

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DEMO MANUAL DC2257A

LTM8005 38V_{IN}, 38V_{OUT} Boost µModule LED Driver with 40V Switch

DESCRIPTION

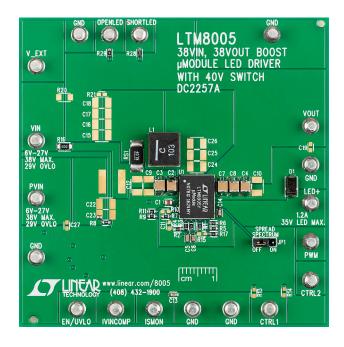
Demonstration circuit 2257A features the LTM®8005 – a $38V_{IN}$, $38V_{OUT}$ boost μ Module® LED driver that can disconnect the output to protect against faults and provides spread spectrum switching to simplify emissions compliance. DC2257A is an LED driver with an input range for normal operation from 6V to 27V. OVLO becomes active for inputs above 29V and the maximum input voltage is 38V. The LED current is 1.2A and the base switching frequency is 350kHz. The efficiency is 92% when the input is 12V with a 35V LED load. 35V is the maximum LED voltage.

The demo circuit requires application of an external voltage to the PWM terminal for operation. The external voltage can be a DC level or an appropriate PWM dimming signal. Common frequencies for PWM dimming are 100Hz or higher. Analog dimming is achieved using the CTRL inputs.

DC2257A allows adjustments to output voltage, output current, input current, switching frequency, frequency

modulation rate including disable, feedback loop compensation, EN/UVLO threshold, OVLO threshold, soft-start period, and fault latch-off or hiccup. In most cases, adjustment is made by modifying the appropriate resistor or capacitor component(s).

DC2257A provides outputs for input and output current monitoring and fault status for short and open LEDs.


The demo circuit is designed to be easily reconfigured to buck mode, buck-boost mode and SEPIC topologies. There are placeholders to mount optional LC input filter components.

The LTM8005 data sheet must be read in conjunction with this demo manual to properly use or modify DC2257A.

Design files for this circuit board are available at http://www.linear.com/demo/DC2257A

Δ7, LT, LTC, LTM, Linear Technology, the Linear logo and μModule are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

BOARD PHOTO

dc2257at

PERFORMANCE SUMMARY Specifications are at T_A = 25°C

PARAMETER	CONDITIONS	MIN	TYP	MAX
Minimum Input Voltage, V _{PVIN}				6V
Maximum Input Voltage – Switching, V _{PVIN}		27V		
Maximum Input Voltage – Not Switching, V _{PVIN}	V _{0VL0} ≥ 1.25	38V		
Maximum LED Voltage, V _{LED}		35V		
LED Current, I _{LED}	R5 = 100k, R6 = 73.2k		1.2A	
Input Turn-On Voltage, V _{PVIN(EN)}	R7 = 19.1k, R8 = 1M, R9 = 93.1k, V _{PVIN} Rising		5.9V	
Input Turn-Off Voltage, V _{PVIN(UVLO)}	R7 = 19.1k, R8 =1M, R9 = 93.1k, V _{PVIN} Falling		4.9V	
Input OVLO Turn-Off Voltage, V _{PVIN(OVLO_TURN-OFF)}	R7 = 19.1k, R8 = 1M, R9 = 93.1k, V _{PVIN} Rising		29.1V	
Input OVLO Turn-On Voltage, V _{PVIN(OVLO_TURN-ON)}	R7 = 19.1k, R8 = 1M, R9 = 93.1k, V _{PVIN} Falling		28.4V	
Efficiency	V _{PVIN} = 12V, V _{LED} = 35V, I _{LED} = 1.2A	92%		
Switching Frequency	R1 = 23.2k, Spread Spectrum = OFF		350kHz	
Input Current Limit	$RS1 = 0.008\Omega$	7.5A Peak		

QUICK START PROCEDURE

To use DC2257A to evaluate the performance of the LTM8005, refer to Figure 1 for the proper measurement equipment setup and then follow the procedure below.

NOTE: PWM must be pulled high to work. If PWM is not used, connect the PWM terminal to a 2V to 5V source or connect the PWM pin to V_{RFF} on the PCB using R18.

- Connect a string of LEDs with a forward voltage of 35V or less, but greater than the PVIN voltage, to the LED+ and GND terminals on the PCB as shown in Figure 1.
- 2. Connect the EN/UVLO terminal to ground with a clip-on lead.
- With the power off, connect the input power supply to the PVIN and GND terminals within the voltage range specified on the PCB. Make sure that the input power

- supply voltage does not exceed the forward voltage of the LED string. OVLO becomes active to inhibit switching for an input voltage of greater than 29V.
- 4. Connect an input to the PWM terminal. If PWM is not used, connect PWM to a 2V to 5V DC source or to V_{REF} on the PCB using resistor R18. PWM must be pulled high to work. For PWM dimming, connect a 100Hz or higher PWM signal to the PWM terminal.
- 5. Turn the PVIN power supply on.
- 6. Release the EN/UVLO to GND connection.
- 7. Observe the LED string running at the programmed LED current; or, observe the reduction of brightness in the LED string with PWM dimming.

LINEAR TECHNOLOGY

QUICK START PROCEDURE

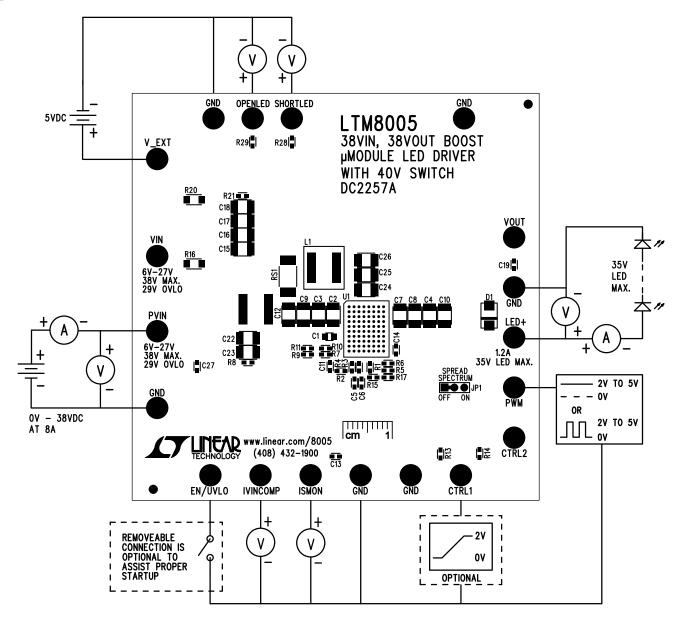


Figure 1. Proper Measurement Equipment Setup

QUICK START PROCEDURE

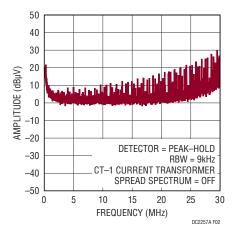
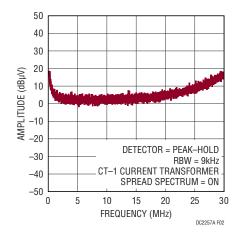
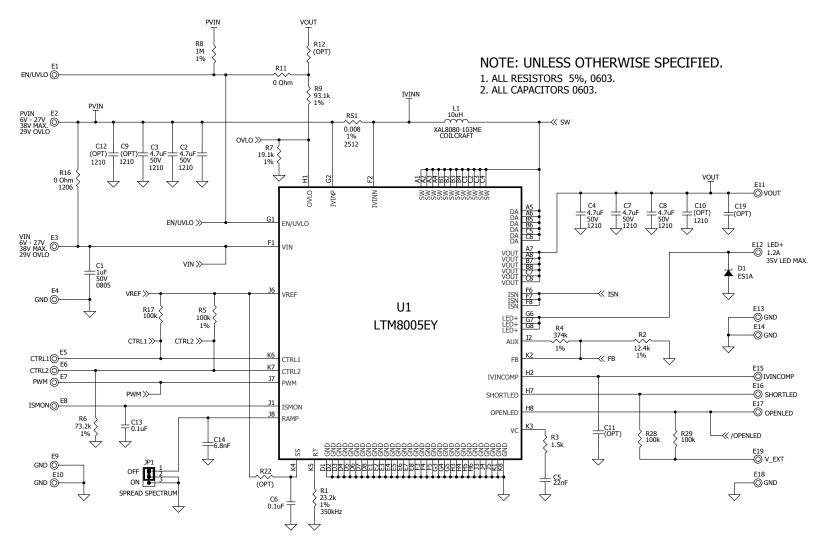
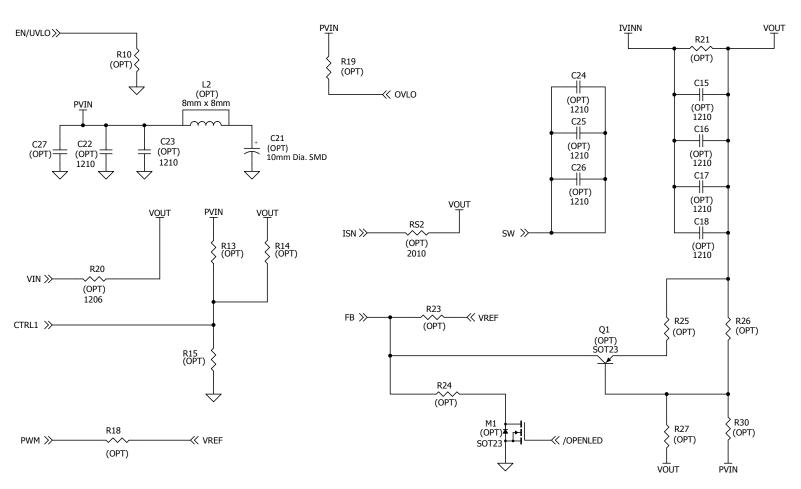


Figure 2. Output Current Noise Spectrum with Spread Spectrum = OFF, V_{IN} = 12V, P_{OUT} = 42W, CT-1 Current Transformer




Figure 3. Output Current Noise Spectrum with Spread Spectrum = ON, V_{IN} = 12V, P_{OUT} = 42W, CT-1 Current Transformer

PARTS LIST


ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER	
Required	Circuit Co	omponents			
1	1	C1	CAP., X7R, 1µF, 50V, 10%, 0805	MURATA, GRM21BR71H105KA12L	
2	5	C2, C3, C4, C7, C8	CAP., X7R, 4.7µF, 50V, 10%, 1210	MURATA, GRM32ER71H475KA88L	
3	1	C5	CAP., X7R, 0.022µF, 16V, 10%, 0603	MURATA, GRM188R71C223KA01D	
4	1	C6	CAP., X7R, 0.1µF, 25V, 10%, 0603	AVX, 06033C104KAT2A	
5	1	L1	INDUCTOR, 10µH	COILCRAFT, XAL8080-103ME	
6	1	R1	RES, CHIP, 23.2k, 1/10W, 1%, 0603	VISHAY, CRCW060323K2FKEA	
7	1	R2	RES, CHIP, 12.4k, 1/10W, 1%, 0603	VISHAY, CRCW060312K4FKEA	
8	1	R3	RES, CHIP, 1.5k, 1/10W, 5%, 0603	VISHAY, CRCW06031K50JNEA	
9	1	R4	RES, CHIP, 374k, 1/10W, 1%, 0603	VISHAY, CRCW0603374KFKEA	
10	1	R5	RES, CHIP, 100k, 1/10W, 1%, 0603	VISHAY, CRCW0603100KFKEA	
11	1	R6	RES, CHIP, 73.2k, 1/10W, 1%, 0603	VISHAY, CRCW060373K2FKEA	
12	1	U1	I.C., μMODULE LED DRIVER, 80-BGA	LINEAR TECH, LTM8005EY#PBF	
)ptional [Demo Circ	cuit Components			
1	1	C13	CAP., X7R, 0.1µF, 25V, 10%, 0603	AVX, 06033C104KAT2A	
2	0	C11, C19, C27 (OPT)	CAP., 0603		
3	0	C9, C10, C12, C15-C18, C22-C26 (OPT)	CAP., 1210		
4	1	C14	CAP., X7R, 6.8nF, 16V, 10%, 0603	AVX, 0603YC682KAT2A	
5	0	C21 (OPT)	CAP., ALUM, OPT, 10mm DIA.		
6	1	D1	DIODE, SMA	FAIRCHILD SEMI.,ES1A	
7	0	L2 (OPT)	INDUCTOR, OPT, 8mm × 8mm		
8	0	M1 (OPT)	MOSFET, SOT23		
9	0	Q1 (0PT)	TRANS, S0T23		
10	1	RS1	RES, CHIP, .008Ω, 1W, 1%, 2512	VISHAY, WSL25128L000FEA	
11	0	RS2 (0PT)	RES, 2010		
12	1	R7	RES, CHIP, 19.1k, 1/10W, 1%, 0603	VISHAY, CRCW060319K1FKEA	
13	1	R8	RES, CHIP, 1M, 1/10W, 1%, 0603	VISHAY, CRCW06031M00FKEA	
14	1	R9	RES, CHIP, 93.1k, 1/10W, 1%, 0603	VISHAY, CRCW060393K1FKEA	
15	0	R10, R12-R15, R18, R19, R21-R27, R30 (OPT)	RES, 0603		
16	1	R11	RES, CHIP, 0, 1/10W, 1%, 0603	VISHAY, CRCW06030000Z0EA	
17	1	R16	RES, CHIP, 0, 1/4W, 1%, 1206	VISHAY, CRCW12060000Z0EAHP	
18	0	R20 (OPT)	RES, 1206		
19	3	R17, R28, R29	RES, CHIP, 100k, 1/10W, 5%, 0603	VISHAY, CRCW0603100KJNEA	
lardware					
1	19	E1-E19	TESTPOINT, TURRET, .094" PBF	MILL-MAX, 2501-2-00-80-00-00-07-	
2	1	JP1	HEADER 3-PIN 0.079 SINGLE ROW	WURTH, 620 003 111 21	
3	1	XJP1	SHUNT, .079" CENTER	WURTH, 608 002 134 21	

SCHEMATIC DIAGRAM

SCHEMATIC DIAGRAM

DEMO MANUAL DC2257A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

