

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Type RA
Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose

Product specifications in this catalog are as of Dec. 2017, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

Voltage	DC Voltage	DC Voltage DC+AC Voltage		Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	d-o-o>	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of $\phi 0.1$ mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

(2) VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V. - See the right figure -

voltage sine wave

0V

zero cross

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 °C max. Soldering iron wattage: 50W max. Soldering time: 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

3. PERFORMANCE CHECK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

\triangle NOTE

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGD08E

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type RA used for General Electric equipment.

Type RA is Safety Standard Certified disc ceramic capacitor of Class X1,Y1.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Approval standard and certified number

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)
UL	UL60384-14	E37921	
ENEC (VDE)	EN60384-14	40043033	X1:440
CQC	IEC60384-14	CQC16001138225	Y1:250
KTC	KC60384-14	HU03008-17008	

^{*}Above Certified number may be changed on account of the revision of standards and the renewal of certification.

2	Dati	no
_	Rati	110

2-1. Operating temperature range $-40 \sim +125$ °C

2-2. Rated Voltage X1:AC440V(r.m.s.) Y1:AC250V(r.m.s.)

2-3. Part number configuration

ex.) <u>DE1</u>	B3	RA	471	K	_A4_	B	N01F
Product	Temperature	Type	Capacitance	Capacitance	Lead	Packing	Individual
code	characteristic	name		tolerance	code	style code	specification

• Product code

DE1 denotes X1,Y1 class.

• Temperature characteristic

Code	Temperature characteristic					
1X	SL					
B3	В					
E3	E					

Please confirm detailed specification on [Specification and test methods].

• Type name

This denotes safety certified type name Type RA.

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 471.

$$47 \times 10^1 = 470 pF$$

• Capacitance tolerance

Please refer to [Part number list].

• Lead code

Code Lead style		
A*	Vertical crimp long type	
J*	Vertical crimp short type	
N*	Vertical crimp taping type	

^{*} Please refer to [Part number list]

• Packing style code

Code	Packing type
В	Bulk type
Α	Ammo pack taping type

• Individual specification

In case part number cannot be identified without 'individual specification', it is added at the end of part number.

Code	Specification
	→ Rated voltage : X1:AC440V(r.m.s.)
	Y1:AC250V(r.m.s.)
N01F	 Halogen free (Br ≤ 900ppm, Cl ≤ 900ppm) Br + Cl ≤ 1500ppm CP wire

Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(RA) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

3. Marking

Type name : RA

Nominal capacitance : Actual value(under 100pF)

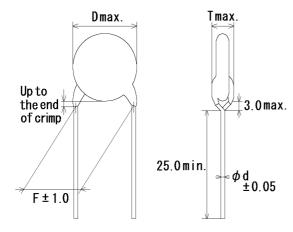
3 digit system(100pF and over)

Capacitance tolerance : Code Class code and Rated voltage mark : **X1 440**~

Y1 250~

Manufacturing year : Letter code(The last digit of A.D. year.)

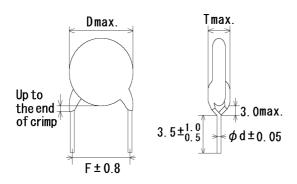
Manufacturing month : Code


Company name code : (Made in Thailand)

(Example)

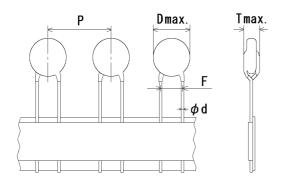
RA 471K X1 440~ Y1 250~ 5D @15

4. Part number list


·Vertical crimp long type (Lead code:A*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

								Offic.	111111	
T.C.	TC Cap. Cap.		Cap. Customer Part Number	Murata Part Number	Dimension (mm)				Lead	Pack
1.0.	(pF)	tol.	Customer Fait Number	Wulata Fait Nullibel	D	Т	F	d	code	qty. (pcs)
SL	10	±10%		DE11XRA100KA4BN01F	7.0	4.0	10.0	0.6	A4	250
SL	15	±10%		DE11XRA150KA4BN01F	6.0	5.0	10.0	0.6	A4	500
SL	22	±10%		DE11XRA220KA4BN01F	6.0	4.0	10.0	0.6	A4	500
SL	33	±10%		DE11XRA330KA4BN01F	7.0	4.0	10.0	0.6	A4	250
SL	47	±10%		DE11XRA470KA4BN01F	7.0	4.0	10.0	0.6	A4	250
SL	68	±10%		DE11XRA680KA4BN01F	8.0	4.0	10.0	0.6	A4	250
В	100	±10%		DE1B3RA101KA4BN01F	6.0	4.0	10.0	0.6	A4	500
В	150	±10%		DE1B3RA151KA4BN01F	7.0	4.0	10.0	0.6	A4	250
В	220	±10%		DE1B3RA221KA4BN01F	6.0	5.0	10.0	0.6	A4	500
В	330	±10%		DE1B3RA331KA4BN01F	6.0	5.0	10.0	0.6	A4	500
В	470	±10%		DE1B3RA471KA4BN01F	7.0	5.0	10.0	0.6	A4	250
В	680	±10%		DE1B3RA681KA4BN01F	8.0	5.0	10.0	0.6	A4	250
Е	1000	±20%		DE1E3RA102MA4BN01F	7.0	4.0	10.0	0.6	A4	250
Е	1500	±20%		DE1E3RA152MA4BN01F	8.0	4.0	10.0	0.6	A4	250
Е	2200	±20%		DE1E3RA222MA4BN01F	9.0	4.0	10.0	0.6	A4	250
Е	3300	±20%		DE1E3RA332MA4BN01F	10.0	5.0	10.0	0.6	A4	250
Е	4700	±20%		DE1E3RA472MA4BN01F	12.0	5.0	10.0	0.6	A4	200


·Vertical crimp short type
(Lead code:J*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

								Office.	111111	
T.C.	Cap. Cap.		Cap. Customer Part Number	Murata Part Number	Dimension (mm)				Lead	Pack
1.0.	(pF)	tol.	Customer Fait Number	Mulata Fait Nullibel	D	Т	F	d	code	qty. (pcs)
SL	10	±10%		DE11XRA100KJ4BN01F	7.0	4.0	10.0	0.6	J4	500
SL	15	±10%		DE11XRA150KJ4BN01F	6.0	5.0	10.0	0.6	J4	500
SL	22	±10%		DE11XRA220KJ4BN01F	6.0	4.0	10.0	0.6	J4	500
SL	33	±10%		DE11XRA330KJ4BN01F	7.0	4.0	10.0	0.6	J4	500
SL	47	±10%		DE11XRA470KJ4BN01F	7.0	4.0	10.0	0.6	J4	500
SL	68	±10%		DE11XRA680KJ4BN01F	8.0	4.0	10.0	0.6	J4	500
В	100	±10%		DE1B3RA101KJ4BN01F	6.0	4.0	10.0	0.6	J4	500
В	150	±10%		DE1B3RA151KJ4BN01F	7.0	4.0	10.0	0.6	J4	500
В	220	±10%		DE1B3RA221KJ4BN01F	6.0	5.0	10.0	0.6	J4	500
В	330	±10%		DE1B3RA331KJ4BN01F	6.0	5.0	10.0	0.6	J4	500
В	470	±10%		DE1B3RA471KJ4BN01F	7.0	5.0	10.0	0.6	J4	500
В	680	±10%		DE1B3RA681KJ4BN01F	8.0	5.0	10.0	0.6	J4	500
Е	1000	±20%		DE1E3RA102MJ4BN01F	7.0	4.0	10.0	0.6	J4	500
Е	1500	±20%		DE1E3RA152MJ4BN01F	8.0	4.0	10.0	0.6	J4	500
Е	2200	±20%		DE1E3RA222MJ4BN01F	9.0	4.0	10.0	0.6	J4	500
Е	3300	±20%		DE1E3RA332MJ4BN01F	10.0	5.0	10.0	0.6	J4	500
Е	4700	±20%		DE1E3RA472MJ4BN01F	12.0	5.0	10.0	0.6	J4	250

·Vartical crimp taping type (Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

								Office.	111111	
Сар.	Сар.	Cap. Customer Port Number Murete Port Number				(mm	m) Lead		Pack	
(pF)	tol.	Customer Fait Number	Murata Fart Number	D	Т	F	d	Р	code	qty. (pcs)
10	\pm 10%		DE11XRA100KN4AN01F	7.0	4.0	10.0	0.6	25.4	N4	600
15	±10%		DE11XRA150KN4AN01F	6.0	5.0	10.0	0.6	25.4	N4	600
22	±10%		DE11XRA220KN4AN01F	6.0	4.0	10.0	0.6	25.4	N4	600
33	±10%		DE11XRA330KN4AN01F	7.0	4.0	10.0	0.6	25.4	N4	600
47	±10%		DE11XRA470KN4AN01F	7.0	4.0	10.0	0.6	25.4	N4	600
68	±10%		DE11XRA680KN4AN01F	8.0	4.0	10.0	0.6	25.4	N4	600
100	±10%		DE1B3RA101KN4AN01F	6.0	4.0	10.0	0.6	25.4	N4	600
150	±10%		DE1B3RA151KN4AN01F	7.0	4.0	10.0	0.6	25.4	N4	600
220	±10%		DE1B3RA221KN4AN01F	6.0	5.0	10.0	0.6	25.4	N4	600
330	\pm 10%		DE1B3RA331KN4AN01F	6.0	5.0	10.0	0.6	25.4	N4	600
470	\pm 10%		DE1B3RA471KN4AN01F	7.0	5.0	10.0	0.6	25.4	N4	600
680	\pm 10%		DE1B3RA681KN4AN01F	8.0	5.0	10.0	0.6	25.4	N4	600
1000	$\pm 20\%$		DE1E3RA102MN4AN01F	7.0	4.0	10.0	0.6	25.4	N4	600
1500	$\pm 20\%$		DE1E3RA152MN4AN01F	8.0	4.0	10.0	0.6	25.4	N4	600
2200	±20%		DE1E3RA222MN4AN01F	9.0	4.0	10.0	0.6	25.4	N4	600
3300	±20%		DE1E3RA332MN4AN01F	10.0	5.0	10.0	0.6	25.4	N4	600
4700	±20%		DE1E3RA472MN4AN01F	12.0	5.0	10.0	0.6	25.4	N4	600
	10 15 22 33 47 68 100 150 220 330 470 680 1000 1500 2200 3300	(pF) tol. 10 ±10% 15 ±10% 22 ±10% 33 ±10% 47 ±10% 68 ±10% 100 ±10% 150 ±10% 220 ±10% 330 ±10% 470 ±10% 680 ±10% 1000 ±20% 1500 ±20% 2200 ±20% 3300 ±20%	(pF) tol. Customer arrivation of the street	(pF) tol. Customer at Number Mulatar att Number 10 ±10% DE11XRA100KN4AN01F 15 ±10% DE11XRA220KN4AN01F 22 ±10% DE11XRA330KN4AN01F 33 ±10% DE11XRA470KN4AN01F 47 ±10% DE11XRA680KN4AN01F 68 ±10% DE1B3RA101KN4AN01F 100 ±10% DE1B3RA151KN4AN01F 220 ±10% DE1B3RA331KN4AN01F 330 ±10% DE1B3RA331KN4AN01F 470 ±10% DE1B3RA681KN4AN01F 680 ±10% DE1B3RA681KN4AN01F 1000 ±20% DE1E3RA152MN4AN01F 2200 ±20% DE1E3RA222MN4AN01F 3300 ±20% DE1E3RA332MN4AN01F	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D 10 ±10% DE11XRA100KN4AN01F 7.0 15 ±10% DE11XRA150KN4AN01F 6.0 22 ±10% DE11XRA220KN4AN01F 7.0 33 ±10% DE11XRA330KN4AN01F 7.0 47 ±10% DE11XRA680KN4AN01F 8.0 100 ±10% DE1B3RA101KN4AN01F 6.0 150 ±10% DE1B3RA221KN4AN01F 6.0 220 ±10% DE1B3RA331KN4AN01F 6.0 470 ±10% DE1B3RA681KN4AN01F 7.0 680 ±10% DE1B3RA681KN4AN01F 7.0 1000 ±20% DE1E3RA152MN4AN01F 8.0 2200 ±20% DE1E3RA322MN4AN01F 9.0 3300 ±20% DE1E3RA332MN4AN01F 10.0	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D T 10 ±10% DE11XRA100KN4AN01F 7.0 4.0 15 ±10% DE11XRA150KN4AN01F 6.0 5.0 22 ±10% DE11XRA220KN4AN01F 6.0 4.0 33 ±10% DE11XRA330KN4AN01F 7.0 4.0 47 ±10% DE11XRA680KN4AN01F 7.0 4.0 68 ±10% DE1B3RA101KN4AN01F 6.0 4.0 100 ±10% DE1B3RA151KN4AN01F 7.0 4.0 220 ±10% DE1B3RA221KN4AN01F 6.0 5.0 330 ±10% DE1B3RA331KN4AN01F 6.0 5.0 470 ±10% DE1B3RA681KN4AN01F 7.0 4.0 1000 ±20% DE1E3RA102MN4AN01F 7.0 4.0 1500 ±20% DE1E3RA322MN4AN01F 9.0 4.0 2200 ±20% DE1E3RA332MN4AN01F 10.0 5.0	Cap. (pF) tol. Customer Part Number	Cap. (pF) tol. Customer Part Number	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number Dimension (mm) 10 ±10% D ±10% DE11XRA100KN4AN01F 7.0 4.0 10.0 0.6 25.4 15 ±10% DE11XRA150KN4AN01F 6.0 5.0 10.0 0.6 25.4 22 ±10% DE11XRA220KN4AN01F 6.0 4.0 10.0 0.6 25.4 33 ±10% DE11XRA330KN4AN01F 7.0 4.0 10.0 0.6 25.4 47 ±10% DE11XRA470KN4AN01F 7.0 4.0 10.0 0.6 25.4 68 ±10% DE11XRA680KN4AN01F 8.0 4.0 10.0 0.6 25.4 100 ±10% DE1B3RA101KN4AN01F 6.0 4.0 10.0 0.6 25.4 220 ±10% DE1B3RA221KN4AN01F 6.0 5.0 10.0 0.6 25.4 330 ±10% DE1B3RA331KN4AN01F 6.0 5.0 10.0 0.6 25.4 470 ±10% DE1B3RA681KN4AN01F 7.0 5.0 10.0 0.6 <td>Cap. (pF) Cap. tol. Customer Part Number Murata Part Number Dimension (mm) Lead code 10 ±10% DE11XRA100KN4AN01F 7.0 4.0 10.0 0.6 25.4 N4 15 ±10% 15 ±10% 16 0 5.0 10.0 0.6 25.4 N4 16 0 5.0 10.0 0.6 25.4 N4 16 0 5.0 10.0 0.6 25.4 N4 17 ±10% 18 ±10%<!--</td--></td>	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number Dimension (mm) Lead code 10 ±10% DE11XRA100KN4AN01F 7.0 4.0 10.0 0.6 25.4 N4 15 ±10% 15 ±10% 16 0 5.0 10.0 0.6 25.4 N4 16 0 5.0 10.0 0.6 25.4 N4 16 0 5.0 10.0 0.6 25.4 N4 17 ±10% 18 ±10% </td

Appearance and dimensions			
Appearance and dimensions	mathad		
To be easily legible. The capacitor should be a through a resistance of a patronge in the capacitance should be a through a resistor of 1 Mz. To be easily legible. The capacitor should not AC4 000V(r.m.s.)<0.50/60l lead wires for 60 s. Body insulation			
Dielectric strength Between lead wires No failure. The capacitor should not AC4 000V(r.m.s.)<50/60V lead wires for 60 s.	easured with slide calipers.		
Strength Wires Body No failure. First, the terminals of the connected together. Then, a metal foil should closely wrapped around the body of the capacitor to the distance of about 3 to 6mm from each terminal. Then, the capacitor shou container filled with metal diameter. Finally, AC4000V (r.m.s.) 60 s between the capacitor balls. 4 Insulation Resistance (I.R.) 10 000MΩ min. The insulation resistance DC500±50V within 60±5 The voltage should be approximately a resistor of 1MΩ The capacitance should 1±0.1kHz and AC1±0.2V 1±0.1kHz and AC1±0.2V The dissipation factor shalt 20°C with 1±0.1kHz and AC1±0.2V The dissipation factor shalt 20°C with 1±0.1kHz and AC1±0.2V The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance measure each step specified in Talental contents The capacitance T			
insulation Connected together. Then, a metal foil should closely wrapped around the body of the capacitor to the distance of about 3 to 6mm from each terminal. Then, the capacitor shou container filled with metal diameter. Finally, AC4000V (r.m.s.) 60 s between the capacitiballs. Insulation Resistance (I.R.) 10 000 MΩ min. The insulation resistance DC500±50V within 60±5 The voltage should be at through a resistor of 1 Ms.	be damaged when Iz> is applied between the		
DC500±50V within 60±5 The voltage should be ap through a resistor of 1Ms Capacitance Within specified tolerance. The capacitance should 1 1±0.1kHz and AC1±0.2V Dissipation Factor (D.F.) Capacitance The capacitance should 1 1±0.1kHz and AC1±0.2V The dissipation factor should 1 1±0.1kHz and AC1±0.2V The capacitance measure and 1 1±0.1kHz and AC1±0.1kHz	Metal About 1 3 to 6 mm 3 to 6 mm balls dd be inserted into a balls of about 1 mm 4 to 10 for lead wires and metal		
1±0.1kHz and AC1±0.2V Dissipation Factor (D.F.) 2.5% max. The dissipation factor shi at 20°C with 1±0.1kHz and The dissipation factor shi at 20°C with 1±0.1kHz and The dissipation factor shi at 20°C with 1±0.1kHz and The dissipation factor shi at 20°C with 1±0.1kHz and AC1±0.2V The dissipation factor shi at 20°C with 1±0.1kHz and AC1±0.2V The dissipation factor shi at 20°C with 1±0.1kHz and AC1±0.2V The dissipation factor shi at 20°C with 1±0.1kHz and AC1±0.2V The dissipation factor shi at 20°C with 1±0.1kHz and AC1±0.2V The dissipation factor shi at 20°C with 1±0.1kHz and AC1±0.2V The dissipation factor shi at 20°C with 1±0.1kHz and AC1±0.2V The dissipation factor shi at 20°C with 1±0.1kHz and AC1±0.2V The dissipation factor shi at 20°C with 1±0.1kHz and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The dissipation factor shi at 20°C with 1±0.1kHz and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capacitance measure each step specified in Tale and AC1±0.2V The capa	s of charging. pplied to the capacitor 2.		
7 Temperature characteristic Char. SL: +350 to -1000 ppm/°C (Temp. range: +20 to +85°C) The capacitance measure each step specified in Ta			
(Temp. range : +20 to +85°C) each step specified in Ta	n factor should be measured ±0.1kHz and AC1±0.2V(r.m.s.) max		
Char. E : Within +20/-55% (Temp. range : -25 to +85°C) Step 1 2 3	4 5		
Temp.(°C) 20±2 -25±2 20±2 8 Active flammability The cheese-cloth should not be The capacitors should be	85±2 20±2 individually wrapped in at		
discharges should be 5 s maintained for 2min after s1	tor should be subjected erval between successive. The UAc should be the last discharge.		
L1 to L4 : 1.5mH±20% 10 R : 100Ω±2%, Ct :	3μF±5% 10kV : Rated voltage r test A		
*2 "C" expresses nominal capacitance value(pF)			

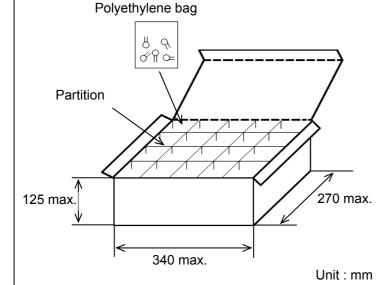
			Reference only			
No.	Item	L =	Specification	Test method		
9	Robustness of terminations	Tensile	Lead wire should not cut off. Capacitor should not be broken.	Fix the body of capacitor, a tensile weight gradually to each lead wire in the radial direction of		
		Bending		capacitor up to 10N and keep it for 10±1 s. With the termination in its normal position, the		
		Bending		capacitor is held by its body in such a manner that		
				the axis of the termination is vertical; a mass		
				applying a force of 5N is then suspended from the		
				end of the termination. The body of the capacitor is then inclined,		
				within a period of 2 to 3 s, through an angle of		
				approximately 90° in the vertical plane and then		
				returned to its initial position over the same period		
				of time; this operation constitutes one bend. One bend immediately followed by a second bend		
				in the opposite direction.		
10	Vibration	Appearance	No marked defect.	The capacitor should be firmly soldered to the		
	resistance	Capacitance	Within the specified tolerance.	supporting lead wire and vibration which is 10 to		
		D.F.	2.5% max.	55Hz in the vibration frequency range,1.5mm in total amplitude, and about 1min in the rate of		
				vibration change from 10Hz to 55Hz and back to		
				10Hz is applied for a total of 6 h; 2 h each in		
				3 mutually perpendicular directions.		
11	Solderability of lead	S	Lead wire should be soldered With uniformly coated on the	The lead wire of a capacitor should be dipped into a		
			axial direction over 3/4 of the	ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 s. In both cases the depth of		
			circumferential direction.	dipping is up to about 1.5 to 2.0mm from the root of		
				lead wires.		
				Temp. of solder:		
12	Soldering effect	Appearance	No marked defect.	245±5°C Lead Free Solder (Sn-3Ag-0.5Cu) Solder temperature: 350±10°C or 260±5°C		
12	(Non-preheat)	Capacitance	Within ±10%	Immersion time : 3.5±0.5 s		
	. ,	change		(In case of 260±5°C : 10±1 s)		
		I.R.	1 000MΩ min.	The depth of immersion is up to about		
		Dielectric strength	Per item 3	1.5 to 2.0mm from the root of lead wires.		
		Strength		Thermal Capacitor insulating		
				Mediating V 1.5		
				1 to 2.0mm		
				Molten solder		
				Pre-treatment : Capacitor should be stored at		
				125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed at		
				*1room condition for 24±2 h		
				before initial measurements.		
				(Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to		
				2 h at *1room condition.		
13	Soldering effect	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5°C		
	(On-preheat)	Capacitance	Within ±10%	for 60+0/-5 s. Then, as in figure, the lead wires should be		
		change I.R.	1 000MΩ min.	immersed solder of 260+0/-5°C up to 1.5 to 2.0mm		
		Dielectric	Per item 3	from the root of terminal for 7.5+0/-1 s.		
		strength		Thermal Capacitor		
				insulating		
				1.5 to 2.0mm		
				solder		
				Pre-treatment : Capacitor should be stored at		
				125±2°C for 1 h, and apply the		
				AC4000V(r.m.s.) 60s then placed at *1room condition for 24±2 h		
				before initial measurements.		
				(Do not apply to Char. SL)		
				Post-treatment: Capacitor should be stored for 1 to		
*1 "ro	om condition" Tomper	atura: 15 to 25°C	Relative humidity: 45 to 75% Atm	2 h at *1room condition.		
*2 "C"	*1 "room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa *2 "C" expresses nominal capacitance value(pF)					
ı	O Expresses nonlinar capacitance value(pr.)					

		Reference only			
Item	1	Specification	Test method		
Flame test		The capacitor flame discontinue as follows. Cycle Time 1 to 4 30 s max. 5 60 s max.	The capacitor should be subjected to applied flame for 15 s. and then removed for 15 s until 5 cycle.		
			Gas Burner		
Passive flammability		The burning time should not be exceeded the time 30 s. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Time of exposure to flame is for 30 s. Length of flame: 12±1mm Gas burner: Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas: Butane gas Purity 95% min. About 10mm thick board About 10mm thick board		
Humidity (Under steady state)	Appearance Capacitance change D.F. I.R. Dielectric strength	No marked defect. Char. SL: Within $\pm 5\%$ Char. B: Within $\pm 10\%$ Char. E: Within $\pm 15\%$ Char. SL: 2.5% max. Char. B, E: 5.0% max. $3000M\Omega$ min. Per item 3	Set the capacitor for 500±12 h at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to 2 h at *1room condition.		
Humidity loading	Appearance Capacitance change D.F. I.R. Dielectric strength	No marked defect. Char. SL: Within $\pm 5\%$ Char. B: Within $\pm 10\%$ Char. E: Within $\pm 15\%$ Char. SL: 2.5% max. Char. B, E: 5.0% max. $3000M\Omega$ min. Per item 3	Apply AC440V(r.m.s.) for 500±12 h at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to		
	Passive flammabilit Humidity (Under steady state)	Passive flammability Humidity (Under steady state) D.F. I.R. Dielectric strength Humidity loading Appearance Capacitance change D.F. I.R. Dielectric strength Appearance Capacitance change D.F. I.R. Dielectric	The capacitor flame discontinue as follows.		

*2 "C" expresses nominal capacitance value(pF)

No T	ltam		Reference only Specification			Toot ~	nethod		
No. 18	Life Item	Appearance	No marked defect.	Impulse	voltage		ieti ioti		
	-	Capacitance	Within ±20%	Each ind	dividual	capacitor s		ubjected to a	
		change					es. Then th	e capacitors	
		I.R.	3000MΩ min.	are appl	ned to li	ie test.			
		Dielectric strength	Per item 3	100	(%)	F	ront time (T1) =	.12#s=167T	
		Strength		90		`	ime to half-valu		
				50 30	<i>1</i> II				
				0 -	/I II				
					ŢĮ ŢĮ	,			
					·				
							in a circula	ting air oven	
				for a per			tainad at a	tomporativa	
							n is maintained at a temperature and relative humidity of 50% max		
				Throughout the test, the capac					
				to a AC550V(r.m.s.)<50/60Hz> alternating versions			ating voltage		
				of mains frequency, except that once each the voltage is increased to AC1 000V(r.m.s		each hour			
				the voita	age is ir	icreased to	AC 1 000 V (r.m.s.) for 0.1	
				Pre-trea	tment	: Capacito	r should be	stored at	
						125±2°C	for 1 h, an	d apply the	
								s then placed	
							ondition for itial measu		
							apply to Ch		
				Post-tre	atment	: Capacito	r should be	stored for 1 t	
10	Tanananatan	A	No weather defect	T1			oom condit		
19	Temperature and immersion cycle	Appearance Capacitance	No marked defect. Char. SL: Within ±5%					5 temperature	
	immersion cycle	change	Char. B: Within ±10%	cycles, then consecutively to 2 immersion cycles.					
			Char. E: Within ±20%	<temperature cycle=""></temperature>					
		D.F.	Char. SL : 2.5% max.	S	tep	Tempera	ture(°C)	Time	
			Char. B, E: 5.0% max.		1	-40+		30 min	
		I.R. Dielectric	3000MΩ min. Per item 3		2	Room +125		3 min 30 min	
		strength	Per item 3		3	Room		3 min	
		ou ongui		<u> </u>		1100111	•	ie:5 cycles	
				<lmmers< td=""><td>sion cvo</td><td>cle></td><td>Cycle IIII</td><td>ie.5 Cycles</td></lmmers<>	sion cvo	cle>	Cycle IIII	ie.5 Cycles	
							-	Immersion	
				Step	lempe	erature(°C)	Time	water	
				1	+6	5+5/-0	15 min	Clean	
								water Salt	
				2	(0±3	15 min	water	
						l	Cycle tim	e:2 cycles	
				Pre-trea	tment	: Capacito			
						AC4000		d apply the s then placed	
							ondition for		
							itial measu		
				Post tro	atmont	(Do not	apply to Ch	nar. SL) e stored for 4 t	
				1 081-116	alineil	24 h at *	1room cond	dition.	
¹¹ "roc	om condition" Temper	ature: 15 to 35°0	C, Relative humidity: 45 to 75%, Atm	nospheric p	ressure				
*1 "roc *2 "C"	om condition" Temper	ature: 15 to 35°0	C, Relative humidity: 45 to 75%, Atm			24 h at *	¹ room cond	dition.	

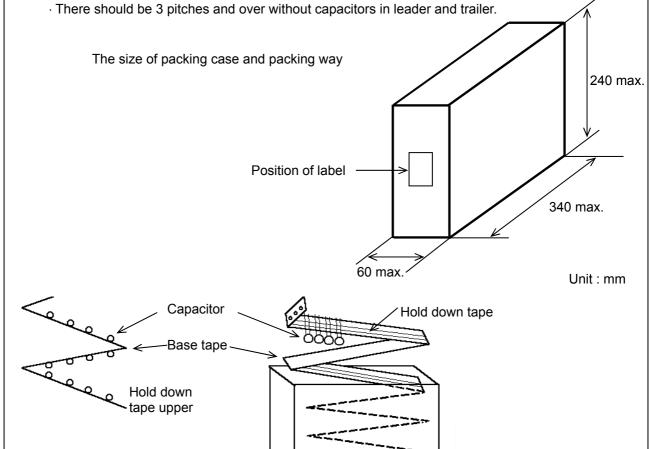
6.Packing specification


•Bulk type (Packing style code : B)

 $\begin{array}{c} *1 \\ \text{The number of packing = } \begin{array}{c} *2 \\ \text{Packing quantity} \times \end{array} \\ \end{array}$

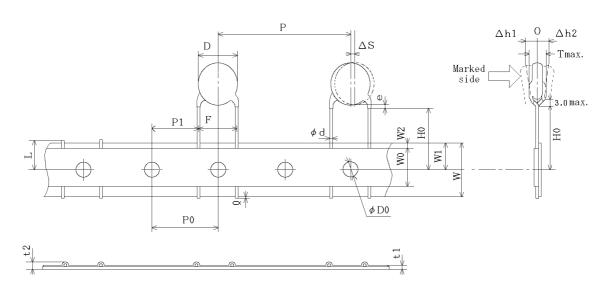
The size of packing case and packing way

*1 : Please refer to [Part number list].


*2 : Standard n = 20 (bag)

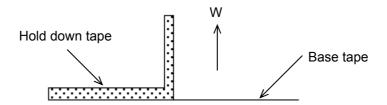
Note)

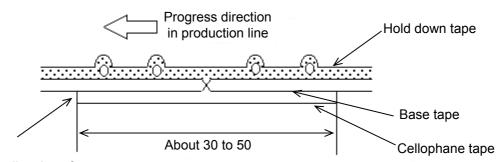
The outer package and the number of outer packing be changed by the order getting amount.


- •Ammo pack taping type (Packing style code : A)
 - · The tape with capacitors is packed zigzag into a case.
 - \cdot When body of the capacitor is piled on other body under it.

7. Taping specification

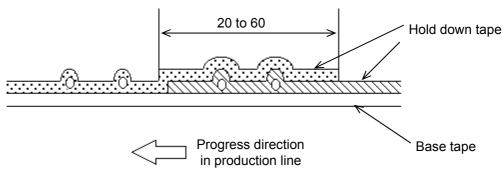
7-1. Dimension of capacitors on tape


Vertical crimp taping type < Lead code : N4 >
Pitch of component 25.4mm / Lead spacing 10.0mm


Item	Code	Dimensions	Remarks	
Pitch of component	Р	25.4±2.0		
Pitch of sprocket hole	P0	12.7±0.3		
Lead spacing	F	10.0±1.0		
Length from hole center to lead	P1	7.7±1.5		
Body diameter		Please refer to [Part number list].		
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .	
Carrier tape width	W	18.0±0.5		
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction	
Lead distance between reference and	H0	18.0± ₀ ^{2.0}		
bottom planes		16.0± ₀		
Protrusion length	Q	+0.5~-1.0		
Diameter of sprocket hole	φD0	4.0±0.1		
Lead diameter	φd	0.60±0.05		
Total tape thickness	t1	0.6±0.3		
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.	
Deviation across tape, front	∆h1	2.0 max.		
Deviation across tape, rear	∆h2			
Portion to cut in case of defect	L	11.0± _{1.0}		
Hold down tape width	W0	11.5 min.		
Hold down tape position	W2	1.5±1.5		
Coating extension on lead		Up to the end of crimp		
Body thickness	Т	Please refer to [Part number list].		

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape should be spliced by cellophane tape. (Total tape thickness should be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape should be spliced with overlapping. (Total tape thickness should be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape should be spliced with splicing tape.
- 3) Missing components
 - •There should be no consecutive missing of more than three components.
 - •The number of missing components should be not more than 0.5% of total components that should be present in a Ammo pack.

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine