Response (75% to 100% Load Step)	
	9.5	Output Ripple Measurements	
	9.5.	1 Ripple Measurement Technique	
		2 Ripple Measurement Results	
1(conducted EMI	
1		ppendix A: EE16 Simple Construction	
	11.1		29
	11.2	Schematic	
	11.3	Bill of Materials	
		Transformer Specification	
	11.4	5	
	11.4		
	11.4		
		Performance Data	
	11.		
	11.		
	11.6	Conducted EMI	
	12	Revision History	36

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

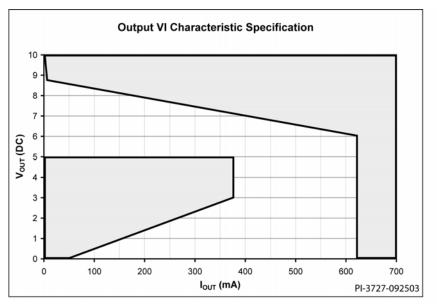
1 Introduction

This document is an engineering report describing a 5.5 V, 500 mA charger/adapter power supply. The power supply utilizes the *LinkSwitch* LNK520 device, optimized for bias winding feedback. The *LinkSwitch* integrates a 700 V MOSFET, PWM controller, start-up, thermal shut-down, and fault protection circuitry. This power supply is a cost effective replacement of linear transformer based power supplies with the additional features of universal input range and high energy efficiency.

Compared to the LNK500, the optimized switching characteristics of the LNK520 and the low-side configuration provides improved EMI performance and less variation in EMI performance from design to design.

The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.

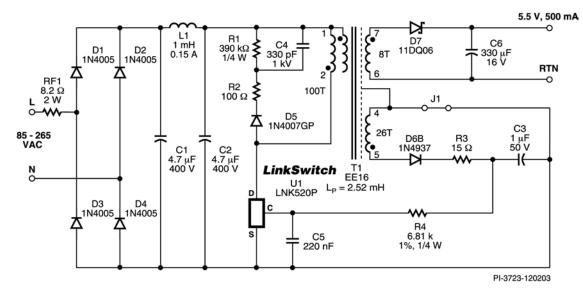
Figure 1 – Populated Circuit Board Photograph.

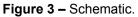

An alternate design utilizing simplified EE16 transformer construction is presented. See Appendix A for schematic, construction details and performance curves.

2 Power Supply Specification

Description	Symbol	Min	Тур	Мах	Units	Comment
Input						
Voltage	V _{IN}	85		265	VAC	2 Wire – no protective ground.
Frequency	f _{LINE}	47	50/60	64	Hz	
No-load Input Power				0.3	W	Measured at 230 VAC + 10%
Output						
Output Voltage	Vout	5.0	5.5	6	V	\pm 20% (at peak power point)
Output Ripple (resistive load)	V _{RIPPLE(R)}		300		mV	Resistive load (peak power)
Output Ripple (battery load)	V _{RIPPLE(B)}		150		mV	Battery load (peak power)
Output Current	Ι _{ουτ}	375	500	625	mA	$\pm25\%$ (at peak power point)
Output Envelope						See figure 3
Total Output Power						
Continuous Output Power	Pout	2.06	2.75	3.43	W	
Efficiency	η	65			%	Measured at P _{OUT} (2.75 W), 25 °C
Environmental						
Conducted EMI		Mee	ts CISPR2	2B / EN55	022B	No Y1 Safety Capacitor
Safety		Desigr	ned to mee	et IEC950/	UL1950	Class II
Surge		2			kV	1.2/50 μs surge, IEC 1000-4-5, Series Impedance: Differential Mode: 2 Ω Common Mode: 12 Ω
Surge		2			kV	100 kHz ring wave, 500 A short circuit current, differential and common mode
Ambient Temperature	Т _{АМВ}	0		40	°C	In provided enclosure, free convection, sea level

 Table 1 - EP54 Power Supply Specification.





Note: EP-54 is designed for a battery load. If a resistive or electronic load is used the supply may fail to start up at full load. This is normal. To ensure startup into a resistive load, increase the value of C5 to 1 μ F (see circuit description for more information).

3 Schematic

4 Circuit Description

The circuit schematic shown in Figure 3 shows a design that provides a constant voltage / constant current (CV/CC) output characteristic from a universal input voltage range of 85 VAC-265 VAC. This design delivers 2.75 W with nominal peak power point voltage of 5.5 V and a current of 500 mA. The overall operating envelope is shown in Figure 10. The unit provides a CC operating range of $\pm 25\%$ over a case internal temperature range of 25 °C to 65 °C, and a transformer primary inductance tolerance of $\pm 10\%$.

Appendix A details the performance of a simplified EE16 transformer without using foil in the construction. This may be a more attractive design for some magnetics vendors but does result in a slight degradation in the CV regulation. See Appendix A for schematic, transformer construction and performance curves.

The PCB layout includes provisions to allow a transformer based on an EE13 bobbin to be fitted. An EE16 core size was selected for this design based on feedback that this is generally the lowest cost core size.

4.1 Input Stage and EMI Filtering

The bridge rectifier, D1-D4, rectifies the AC input and is smoothed by C1 and C2, with inductor L1 forming a π -filter to attenuate differential mode conducted EMI. Resistor RF1 is a fusible, flame proof type, providing protection from primary-side short circuits and line surges and provides additional differential EMI filtering. The switching frequency of 42 kHz allows such a simple EMI filter to be used without the need for a Y capacitor while still meeting international EMI standards.

It is recommended that RF1 be of wire wound construction to withstand input current surges while the input capacitor charges (metal film type are not recommended), and be compliant with safety flammability hazard requirements. Please consult your safety agency representative for requirements specific to your end-use application.

Capacitors C1 and C2 are sized to maintain a minimum DC voltage of around 90 V at the minimum AC input voltage. Their ESR should also be as low as possible to reduce differential mode EMI generation. The value of L1 is selected to give acceptable differential mode EMI attenuation with a current rating to meet the RMS input current at low line (or acceptable temperature rise). Conducted emissions in this design are compliant with EN55022B / CISPR 22B and FCC B limits with no input Y1 safety capacitor.

4.2 LinkSwitch Primary and Output Feedback

The LNK520P contains the necessary functions to implement start-up and auto-restart (output protection) operation, output constant voltage (CV) and constant-current (CC) control.

When power is applied, high voltage DC appears at the DRAIN pin of *LinkSwitch* (U1). The CONTROL pin capacitor C5 is then charged through a switched high voltage current source connected internally between the DRAIN and CONTROL pins. When the CONTROL pin reaches approximately 5.6 V relative to the SOURCE pin, the internal current source is turned off. The internal control circuitry is activated and the high voltage MOSFET starts to switch, using the energy in C5 to power the IC.

Once the output has reached regulation, PWM control maintains CV regulation by indirectly sensing the output winding voltage. Ideally the DC output voltage is equal to the bias voltage plus the forward drop of D6B multiplied by the transformer secondary winding to bias winding turns ratio minus the forward drop of D7. However, leakage inductance causes errors that vary with load, causing the output voltage to rise at no-load. To give the best regulation, the bias and secondary windings should be physically close to each other in the transformer.

Diode D6B rectifies the output of the bias winding, which is then smoothed by C3 to provide a DC voltage to be fed to the CONTROL pin via R4. Resistor R3 is added to filter noise due to leakage inductance. The value of R4 is set such that, at the peak power point, where the output is still in CV regulation, the CONTROL pin current is approximately 2.2 mA.

As the output load is increased, the peak power point (defined by $0.5 \times L \times l^2 \times f$) is exceeded. The output voltage and therefore primary side bias voltage reduce. The reduction in the bias voltage results in a proportional reduction of CONTROL pin current, which lowers the internal *LinkSwitch* current limit (current limit control).

Constant current (CC) operation controls secondary-side output current by reducing the primary-side current limit. The current limit reduction characteristic has been optimized to maintain an approximate constant output current as the output voltage and bias voltage is reduced.

If the load is increased further and the CONTROL pin current falls below approximately 0.8 mA, the CONTROL pin capacitor C5 will discharge and *LinkSwitch* will enter autorestart operation.

Current limit control removes the need for any secondary-side current sensing components (sense resistor, transistor, optocoupler and associated components). Removing the secondary sense circuit dramatically improves efficiency, giving the associated benefit of reduced enclosure size.

Diode D5, C4, R1, and R2 form the primary clamp network. This limits the peak DRAIN voltage due to leakage inductance. Resistor R2 allows the use of a slow, low cost rectifier diode by limiting the reverse current through D5 when U1 turns on. The selection of a slow diode improves radiated EMI and also improves CV regulation, especially at no load.

4.3 Output Rectification

Output rectification is provided by Schottky diode D7. The low forward voltage provides high efficiency across the operating range. Low ESR capacitor C6 achieves minimum output ripple and maximizes operating efficiency.

5 PCB Layout

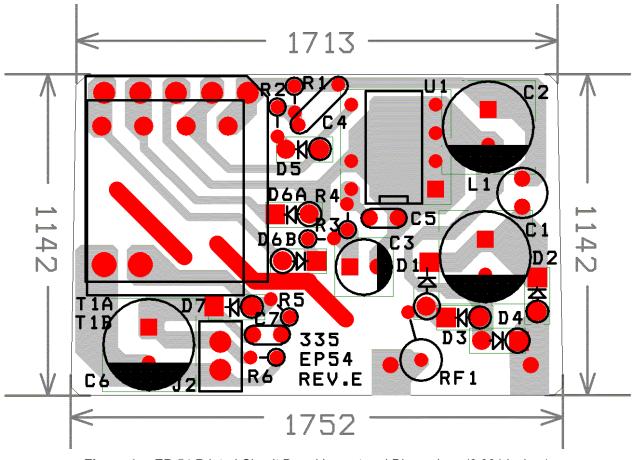


Figure 4 – EP-54 Printed Circuit Board Layout and Dimensions (0.001 inches) (note: C7, R5 and R6 are not populated).

6 Bill Of Materials

ltem	Qty	Reference	Description (Type)	P/N, Type	Manufacturer
1	1	U1	LinkSwitch	LNK520P	Power Integrations
2	2	C1, C2	4.7 μ F, 400 V (SHD Series)	380VB4R7M8X11C	Sam Young
			4.7 μF, 380 V	380VB4R7M8X11L	UCC
3	1	C3	1 μF, 50 V, general purpose	ECA-1HHG010	Panasonic (or generic)
4	1	C4	330 pF, 1000 V, Ceramic	ECK-D3A331KBP	Panasonic (or generic)
5	1	C5	220 nF, 50 V, Ceramic		Generic
6	1	C6	330 μ F, 16 V, 117 m Ω	EEU-FC1C331	Panasonic
7	4	D1-4	Rectifier 1 A, 600 V	1N4005,	Diodes, Inc. (or generic)
8	1	D5	Rectifier Glass Passivated 1 A, 600 V	1N4007GP,	Generic
9	1	D6B	1 A, 600 V, Fast recovery, t _{rr} = 200 ns	1N4937	Diodes, Inc. (or generic)
10	1	D7	1 A, 60 V Schottky	11DQ06	International Rectifier (or generic)
11	1	J1	Jumper, 24 AWG, bare (location D6A)		Any
12	1	L1	1.0 mH, 150 mA	SBCP-47HY102B	Tokin
13	1	RF1	8.2 Ω Fusible	CRF0414 253-4/8R2, 5%	Vitrohm
14	1	R1	390 kΩ, ¼ W, 5%		Any
15	1	R2	100 Ω, 5%, ¼ W		Any
16	1	R3	15 Ω, 5%, ½ W		Any
17	1	R4	6.81 kΩ (1%), ¼ W		Any
18	1	T1	Custom EE16	LSLA40319B-1	L.S.E. http://www.lishin.com

7 Transformer Specification

Note: To correctly center the output voltage over a junction temperature of 25 °C to 65 °C (approx ambient 0 °C to 40 °C), the design software and design methodology may produce a slightly different transformer design than the one shown here.

7.1 Electrical Diagram

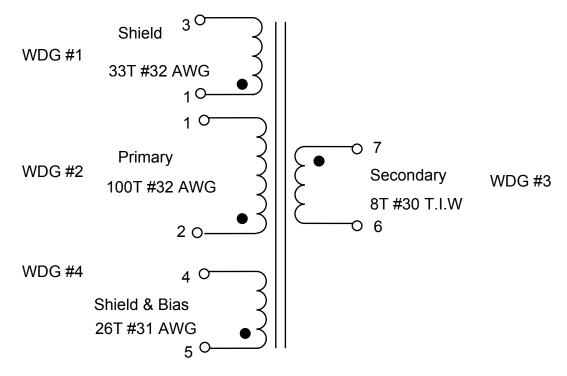
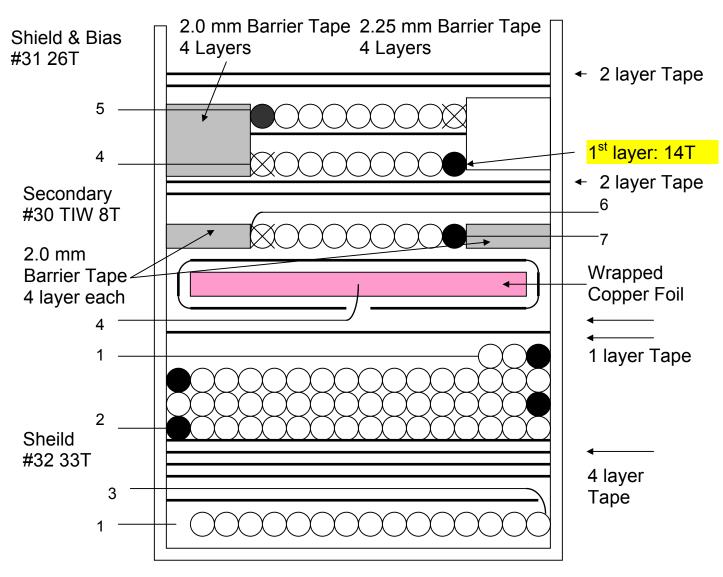


Figure 5 – Transformer Electrical Diagram.

7.2 Electrical Specifications

Electrical Strength	1 second, 60 Hz, from Pins 1-5 to Pins 6-10	3000 VAC
Primary Inductance	Pins 1-2, all other windings open, measured at 100 kHz, 0.4 VRMS	2.52 mH, +/-10%
Resonant Frequency	Pins 1-2, all other windings open	400 kHz (Min.)
Primary Leakage Inductance	Pins 1-2, with Pins 6-7 shorted, measured at 100 kHz, 0.4 VRMS	80 μH (Max.)

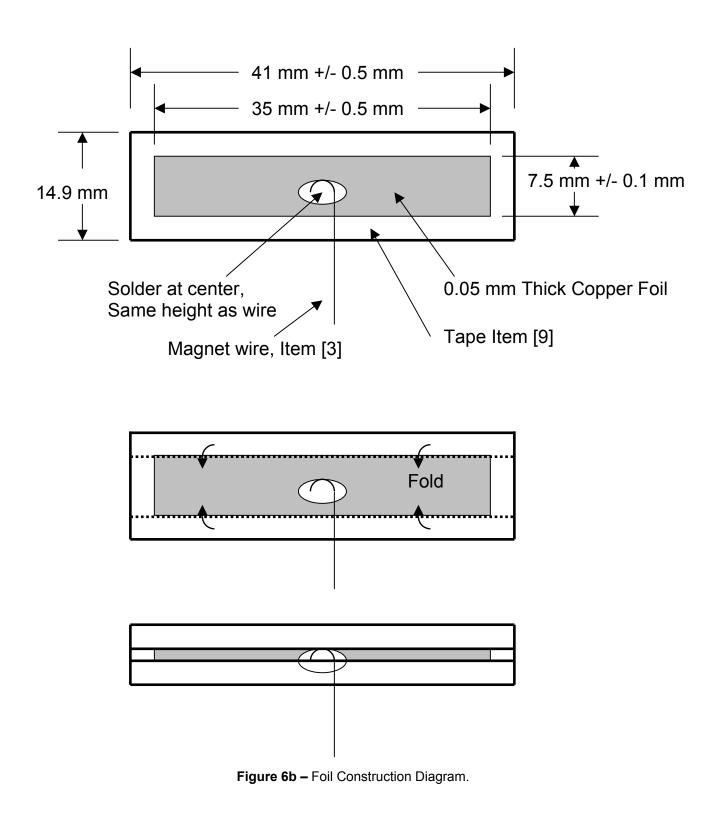
7.3 Materials


ltem	Description
[1]	Core: EE16, PC40EE16 TDK – A _{LG} 252 nH/T ²
[2]	Bobbin: Horizontal 10 pin (see Section 7.6)
[3]	Magnet Wire: #32 AWG, Please see note on next page
[4]	Foil: Tape Wrapped Copper Foil, 7. 5 mm +/-0.1 mm wide by 0.05 mm/2 mil thick, 35 mm +/- 0.5 mm length – see additional drawing
[5]	Triple Insulated Wire: #30 AWG
[6]	Magnet Wire: #31 AWG, Please see note on next page
[7]	Tape: 3M 1298 Polyester Film (white) 322 mils (8.2 mm) wide by 2.2 mils thick
[8]	Tape: 3M 1298 Polyester Film (white) 291 mils (7.4 mm) wide by 2.2 mils thick
[9]	Tape: 3M 1298 Polyester Film (white) 586 mils (14.9 mm) wide by 2.2 mils thick
[10]	Tape: 3M 1298 Polyester Film (white) 196 mils (5.0 mm) wide by 2.2 mils thick
[11]	Barrier Tape: 2.0 mm wide, 0.15 mm thick, Please see the note on the next page
[12]	Barrier Tape: 2.25 mm wide, 0.15 mm thick, Please see the note on the next page
[13]	Glue AV118

Note: The transformer is an integral part of the EMI performance of this design. Changes to the transformer, even very minor, may have significant impact on both conducted and radiated EMI. More specific guidance is given below when attempting to repeat this transformer design.

- 1. Wire gauge selection for core cancellation, secondary and bias windings
 - The outside diameter of the wire can vary slightly due to variations in the insulation thickness although the bare copper area diameter is same.
 - Changing the wire gauge is acceptable to account for overall wire diameter differences. The wire gauge/size should be selected such that with the specified number of turns the winding completely fills one complete layer.
 - The bias winding can have the number of turns varied by up to 2 turns to make a complete layer if necessary but it is preferred to keep the turns as specified.
 - Winding information with wire gauge used should be indicated on sample report.
- 2. Primary winding
 - Use the same wire gauge/size as used for the core cancellation winding.
- 3. Barrier tape
 - Transformer vendors may have different thickness of barrier tape.
 - If the thickness is different, please make the height of the barrier tape the same or slightly higher than wire thickness used for that winding.

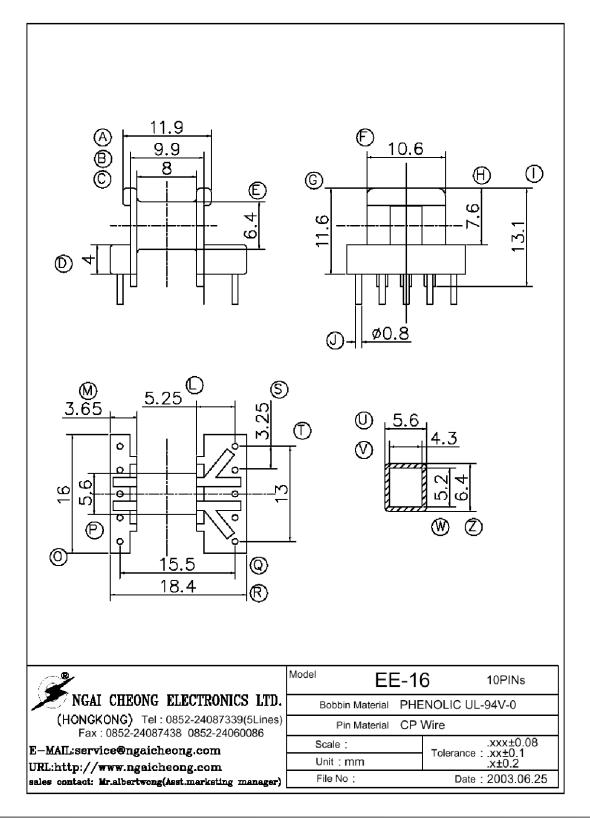
7.4 Transformer Build Diagram


Figure 6a – Transformer Build Diagram.

KEY:

= Electrical phasing

Sector And A Sector And A Sector A S



7.5 Transformer Construction

· · · · · · · · · · · · · · · · · · ·					
Bobbin Preparation	Pull Pin 8-10 on bobbin [2] to provide polarization.				
	Set bobbin with pins 1-5 on right hand side.				
Shield Winding #1	Start at Pin 1. Wind 33 turns of item [3] from right to left in 1 layer across				
•	the entire width of the bobbin.				
Basic Insulation	Temporarily terminate wire on left hand side of bobbin.				
	Apply 1 layer of tape item [7].				
Terminate	Terminate item [3] on pin 3.				
Shield Winding #1	Cut pin 3 below termination to prevent contact with pcb trace.				
Basic Insulation	Apply an additional 3 layers of tape item [7].				
(continued)					
Primary	Start at pin 2. Wind 100 turns of item [3] in 3 layers, plus 3 to 5 additional				
Winding #2	turns. Wind uniformly across the entire width of the bobbin with no empty				
Winding #2	space or gaps in any layer. Finish at pin 1.				
	Assemble and apply foil shield [4] starting 3 mm from bottom side of				
	bobbin [2]; such that foil termination wire aligns with pin 4. Insert the foil				
Foil Shield	shield assembly [4] beneath a 10-15 mm long piece of tape (to hold in				
	place).				
	Wrap beneath 1 layer item [7] and terminate foil at pin 4.				
Margin Tape	Apply 4 layers of item [11] on both sides of the bobbin ensuring no space				
margin rape	to either bobbin wall.				
Bobbin Preparation	Change the bobbin [2] orientation with pins 6-10 on right hand side.				
Dobbin reputation	Maintain same spindle rotation direction.				
	Temporarily start at pin 1. Wind 8 turns item [5] in 1 layer from left to				
Secondary	right. Wind uniformly across the entire width of the bobbin with no empty				
Winding #3	space or gaps in the layer. Finish at pin 7.				
	Remove start from pin 1 and reattach to pin 6.				
Basic Insulation	Apply 2 layers tape item [7].				
	Apply 4 layers of item [11] on left side of the bobbin ensuring no space to				
Margin Tape	bobbin wall.				
L and R	Apply 4 layers of item [12] on right side of the bobbin ensuring no space				
	to bobbin wall.				
Bias	Start at pin 4. Wind 14 turns item [6] from left to right. Wind uniformly				
Winding #4	across the entire width of the bobbin with no empty space or gaps in the				
j	layer.				
Basic Insulation	Apply 1 layer of tape item [6], maintaining bias winding exit at edge of				
	margin tape barrier.				
Bias	Continue winding item [6] from right to left. Wind a total of 26 turns				
Winding #4	item [6]. Finish on pin 5.				
(continued)					
Outer	Apply 2 layers of tape item [7].				
Insulation					
Final Assembly	Assemble and secure core halves with item [12].				
	Dip varnish and cure (do not vacuum impregnate).				

7.6 Transformer Bobbin Drawing

8 Performance Data

All measurements performed at room temperature, 60 Hz input frequency. Output voltage was measured at the end of the DC output cable. Input power was measured with a Yokogawa WT120 power meter.

8.1 Efficiency

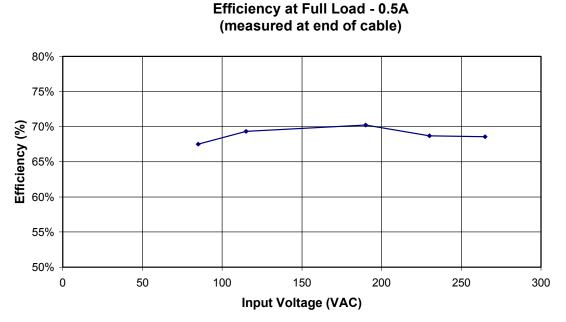
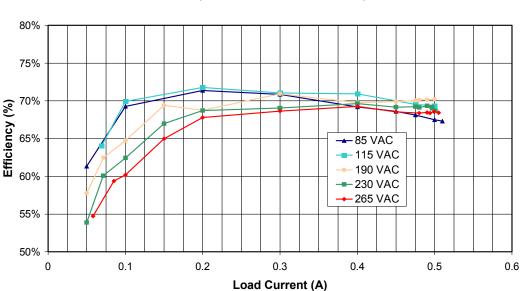
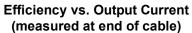
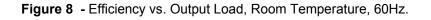
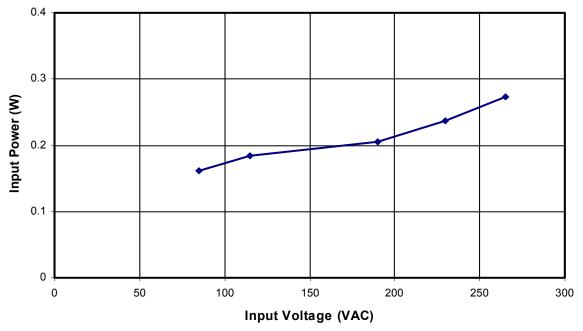





Figure 7 - Efficiency vs. Input Voltage, Room Temperature, 60 Hz.



8.2 No-load Input Power

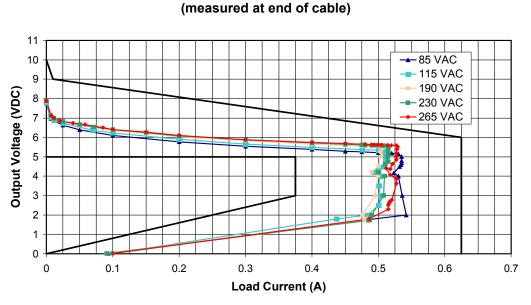

No-Load Power Consumption

Figure 9 - Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz.

8.3 8.3 Regulation

8.3.1 Line and Load

V/I Characteristics

Figure 10 – Load Regulation, Room Temperature, 50 Hz.

8.4 Thermal Performance

The thermal images provide detail of the power supply operating component temperatures. The images were recorded after operating the unit for 12 hours at 85 VAC with an output load of 0.5 A at the maximum power point. This provides worst-case temperature rise on the *LinkSwitch* device.

The top image details component temperatures of the assembly with the case removed. Hotspots are visible at *LinkSwitch* and output diode locations, which reached 53 °C and 66 °C, respectively.

Operating within the closed case generated an internal temperature rise of +15 °C. This additional temperature rise gives a maximum *LinkSwitch* and output diode case temperatures of 68 °C and 81 °C at 24 °C ambient and 93 °C and 106 °C at 50 °C ambient. These results are well within acceptable operating limits.

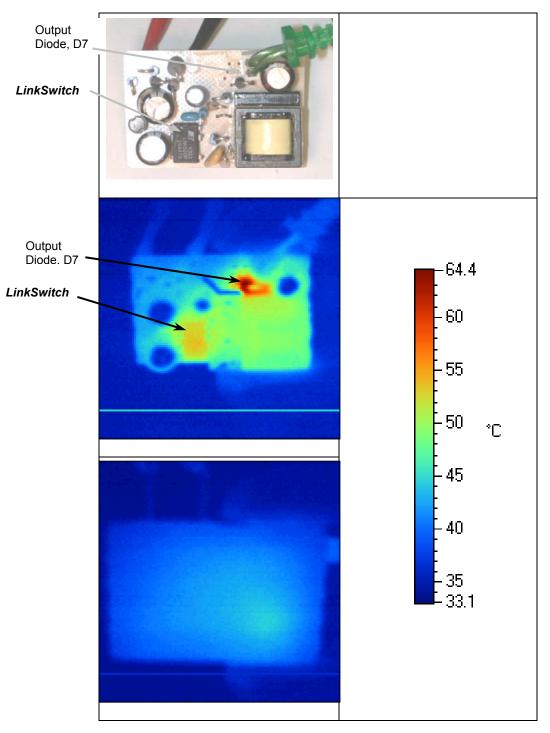
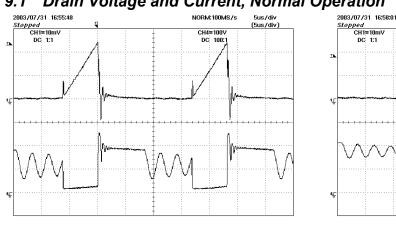
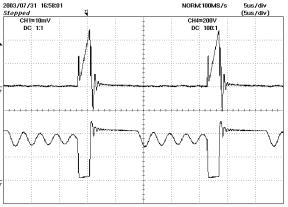



Figure 11 – Thermal Image Measurements of Board and Sealed Adapter, 85 VAC, 5.5 V at 0.5 A, 23 °C external ambient.



Waveforms 9

9.1 Drain Voltage and Current, Normal Operation

9.2 Output Voltage Start-up Profile (Battery Load)

The power supply was started up into an output load simulating a battery. Resistor RLOAD was reduced and confirmed start-up at voltages to 3 V. The battery model included series resistor value of 2.5 Ω (R_{LOAD}) and internal capacitor resistance of 0.5 Ω (R_{INT RES}). The cable resistance R_{CABLE} was set to zero as the load was attached to the end of the actual output cable.

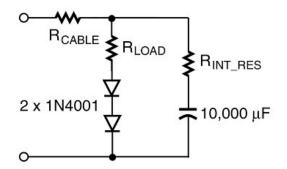


Figure 14 - Battery load model.

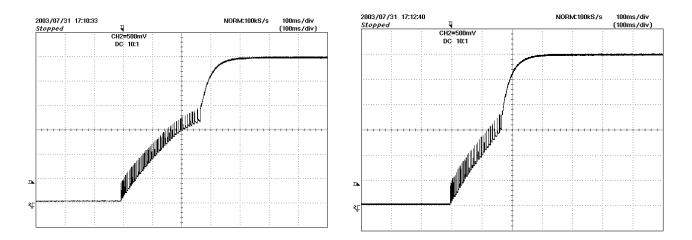
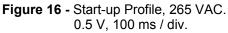
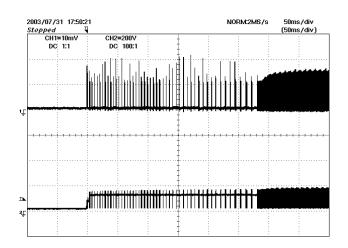




Figure 15 - Start-up Profile, 85 VAC. 0.5 V, 100 ms / div.

9.3 Drain Voltage and Current Start-up Profile

Figure 17 - 85 VAC Input and Maximum Load. Upper: I_{DRAIN}, 0.1 A / div. Lower: V_{DRAIN}, 100 V & 1 ms / div.

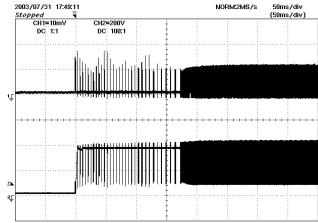
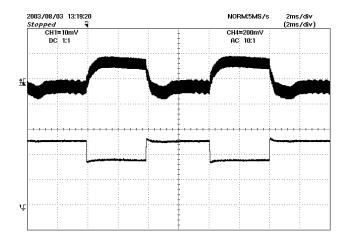



Figure 18 - 265 VAC Input and Maximum Load. Upper: I_{DRAIN}, 0.1 A / div. Lower: V_{DRAIN}, 200 V & 1 ms / div.

9.4 Load Transient Response (75% to 100% Load Step)

The oscilloscope was triggered using the load current step as a trigger source.

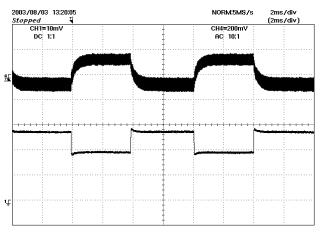


Figure 19 – Transient Response, 85 VAC, 75-100-75% Load Step. Top: Output Voltage, 200 mV, 2 ms / div. (AC coupled) Bottom: Load Current, 0.2 A / div. (DC coupled) Figure 20 – Transient Response, 265 VAC, 75-100-75% Load Step. Top: Output Voltage, 200 mV, 2 ms / div. (AC coupled) Bottom: Load Current, 0.2 A / div. (DC coupled)

9.5 Output Ripple Measurements

9.5.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 21 and Figure 22.

The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 μ F/50 V ceramic type and one (1) 1.0 μ F/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).

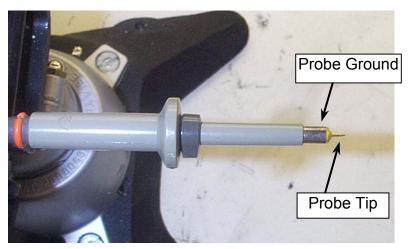


Figure 21 - Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed).

Figure 22 - Oscilloscope Probe with Probe Master 5125BA BNC Adapter (Modified with Wires for Probe Ground for Ripple Measurement, and Two Parallel Decoupling Capacitors Added).

