# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





| Title              | Engineering Prototype Report for EP-86 –<br>6.6 W Multi-Class Powered Device (PD) for<br>Power over Ethernet (PoE) Using<br>DPA-Switch <sup>®</sup> (DPA423G) |  |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Specification      | Input: 33-57 VDC, Output: 3.3 V / 2.0 A                                                                                                                       |  |  |  |  |
| Application        | PoE Class 2 PD – Including IEEE802.3af<br>Compliant Interface Circuit                                                                                         |  |  |  |  |
| Author             | Power Integrations Applications Department                                                                                                                    |  |  |  |  |
| Document<br>Number | EPR-86                                                                                                                                                        |  |  |  |  |
| Date               | April 13, 2006                                                                                                                                                |  |  |  |  |
| Revision           | 1.1                                                                                                                                                           |  |  |  |  |

#### **Summary and Features**

- Meets IEEE802.3af requirements according to University of New Hampshire Interoperability Consortium (UNH-IOC) test results, for Class 1–3 PoE PDs
- DPA-Switch PWM controller with integrated 220 V power MOSFET switch
  - Under-voltage (UV) and overvoltage (OV) shutdown functions
  - Auto-recovering, hysteretic thermal shutdown
  - Auto-restart function: protects against short-circuit and open loop faults
  - No-load regulation achieved by cycle skipping
  - Fully integrated soft-start minimizes start-up stress and overshoot
  - Externally programmed I<sub>LIMIT</sub> scales with V<sub>IN</sub> for power limiting
  - Lossless MOSFET current sense eliminates external sensing components
- Small footprint 3.1" × 1", low overall height 0.45" (excluding RJ-45 connector)

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at *www.powerint.com*.

**Power Integrations** 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 *www.powerint.com* 

# **Table Of Contents**

| 1 Intro     | oduction                                                                           | 3        |
|-------------|------------------------------------------------------------------------------------|----------|
| 2 Pov       | ver Supply Specification                                                           | 4        |
|             | ematic                                                                             |          |
| 4 Circ      | uit Operation                                                                      | 6        |
|             | General                                                                            |          |
| 4.2         | DPA-Switch Primary                                                                 | 6        |
| 4.3         | Output Rectification                                                               | 6        |
|             | Output Feedback                                                                    |          |
|             | PoE Interface Circuit Description                                                  |          |
|             | Wide Hysteresis Under-Voltage Lockout                                              |          |
|             | of Materials                                                                       |          |
|             | out                                                                                |          |
|             | nsformer Design Spreadsheet                                                        |          |
|             | nsformer Specification                                                             |          |
|             | Transformer Winding                                                                |          |
| 8.2         | Electrical Specifications                                                          |          |
| 8.3         | Materials                                                                          |          |
| 8.4         | Transformer Build Diagram                                                          |          |
| 8.5         | Transformer Construction                                                           |          |
|             | formance Data                                                                      |          |
| 9.1         | Efficiency                                                                         |          |
|             | Load Regulation                                                                    |          |
|             | Line Regulation                                                                    |          |
| 9.4<br>10 W | Overload Output Current                                                            |          |
| -           | /aveforms                                                                          |          |
|             | Drain Voltage and Current, Full-Load Operation                                     |          |
|             | Output Voltage Start-Up Profile<br>Load Transient Response (75% to 100% Load Step) |          |
|             | Output Ripple Measurements                                                         |          |
|             | 4.1 Ripple Measurement Technique                                                   |          |
|             | 4.2 Output Ripple Measurements                                                     |          |
|             | evision History                                                                    |          |
|             |                                                                                    | <u> </u> |

#### Important Note:

Although this board was designed to satisfy safety isolation requirements, it has not been agency approved. Therefore, please take the appropriate safety precautions.



# 1 Introduction

This engineering report describes a PoE power supply designed around the DPA423G. The supply can deliver 6.6 W continuously, from an input voltage range of 33 VDC to 57 VDC.

The following design information is provided: the power supply specification, circuit diagrams, a complete bill of materials, the results of the *PIXIs* spreadsheet file that was used to design the supply and detailed information on the design and construction of the transformer. Data and test results that document the performance of the supply under various line and load conditions are also included.



Figure 1 – Populated Circuit Board Top View.

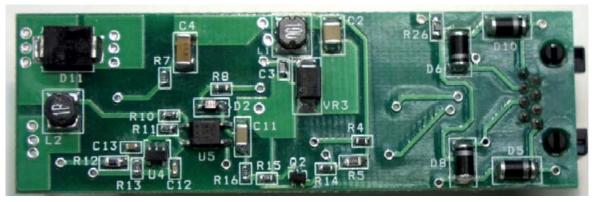
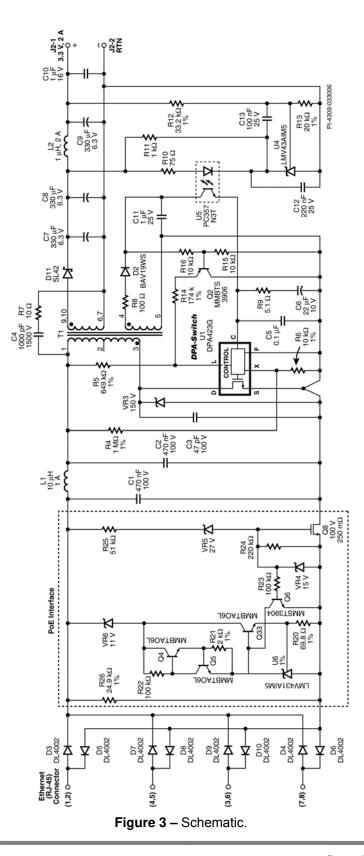



Figure 2 – Populated Circuit Board Bottom View.




# 2 Power Supply Specification

| Description             | Symbol               | Min                       | Тур | Max                 | Units  | Comment          |
|-------------------------|----------------------|---------------------------|-----|---------------------|--------|------------------|
| Input                   |                      |                           |     |                     |        |                  |
| Voltage                 | V <sub>IN</sub>      | 33                        | 48  | 57                  | VDC    |                  |
| Under-Voltage ON        | $V_{IN_UV_ON}$       |                           |     | 42                  | VDC    |                  |
| Under-Voltage OFF       | $V_{IN\_UV\_OFF}$    | 33                        |     |                     | VDC    |                  |
| Output                  |                      |                           |     |                     |        |                  |
| Output Voltage 1        | V <sub>OUT1</sub>    | 3.135                     | 3.3 | 3.465               | V      | ± 5%             |
| Output Ripple Voltage 1 | V <sub>RIPPLE1</sub> |                           |     | 35                  | mVp-p  | 20 MHz bandwidth |
| Output Current 1        | I <sub>OUT1</sub>    | 0                         |     | 2                   | А      |                  |
| Output Peak Current 1   | I <sub>OUT1_PK</sub> | 2.5                       |     |                     | A      |                  |
| Total Output Power      |                      |                           |     |                     |        |                  |
| Average Output Power    | P <sub>OUT1</sub>    |                           | 6.6 |                     | W      |                  |
| Average Output Power    | POUT_FAULT           | 8.6                       |     |                     | W      | R6 = 10.2 Ω      |
| Full Load Efficiency    | η                    |                           | 73  |                     | %      |                  |
| Environmental           |                      |                           |     |                     |        |                  |
| Conducted EMI           |                      | Meets CISPR22B / EN55022B |     |                     |        |                  |
| Safety                  |                      | Design                    |     | t IEC950,<br>Iss II | UL1950 |                  |
| Ambient Temperature     | T <sub>AMB</sub>     | 0                         |     | 40                  | °C     |                  |



# 3 Schematic





# 4 Circuit Operation

#### 4.1 General

A flyback topology was used to minimize circuit board size, parts count and cost. This topology also provides excellent operating efficiency across the input voltage range.

#### 4.2 DPA-Switch Primary

The DPA423G IC implements PWM control of the internal power MOSFET and initiates a soft start-up function when it first powers up. The IC also monitors die temperature as part of its over-temperature protection function and also monitors the input voltage as part of its under-voltage detection and overvoltage shutdown functions. The integrated 220 V MOSFET provides excellent switching characteristics at the selected 400 kHz operating frequency. The MOSFET and controller consume very little power, giving good efficiency across the entire input voltage operating range.

Diodes D3 through D9 ensure that the incoming DC input voltage is correctly polarized. Capacitors C1 and C2 and inductor L1 form a low-cost pi ( $\pi$ ) filter that attenuates conducted EMI noise, to keep it from being passed to the incoming line.

Resistors R4 and R6 program the internal current limit of the DPA423G, so that it reduces as the input voltage increases. This helps to keep the variance of the maximum output overload current below 5%, across the entire input voltage range.

The IC's integrated MOSFET is protected from overvoltage stresses that could damage it (during a line surge) by a primary-side Zener diode clamp (VR3). Zener diode VR3 does not conduct under normal operating conditions.

The primary bias winding provides CONTROL pin current after start-up. Diode D2 rectifies the bias winding voltage, while R8 and C11 attenuate high frequency switching noise and reduce the peak charging of the bias voltage.

#### 4.3 Output Rectification

The secondary winding voltage is rectified by a low-loss Schottky diode (D11). Low ESR, tantalum output capacitors, C7 and C8, filter the output voltage. The LC output filter (L2, C9 and C10) further attenuates switching noise and ripple from the output voltage.

#### 4.4 Output Feedback

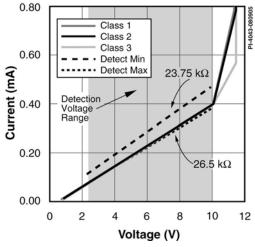
Resistor divider (R12 and R13) senses the output voltage and feeds it into the reference pin of a 1.24 V reference IC (U4). The conduction of U4 pulls current through the LED of optocoupler U5, which controls the conduction of its phototransistor (U5-B). The phototransistor modulates the current that flows into the CONTROL pin of U1. Since the *DPA-Switch* is a current-to-duty-cycle converter, it uses the varying CONTROL pin current to pulse-width modulate the duty cycle of the MOSFET switch. Resistor R10 sets the gain of U4, while R11 and C13 compensate for the variation in gain of U4 over the frequency range of the feedback loop's bandwidth (about 10 kHz). Feedback

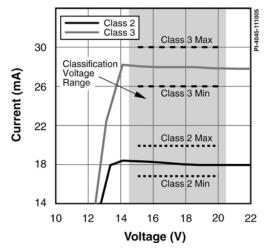


compensation is required to ensure stable operation of the supply and optimum response to line and load transients. Capacitor C12 performs a soft-finish function that prevents the output voltage from overshooting the regulation set point during initial startup of the converter.

#### 4.5 PoE Interface Circuit Description

See DI-88 for a full description. Resistor R26 provides the correct impedance for the detection phase of PD operation.





Figure 4 – Detection Impedance V-I curve.

The classification circuit is enabled when Zener diode VR6 conducts (above 11 VDC). Transistor Q9 controls the bias current source programmed to approximately 350  $\mu$ A by resistor R21. This bias current source provides the minimum operating current to voltage reference IC U6. The main classification current flowing through R20 generates a voltage that is referenced to the internal reference (1.24 VDC) of U6 and that later closes the loop by controlling the base drive of Q7. The value of the classification current source is determined by the value of the voltage on the reference pin of U6 divided by the value of R20 in ohms.



| Class | Р <sub>оит</sub><br>(min) | Р <sub>олт</sub><br>(max) | I <sub>c∟</sub><br>(min) | I <sub>cL</sub><br>(max) | R34  |
|-------|---------------------------|---------------------------|--------------------------|--------------------------|------|
|       | W                         | W                         | mA                       | mΑ                       | Ohms |
| 0     | 0.44                      | 12.95                     | 0.5                      | 4                        | -    |
| 1     | 0.44                      | 3.84                      | 9                        | 12                       | 133  |
| 2     | 3.84                      | 6.49                      | 17                       | 20                       | 69.8 |
| 3     | 6.49                      | 12.95                     | 26                       | 30                       | 45.3 |

Figure 5 – Table of PoE Classifications and Power Levels.



**Figure 6** – Classification Current (Class 2: R34 = 69.8  $\Omega$ ; Class 3: R34 = 45.3  $\Omega$ ).

Zener diode VR5 conducts above 27 VDC, raising the gate voltage on the pass-switch MOSFET (Q8), turning it on when the gate-threshold voltage is exceeded. Pull-down resistor R25 limits the current through VR5 while pull-down resistor R24 keeps Q8 turned off, unless it is being actively driven on. Zener diode VR4 limits the maximum gate-to-source voltage on Q8 to 15 V. When VR5 conducts, it also turns on Q6 through R23. Transistor Q6 pulls down on the base of Q7, which turns off the main classification current source (although the bias current source of 350 µA will continue to conduct).

#### 4.6 Wide Hysteresis Under-Voltage Lockout

If there were no other components connected to the L pin, then resistor R5 would set the under-voltage turn-on threshold to approximately 35 VDC and the turn-off threshold to approximately 33 VDC.

However, in the case of PoE, the turn-on voltage is much higher than the turn-off voltage. This requires more under-voltage hysteresis. When the power supply is operating normally, the bias voltage is approximately 14 VDC. Resistors R15 and R16 form a voltage divider that turns off the base of Q2, once the DC-DC converter has begun switching and the bias voltage is present. At start-up, when the bias voltage is absent,



Q2 is on, and sinks additional current from the resistor (R5) that connects the L pin to the DC input voltage. The value of R14 was selected so that an extra 10  $\mu$ A is drawn at startup, which increases the turn-on threshold voltage to 41 VDC typical. However, because Q2 turns off after start-up, the UV turn-off threshold stays at 34 VDC (see DI-101 for more details).

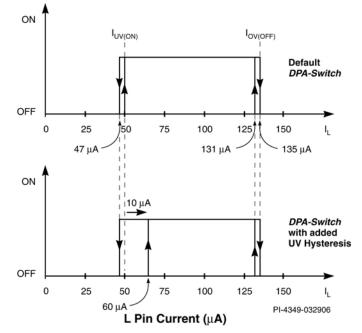



Figure 7 – L-pin current without and with the widened UV hysteresis circuit.



### 5 Bill of Materials

| Item | Qty. | Ref.                                     | Description                                                  | Mfg Part Number        | Mfg              |
|------|------|------------------------------------------|--------------------------------------------------------------|------------------------|------------------|
| 1    | 2    | C1, C2                                   | 470 nF, 100 V, Ceramic, X7R, 1210                            | ECJ-4YB2A474K          | Panasonic        |
| 2    | 1    | C3                                       | 47 pF, 100 V, Ceramic, NPO, 0603                             | 06031A470JAT2A         | AVX              |
| 3    | 1    | C4                                       | 1000 pF, 1500V, 1808                                         | 1808SC102KAT1A         | AVX              |
| 4    | 2    | C5, C13                                  | 100 nF 25 V, Ceramic, X7R, 0603                              | ECJ-1VB1E104K          | Panasonic        |
| 5    | 1    | C6                                       | 22 μF, 10 V, Tant Electrolytic, SMD                          | TAJA226K010R           | Kemet            |
| 6    | 3    | C7, C8, C9                               | 330 μF, 6.3 V, Tant Electrolytic, SMD                        | T495X337K006AS         | Kemet            |
| 7    | 1    | C10                                      | 1 μF, 16 V, Ceramic, X5R, 0603                               | GRM188R61C105KA<br>93D | Murata           |
| 8    | 1    | C11                                      | 1 μF, 25 V, Ceramic, X7R, 1206                               | ECJ-3YB1E105K          | Panasonic        |
| 9    | 1    | C12                                      | 220 nF, 25 V, Ceramic, X7R, 0603                             | 06033D224KAT2A         | AVX              |
| 10   | 1    | D2                                       | 75 V, 0.2 A, Fast Switching, 50 ns, SOD-<br>323              | 1N4148WS-7             | Diode Inc.       |
| 11   | 8    | D3, D4,<br>D5, D6,<br>D7, D8,<br>D9, D10 | 100 V, 1 A, Rectifier, Glass Passivated, DO-<br>213AA (MELF) | DL4002                 | Diodes Inc       |
| 12   | 1    | D11                                      | 20 V, 4 A, Schottky, SMD, DO-214AB                           | SL42-9B                | Vishay           |
| 13   | 1    | J1                                       | R/A, RJ45 Non-shielded, PCBM                                 | RJHS-5080              | Amphenol Canada  |
| 14   | 2    | J2-1, J2-2                               | Zierick output pins                                          |                        | Zierick          |
| 15   | 1    | L1                                       | 10 μH, 0.85 A                                                | HM79-10100LFTR7        | B.I.Technologies |
| 16   | 1    | L2                                       | 1 μH, 1.9 A                                                  | HM79-101R0LFTR7        | B.I.Technologies |
| 17   | 1    | Q2                                       | PNP, Small Signal BJT, 40 V, 0.2 A, SOT-<br>323              | MMST3906-7             | Diodes Inc       |
| 18   | 3    | Q4, Q5,<br>Q7                            | NPN, Small Signal BJT, 80 V, 0.5 A, SOT-<br>23               | MMBTA06LT1             | On Semiconductor |
| 19   | 1    | Q6                                       | NPN, Small Signal BJT, 40 V, 0.2 A, SOT-<br>323              | MMST3904               | Diodes Inc       |
| 20   | 1    | Q8                                       | 100 V, 1.15 A, 250 mΩ, N-Channel, SOT-23                     | SI2328DS               | Vishay           |
| 21   | 1    | R4                                       | 1.00 MΩ, 1%, 1/16 W, Metal Film, 0603                        | ERJ-3EKF1004V          | Panasonic        |
| 22   | 1    | R5                                       | 649 kΩ, 1%, 1/8 W, Metal Film, 0805                          | ERJ-6ENF6493V          | Panasonic        |
| 23   | 1    | R6                                       | 10.00 kΩ, 1%, 1/16 W, Metal Film, 0603                       | ERJ-3EKF1002V          | Panasonic        |
| 24   | 1    | R7                                       | 10 Ω, 5%, 1/10 W, Metal Film, 0603                           | ERJ-3GEYJ100V          | Panasonic        |
| 25   | 1    | R8                                       | 100 Ω, 1%, 1/16 W, Metal Film, 0603                          | ERJ-3EKF1000V          | Panasonic        |
| 26   | 1    | R9                                       | 5.1 Ω, 5%, 1/10 W, Metal Film, 0603                          | ERJ-3GEYJ5R1V          | Panasonic        |
| 27   | 1    | R10                                      | 75 Ω, 5%, 1/10 W, Metal Film, 0603                           | ERJ-3GEYJ750V          | Panasonic        |
| 28   | 1    | R11                                      | 1 kΩ, 5%, 1/10 W, Metal Film, 0603                           | ERJ-3GEYJ102V          | Panasonic        |
| 29   | 1    | R12                                      | 33.2 kΩ, 1%, 1/8 W, Metal Film, 0805                         | ERJ-6ENF3322V          | Panasonic        |



|    |   |          |                                                         |                                                                           | <b></b> ]                                                                   |
|----|---|----------|---------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 30 | 1 | R13      | 20 kΩ, 5%, 1/10 W, Metal Film, 0603                     | ERJ-3GEYJ203V                                                             | Panasonic                                                                   |
| 31 | 1 | R14      | 174 kΩ, 1%, 1/16 W, Metal Film, 0603                    | ERJ-3EKF1743V                                                             | Panasonic                                                                   |
| 32 | 1 | R15, R16 | 10 kΩ, 5%, 1/10 W, Metal Film, 0603                     | ERJ-3GEYJ103V                                                             | Panasonic                                                                   |
| 35 | 1 | R20      | 69.8 Ω, 1%, 1/16 W, Metal Film, 0603                    | ERJ-3EKF69R8V                                                             | Panasonic                                                                   |
| 36 | 1 | R21      | 2 kΩ, 5%, 1/10 W, Metal Film, 0603                      | ERJ-3GEYJ202V                                                             | Panasonic                                                                   |
| 37 | 2 | R22, R23 | 100 kΩ, 5%, 1/10 W, Metal Film, 0603                    | ERJ-3GEYJ104V                                                             | Panasonic                                                                   |
| 38 | 1 | R24      | 220 kΩ, 5%, 1/10 W, Metal Film, 0603                    | ERJ-3GEYJ224V                                                             | Panasonic                                                                   |
| 39 | 1 | R25      | 51 kΩ, 5%, 1/10 W, Metal Film, 0603                     | ERJ-3GEYJ513V                                                             | Panasonic                                                                   |
| 40 | 1 | R26      | 24.9 kΩ, 1%, 1/8 W, Metal Film, 0805                    | ERJ-6ENF2492V                                                             | Panasonic                                                                   |
| 41 | 1 | T1       | Bobbin, ER14.5/6, Horizontal, 10 pins, SMD              | HM00-A5861LF<br>DA2062-ALD<br>SIL6029<br>LSTA30825<br>SNX1393<br>YC-1404S | B.I Technologies<br>Coilcraft<br>Hical<br>LiShin<br>Santronics<br>Ying Chin |
| 42 | 1 | U1       | DPA-Switch, DPA423G, SMD-8                              | DPA423G                                                                   | Power Integrations                                                          |
| 43 | 1 | U4       | 1.24 V Shunt Regulator IC, 1%, -40 to<br>85 °C, SOT23-5 | LMV431AIM5                                                                | National<br>Semiconductor                                                   |
| 44 | 1 | U5       | Optocoupler, 80 V, CTR 200-400%, 4-Mini<br>Flat         | PC357N3T                                                                  | Sharp                                                                       |
| 45 | 1 | U6       | 1.24 V Shunt Regulator IC, 1%, -40 to<br>85 °C, SOT23-5 | LMV431AIM5                                                                | National<br>Semiconductor                                                   |
| 46 | 1 | VR3      | 150 V, 5 W, 5%, DO214AC (SMB)                           | SMBJ150A                                                                  | Diodes, Inc                                                                 |
| 47 | 1 | VR4      | 15.0 V, 5%, 150 mW, SOD-323                             | BZT52C15T-7                                                               | Diodes, Inc                                                                 |
| 48 | 1 | VR5      | 27.0 V, 5%, 150 mW, SOD-323                             | MAZS2700ML                                                                | Panasonic-SSG                                                               |
| 49 | 1 | VR6      | 11 V, 5%, 500 mW, DO-213AA (MELF)                       | ZMM5241B-7                                                                | Diodes Inc                                                                  |
| 50 | 1 | -        | PCB, EP-86, REV B                                       |                                                                           |                                                                             |
|    |   | •        | •                                                       |                                                                           |                                                                             |



# 6 Layout

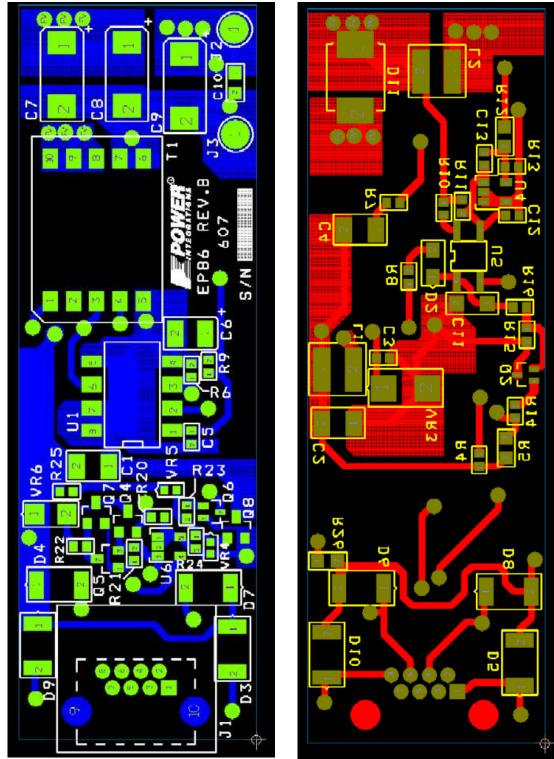
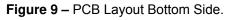




Figure 8 – PCB Layout Top Side.





# 7 Transformer Design Spreadsheet

| DCDC_DPASwitch_Flyback_071405; Rev.2.7; |         |           |          |         | DPASwitch_Flyback_071405 - Continuous/Discontinuous   |
|-----------------------------------------|---------|-----------|----------|---------|-------------------------------------------------------|
| Copyright Power Integrations 2005       | INPUT   | INFO      | OUTPUT   | UNITS   | mode Spreadsheet. Copyright 2005 Power Integrations   |
| ENTER APPLICATION VARIABLES             |         |           |          | 1/- 14- | DC-DC Converter                                       |
| VDCMIN                                  | 36      |           |          | Volts   | Minimum DC Input Voltage                              |
| VDCMAX                                  | 57      |           |          | Volts   | Maximum DC Input Voltage                              |
| vo                                      | 3.3     |           |          | Volts   | Output Voltage (main)                                 |
| 20                                      |         |           |          |         | Verify temperature rise for continuous power. P and G |
| РО                                      | -       | Comment   |          | Watts   | packages may be thermally limited                     |
| n                                       | 0.8     |           |          |         | Efficiency Estimate                                   |
| Z                                       | -       |           | 0.7      |         | Loss Allocation Factor, (0.7 Recommended)             |
|                                         |         |           |          | 1/- 14- |                                                       |
| VB                                      | 14      |           |          | Volts   | Bias Voltage (Recommended between 12V and 18V)        |
| UV AND OV PARAMETERS                    |         |           |          |         |                                                       |
|                                         |         | min       | max      |         |                                                       |
| VUVOFF                                  | _       | 30.0      |          | Volts   | Minimum undervoltage On-Off threshold                 |
| VUVON                                   |         | 32.2      |          | Volts   | Maximum undervoltage Off-On threshold (turn-on)       |
| VOVON                                   |         | 74.9      | -        | Volts   | Minimum overvoltage Off-On threshold                  |
| VOVOFF                                  |         |           | 94.7     | Volts   | Maximum overvoltage On-Off threshold (turn-off)       |
| RL                                      |         |           |          | k-Ohms  |                                                       |
|                                         |         |           |          |         |                                                       |
| ENTER DPASWITCH VARIABLES               |         |           |          |         |                                                       |
| DPASWITCH                               | DPA423G |           |          | 16VDC   | 36 VDC                                                |
| Chosen Device                           | DPA4236 | ì         | Power OL | 6W      | 13W                                                   |
| ILIMITMAX                               | 1.16    | 1.34      |          | Amps    | From DPASWITCH Data Sheet                             |
| Frequency                               | F       |           |          |         | Enter 'F' for fS = 400KHz and 'L' for fS = 300KHz     |
| fS                                      | 375000  |           |          | Hertz   | DPASWITCH Switching Frequency                         |
| VOR                                     | 38      |           | 38       | Volts   | Reflected Output Voltage                              |
| KI                                      | 0.7     |           | 0.7      |         | Current Limit Reduction Factor                        |
| ILIMITEXT                               | 1       |           |          | Amps    | Minimum External Current limit                        |
|                                         |         |           | 0.0.2    |         | Resistor from X pin to source to set external current |
| RX                                      |         |           | 11 0     | k-Ohms  | limit                                                 |
| VDS                                     | 1       |           |          | Volts   | DPASWITCH on-state Drain to Source Voltage            |
| VD                                      | 0.5     |           |          | Volts   | Output Winding Diode Forward Voltage Drop             |
| VDB                                     | 0.7     |           |          | Volts   | Bias Winding Diode Forward Voltage Drop               |
|                                         |         |           |          |         | Ripple to Peak Current Ratio (0.2 < KRP < 1.0 : 1.0 < |
| KRP/KDP                                 | 0.62    |           |          |         | KDP<6.0)                                              |
|                                         |         |           |          |         |                                                       |
| ENTER TRANSFORMER CORE/CONST            | RUCTION | VARIABL   | ES       |         |                                                       |
| Core Type                               | ER14.5  |           |          |         |                                                       |
| Core Manuf                              |         |           |          |         |                                                       |
| Bobbin Manuf                            |         |           |          |         |                                                       |
| Core                                    |         | ER14.5    |          | P/N:    | ER14.5-3F3-S                                          |
| Bobbin                                  |         | ER14.5 Bo | obbin    | P/N:    | CPVS-ER14.5-1S-10P                                    |
| AE                                      | -       |           | 0.176    |         | Core Effective Cross Sectional Area                   |
| LE                                      |         |           |          | cm      | Core Effective Path Length                            |
| AL                                      |         |           |          | nH/T^2  | Ungapped Core Effective Inductance                    |
| BW                                      |         |           |          | mm      | Bobbin Physical Winding Width                         |
| ==<br>                                  |         |           |          |         | Safety Margin Width (Half the Primary to Secondary    |
| М                                       | 0       |           |          | mm      | Creepage Distance)                                    |
|                                         | 2       |           |          |         | Number of Primary Layers                              |
| NS                                      | 2       |           |          |         | Number of Secondary Turns                             |
|                                         | 2       |           |          |         |                                                       |
|                                         | 1       | 1         | 1        |         |                                                       |



| CURRENT WAVEFORM SHAPE PARAMETERS       |      |          |                                                       |
|-----------------------------------------|------|----------|-------------------------------------------------------|
| DMAX                                    | 0.52 |          | Maximum Duty Cycle                                    |
| IAVG                                    | 0.23 | Amps     | Average Primary Current                               |
| IP                                      | 0.64 | Amps     | Peak Primary Current                                  |
| IR                                      |      | Amps     | Primary Ripple Current                                |
| IRMS                                    |      | Amps     | Primary RMS Current                                   |
|                                         |      | 1        |                                                       |
| TRANSFORMER PRIMARY DESIGN PARAMETERS   |      |          |                                                       |
| LP                                      | 119  | uHenries | Primary Inductance                                    |
| NP                                      | 20   |          | Primary Winding Number of Turns                       |
| NB                                      | 8    |          | Bias Winding Number of Turns                          |
| ALG                                     | 297  | nH/T^2   | Gapped Core Effective Inductance                      |
|                                         |      |          | Peak Flux density during transients (Limit to 3000    |
| BP                                      | 2739 | Gauss    | Gauss)                                                |
| BM                                      | 2152 | Gauss    | Maximum Flux Density                                  |
|                                         |      |          | AC Flux Density for Core Loss Curves (0.5 X Peak to   |
| BAC                                     | 667  | Gauss    | Peak)                                                 |
| ur                                      | 1203 |          | Relative Permeability of Ungapped Core                |
| LG                                      | 0.06 | mm       | Gap Length (Lg >> 0.051 mm)                           |
| BWE                                     | 3.8  | mm       | Effective Bobbin Width                                |
|                                         |      |          |                                                       |
| TRANSFORMER SECONDARY DESIGN PARAMETERS |      |          |                                                       |
| ISP                                     | 6.38 | Amps     | Peak Secondary Current                                |
| ISRMS                                   | 3.15 | Amps     | Secondary RMS Current                                 |
| 10                                      | 2.00 | Amps     | Power Supply Output Current                           |
| IRIPPLE                                 | 2.43 | Amps     | Output Capacitor RMS Ripple Current                   |
|                                         |      |          |                                                       |
| VOLTAGE STRESS PARAMETERS               |      |          |                                                       |
|                                         |      |          | Maximum Drain Voltage (Includes Effect of Leakage     |
| VDRAIN                                  | 157  | Volts    | Inductance)                                           |
| PIVS                                    |      | Volts    | Output Rectifier Maximum Peak Inverse Voltage         |
| PIVB                                    | 36   | Volts    | Bias Rectifier Maximum Peak Inverse Voltage           |
|                                         |      |          |                                                       |
| ADDITIONAL OUTPUTS                      |      |          |                                                       |
| V_OUT2                                  |      | Volts    | 2nd Output Voltage                                    |
| VD_OUT2                                 |      | Volts    | 2nd Output - Diode Forward voltage                    |
| N_OUT2                                  | 0.00 |          | 2nd Output - Turns                                    |
| PIV_OUT2                                | 0    | Volts    | 2nd Output - Diode Peak Inverse Voltage               |
| V_OUT3                                  |      | Volts    | 3rd Output Voltage                                    |
| VD_OUT3                                 |      | Volts    | 3rd Output - Diode Forward voltage                    |
| N_OUT3                                  | 0.00 |          | 3rd Output - Turns                                    |
| PIV_OUT3                                | 0    | Volts    | 3rd Output - Diode Peak Inverse Voltage               |
| I_OUT2                                  |      | Amps     | 2nd Output - Output Current                           |
| I_OUT3                                  |      | Amps     | 3rd Output - Output Current                           |
|                                         |      |          | If negative output exists enter Output number; eg: If |
| Negative Output                         | N/A  |          | VO2 is negative output, enter 2                       |



# 8 Transformer Specification

#### 8.1 Transformer Winding

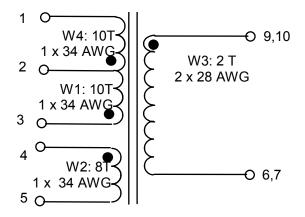



Figure 10 – Transformer Electrical Diagram.

#### 8.2 Electrical Specifications

| Electrical Strength        | 1 second, 60 Hz, from Pins 1-5 to Pins 6-10 | 1500 VDC       |
|----------------------------|---------------------------------------------|----------------|
| Primary Inductance         | Pins 1-3, all other windings open           | 120 μH, ±10%   |
| Resonant Frequency         | Pins 1-3, all other windings open           | 7.5 MHz (Min.) |
| Primary Leakage Inductance | Pins 1-3, with Pins 6/7-9/10 shorted        | 3.0 μH (Max.)  |

#### 8.3 Materials

| Item              | Description                                                                       |
|-------------------|-----------------------------------------------------------------------------------|
| [1]               | Core: ER14.5, Ferroxcube 3C96, 3F3 (or equivalent), $A_{LG} = 312 \text{ nH/T}^2$ |
| [2]               | Bobbin: ER14.5, 10 pin                                                            |
| [3]               | Magnet Wire: #34 AWG, Double Coated (Heavy Nyleze)                                |
| [4]               | Magnet Wire: #28 AWG, Double Coated (Heavy Nyleze)                                |
| [5]               | Tape: 3M 1298 Polyester Film (or equivalent), 1.8 mm wide                         |
| [6]<br>(optional) | Core Clamp ER14.5 Ferroxcube CLM14.5                                              |
| [7]               | Varnish (DIPPED ONLY, NOT VACUUM IMPREGNATED)                                     |



#### 8.4 Transformer Build Diagram

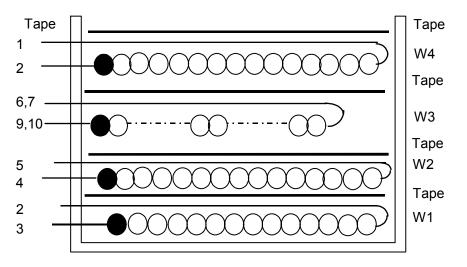



Figure 11 – Transformer Build Diagram.

#### 8.5 Transformer Construction

| <b>Bobbin Preparation</b>                                                                                                                       | Arrange bobbin & rotation such that primary start/finish wires do not overlap.                       |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|
| W1                                                                                                                                              | Start at Pin 3. Wind 10 turns of item [3] in 1 layer. Bring finish lead back and terminate on Pin 2. |  |  |  |  |
| W2 Starting at Pin 4, wind 8 turns of item [3]. Spread turns evenly across bobbi a single layer. Bring finish lead back and terminate on Pin 5. |                                                                                                      |  |  |  |  |
| Таре                                                                                                                                            |                                                                                                      |  |  |  |  |
| W3 Start at Pins 9 and 10. Wind 2 turns of bifilar item [4] in 1 layer. Bring finish lead back and terminate on Pins 6 and 7.                   |                                                                                                      |  |  |  |  |
| Таре                                                                                                                                            | Use one layer of item [5] for basic insulation.                                                      |  |  |  |  |
| W4 Continue from Pin 2. Wind 10 turns of item [3] in 1 layer. Bring finish lead bac and terminate on Pin 1.                                     |                                                                                                      |  |  |  |  |
| Outer Wrap Use one layer of item [5] for basic insulation.                                                                                      |                                                                                                      |  |  |  |  |
| Final Assembly                                                                                                                                  | Assemble and secure (glue or clamp, item [6]) core halves.<br>Dip varnish item [7] and cure.         |  |  |  |  |



# 9 Performance Data

All measurements were taken at room temperature utilizing a DC input source and DC dynamic loads (except where resistive loads are specified). Input and output voltages and current were measured with dedicated digital multi-meters (DMMs).

#### 9.1 Efficiency

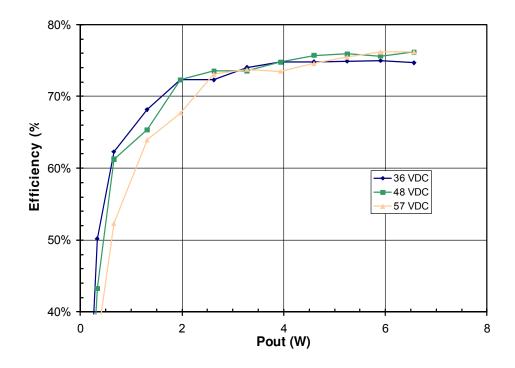



Figure 12 – Efficiency vs. Line and Load, Room Temperature.



#### 9.2 Load Regulation

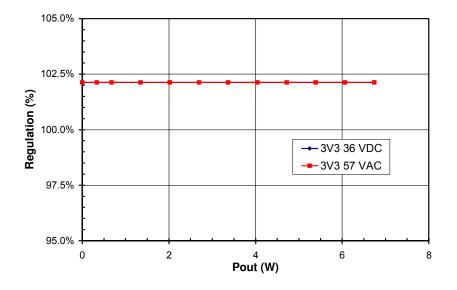
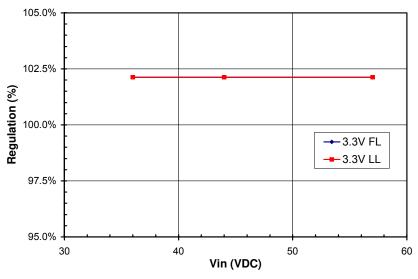
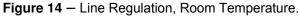
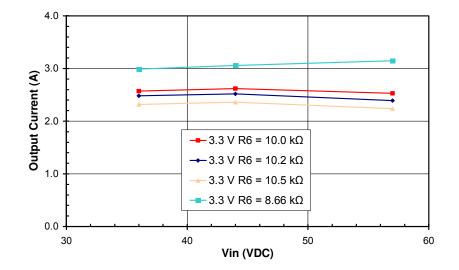





Figure 13 – Load Regulation, Room Temperature.

#### 9.3 Line Regulation








#### 9.4 Overload Output Current

The DC output load current was recorded just prior to the auto-restart operation at various input line voltages. Performance was measured for various values of resistor R6.



**Figure 15** – Overload Output Current vs. Line Voltage for Different Values of R6, Room Temperature.



# 10 Waveforms

#### 10.1 Drain Voltage and Current, Full-Load Operation

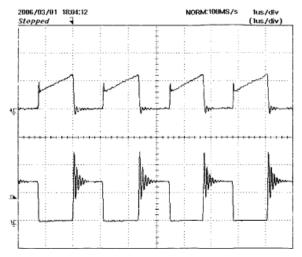



Figure 16 – 36 VDC, Full Load. Upper:  $I_{DRAIN}$ , 0.5 A / div. Lower:  $V_{DRAIN}$ , 50 V, 1  $\mu$ s / div.

#### 10.2 Output Voltage Start-Up Profile

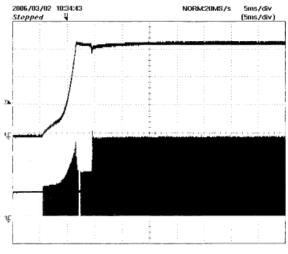



Figure 18 – Start-Up Profile, 36 VDC, No Load (worst-case). Upper:  $V_{OUT}$ , 1 V / div. Lower:  $V_{DRAIN}$ , 50 V, 1  $\mu$ s / div.

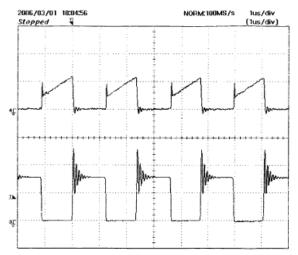
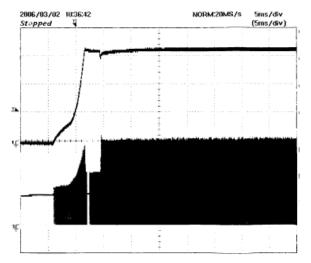
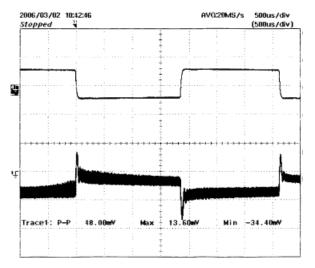
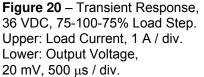
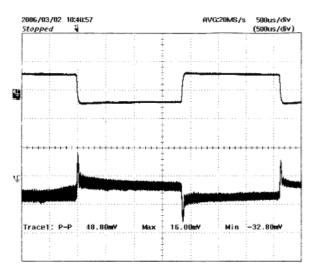



Figure 17 – 57 VDC, Full Load. Upper:  $I_{DRAIN}$ , 0.5 A / div. Lower:  $V_{DRAIN}$ , 50 V, 1 µs / div.



Figure 19 – Start-Up Profile, 57 VDC, No Load (worst-case). Upper:  $V_{OUT}$ , 1 V / div. Lower:  $V_{DRAIN}$ , 50 V, 1  $\mu$ s / div.




#### 10.3 Load Transient Response (75% to 100% Load Step)

In the figures shown below, signal averaging was used to better enable viewing of the load transient response. The oscilloscope was triggered using the load current step as a trigger source. Since the output switching is random with respect to the load transient, contributions to the output ripple from these sources will average out, leaving the contribution only from the load step response.







**Figure 21** – Transient Response, 57 VDC, 75-100-75% Load Step. Upper: Load Current, 1 A / div. Lower: Output Voltage, 20 mV, 500 μs / div.



#### 10.4 Output Ripple Measurements

#### 10.4.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signal pickup. Details of the probe modification are provided in Figures 22 and 23.

The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1  $\mu$ F/50 V ceramic type and one (1) 1.0  $\mu$ F/50 V aluminum electrolytic. *Since the aluminum electrolytic type capacitor is polarized, proper polarity must be observed when connecting it to the output (see below).* 

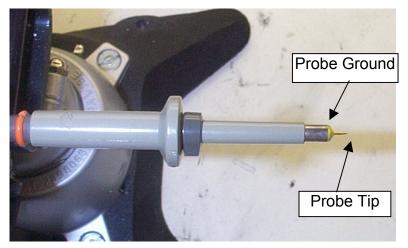



Figure 22 – Oscilloscope Probe Prepared for Ripple Measurement (End cap and ground lead removed).



Figure 23 – Oscilloscope Probe with Probe Master 5125BA BNC Adapter (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added).



#### 10.4.2 Output Ripple Measurements

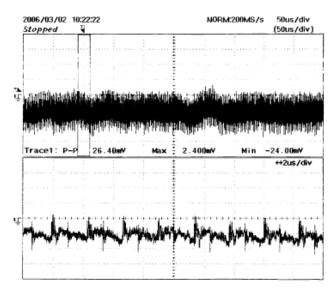
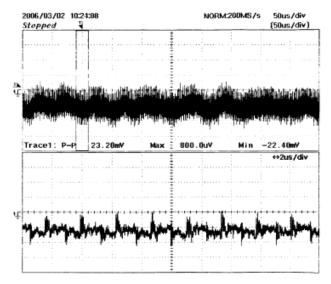
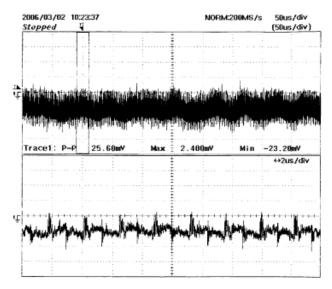





Figure 24 – Ripple, 36 VDC, Full Load. Upper: 50  $\mu$ s / div, 10 mV / div. Lower: 2  $\mu$ s / div, 10 mV / div.



 $\begin{array}{l} \mbox{Figure 26}-\mbox{Ripple, 57 VDC, Full Load.}\\ \mbox{Upper: 50 } \mu\mbox{s / div, 10 mV / div.}\\ \mbox{Lower: 2 } \mu\mbox{s / div, 10 mV / div.} \end{array}$ 



 $\begin{array}{l} \mbox{Figure 25}-\mbox{Ripple, 48 VDC, Full Load.}\\ \mbox{Upper: 50 } \mu\mbox{s / div, 10 mV / div.}\\ \mbox{Lower: 2 } \mu\mbox{s / div, 10 mV / div.} \end{array}$ 



# **11 Revision History**

| Date            | Author   | Revision | Description & changes  |
|-----------------|----------|----------|------------------------|
| January 3, 2006 | RM/LN/ME | 1.0      | Initial release        |
| April 13 2006   | RM       | 1.1      | Updated photo, layout, |
|                 |          |          | schematic and BOM      |



Notes

