imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

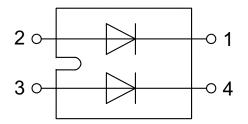
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SiC Schottky Diode

Ultra fast switching Zero reverse recovery


Part number DCG100X1200NA

prelimininary $V_{RRM} = 1200 V$ $I_{FAV} = 2x 47 A$

Backside: isolated

UL pending

Features / Advantages:

- · Ultra fast switching
- Zero reverse recovery
- Zero forward recovery
- Temperature independent switching behavior
- · Positive temperature coefficient of forward voltage
- Tvjm = 175°C

Applications:

- Solar inverter
- Uninterruptible power supply (UPS)
- Welding equipment
- Switched-mode power supplies
- Medical equipment
- High speed rectifier

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate with Aluminium nitride isolation for low thermal resistance
- Advanced power cycling

Terms & Conditions of Usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered as an assurance of component characteristics. dered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend to perform joint risk and guality assessments:

- the conclusion of quality agreements;
 - to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, test conditions and dimensions.

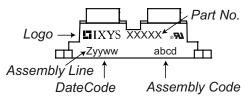
© 2018 IXYS All rights reserved

DCG100X1200NA

prelimininary

SiC Diod	SiC Diode (per leg)			Ratings		
Symbol	Definitions	Conditions	min.	typ.	max.	
V _{RSM}	max. non-repetitive reverse blocking voltage	$T_{vJ} = 25^{\circ}C$			1200	V
V _{RRM}	max. repetitive reverse blocking voltage	$T_{vJ} = 25^{\circ}C$			1200	V
I _R	reverse current	$V_{R} = V_{RRM} \qquad \qquad T_{VJ} = 25^{\circ}C \\ T_{VJ} = 175^{\circ}C$		100 300	500 1000	μA μA
V _F	forward voltage	$I_F = 25 \text{ A}$ $T_{VJ} = 25^{\circ}\text{C}$ $I_F = 50 \text{ A}$		1.25 1.6	1.8	V V
		$I_F = 25 \text{ A}$ $T_{VJ} = 175^{\circ}\text{C}$ $I_F = 50 \text{ A}$		1.55 2.25	2.7	V V
I _{FAV}	average forward current	$ \begin{array}{ccc} T_c = & 80^\circ C \\ T_c = & 100^\circ C \end{array} \end{array} rectangular, d = 0.5 \\ T_{vJ} = & 175^\circ C \end{array} $			47 41	A A
I _{F25} I _{F80} I _{F100}	forward current	based on typ. V_{F0} and r_F $\begin{array}{ccc} T_{c}=&25^{\circ}C\\ T_{c}=&80^{\circ}C\\ T_{c}=&100^{\circ}C \end{array}$			82 63 55	A A A
I _{FSM}	max forward surge current	t = 10 ms,half sine (50 Hz) $t_p = 10 \ \mu$ s, pulse $T_{VJ} = 25^{\circ}C$ $V_R = 0V$				A A
V _{F0} r _F	threshold voltage slope resistance	$\begin{cases} for power loss calculation \\ T_{VJ} = 125^{\circ}C \\ T_{VJ} = 125^{\circ}C \\ 175^{\circ}C \\ 175^{\circ}C \\ 175^{\circ}C \end{cases}$		0.75		V V mΩ mΩ
Q _c	total capacitive charge	$V_{\rm R} = 800 \text{ V}, I_{\rm F} = 50 \text{ A}$ $dI/dt = 200 \text{ A}/\mu \text{s}$ $T_{\rm VJ} = 25^{\circ}\text{C}$		250		nC
С	total capacitance	$\left. \begin{array}{c} V_{_{R}} = 0 \ V \\ V_{_{R}} = 400 \ V \\ V_{_{R}} = 800 \ V \end{array} \right\} \hspace{1cm} T_{_{VJ}} = 25^{\circ} C, \ f = 1 \ MHz$		3380 230 173		pF pF pF
R _{thJC} R _{thJH}	thermal resistance junction to case thermal resistance junction to heatsink	with heatsink compound; IXYS test setup		0.65	0.52	K/W K/W

DCG100X1200NA


prelimininary

Package	Outlines SOT-227B (minibloc)			Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
IRMS	RMS current	per terminal				100	A
T _{stg}	storage temperature			-40		150	°C
T _{op}	operation temperature			-40		150	°C
T _{vJ}	virtual junction temperature			-40		175	°C
Weight					30		g
Mp	mounting torque ¹⁾	screws to heats	ink			1.5	Nm
		terminal connec	ction screws			1.3	Nm
d _{Spp}	araanaa diatanaa an aurfaaa		terminal to terminal	10.5			mm
d _{Spp} d _{Spb}	creepage distance on surface		terminal to backside	8.5			mm
d _{App}	stuiling distance through six		terminal to terminal	3.2			mm
d _{Apb}	striking distance through air		terminal to backside	6.8			mm
VISOL	isolation voltage	t = 1 second		3000			V
		t = 1 minute	50 / 60 Hz, RMS; $I_{ISOL} \le 1 \text{ mA}$	2500			V
C _P	coupling capacity per switch	between shorted te lization	erminals of diodes and back side metal-				pF

¹⁾ further information see application note IXAN0073 on

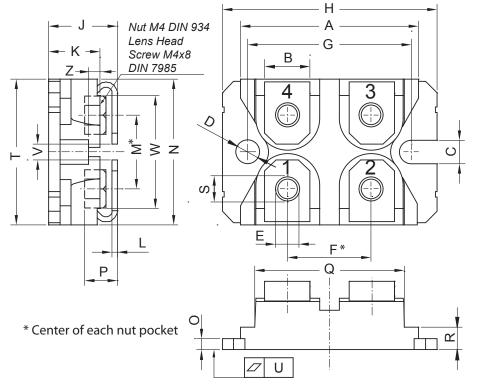
www.ixys.com/TechnicalSupport/appnotes.aspx (General / Isolation, Mounting, Soldering, Cooling)

Part description

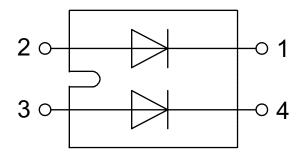
- D = Diode

- D = Diode C = SiC G = extreme fast 100 = Current Rating [A] X = Parallel legs 1200 = Reverse Voltage [V] NA = SOT-227 (minibloc)

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	DCG100X1200NA	DCG100X1200NA	Tube	10	521465


Equival	ent Circuits for Simulation	*on die level, typical			
	- R ₀ -	$T_{vJ} = 125^{\circ}C$	T _{vJ} = 175°C		
V _{0 max}	threshold voltage		0.75	V	
$\mathbf{R}_{0 \max}$	slope resistance *		34.0	mΩ	

IXYS reserves the right to change limits, test conditions and dimensions.



prelimininary

Outlines SOT-227B (minibloc)

Dim.	Millimeter		Inches		
Dim.	min	max	min	max	
Α	31.50	31.88	1.240	1.255	
В	7.80	8.20	0.307	0.323	
С	4.09	4.29	0.161	0.169	
D	4.09	4.29	0.161	0.169	
Е	4.09	4.29	0.161	0.169	
F	14.91	15.11	0.587	0.595	
G	30.12	30.30	1.186	1.193	
Н	37.80	38.23	1.488	1.505	
J	11.68	12.22	0.460	0.481	
Κ	8.92	9.60	0.351	0.378	
L	0.74	0.84	0.029	0.033	
Μ	12.50	13.10	0.492	0.516	
Ν	25.15	25.42	0.990	1.001	
0	1.95	2.13	0.077	0.084	
Ρ	4.95	6.20	0.195	0.244	
Q	26.54	26.90	1.045	1.059	
R	3.94	4.42	0.155	0.167	
S	4.55	4.85	0.179	0.191	
Т	24.59	25.25	0.968	0.994	
U	-0.05	0.10	-0.002	0.004	
V	3.20	5.50	0.126	0.217	
W	19.81	21.08	0.780	0.830	
Ζ	2.50	2.70	0.098	0.106	

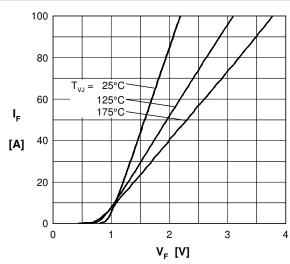
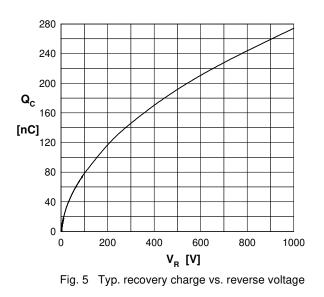
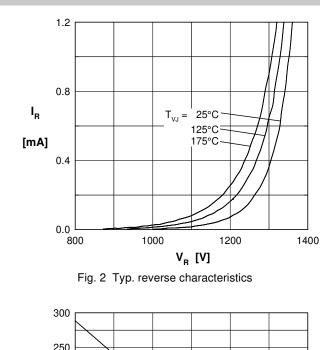
IXYS reserves the right to change limits, test conditions and dimensions.

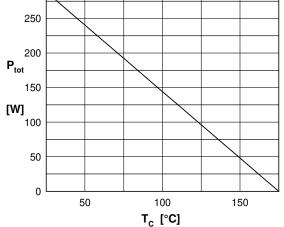
LIXYS

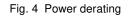
DCG100X1200NA

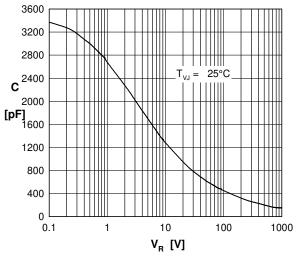
prelimininary

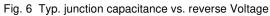
SiC Diode (per leg)

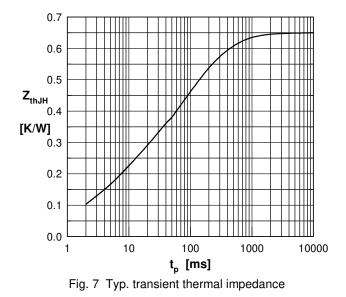





Fig. 1 Typ. forward characteristics








IXYS reserves the right to change limits, test conditions and dimensions.

DCG100X1200NA

prelimininary

SiC Diode (per leg)

