imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

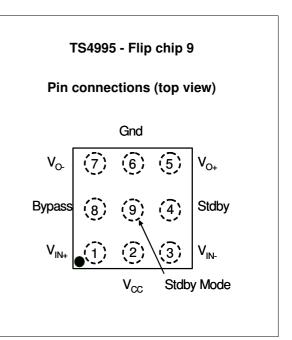
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TS4995

1.2 W fully differential audio power amplifier with selectable standby and 6 dB fixed gain

Features

- Differential inputs
- 90 dB PSRR @ 217 Hz with grounded inputs
- Operates from V_{CC} = 2.5 V to 5.5 V
- 1.2 W rail-to-rail output power @ V_{CC}=5 V, THD+N=1%, F=1 kHz, with an 8 Ω load
- 6 dB integrated fixed gain
- Ultra-low consumption in standby mode (10 nA)
- Selectable standby mode (active low or active high)
- Ultra-fast startup time: 10 ms typ. at V_{CC}=3.3 V
- Available in 9-bump flip chip (300 mm bump diameter)
- Ultra-low pop and click


Applications

- Mobile phones (cellular / cordless)
- PDAs
- Laptop / notebook computers
- Portable audio devices

Description

The TS4995 is an audio power amplifier capable of delivering 1.2 W of continuous RMS output power into an 8 Ω load at 5 V. Thanks to its differential inputs, it exhibits outstanding noise immunity.

An external standby mode control reduces the supply current to less than 10 nA. A STBY MODE pin allows the standby pin to be active **high** or **low**. An internal thermal shutdown protection is also provided, making the device capable of sustaining short-circuits.

The TS4995 features an internal fixed gain at 6dB which reduces the number of external components on the application board.

The device is equipped with common mode feedback circuitry allowing outputs to be always biased at $V_{CC}/2$ regardless of the input common mode voltage.

The TS4995 is specifically designed for high quality audio applications such as mobile phones and requires few external components.

Contents

1	Abso	Absolute maximum ratings and operating conditions			
2	Typical application schematics				
3	Elec	trical characteristics5			
4	Appl	ication information			
	4.1	Differential configuration principle 17			
	4.2	Common mode feedback loop limitations 17			
	4.3	Low frequency response 17			
	4.4	Power dissipation and efficiency 18			
	4.5	Decoupling of the circuit			
	4.6	Wake-up time t _{WU}			
	4.7	Shutdown time			
	4.8	Pop performance			
	4.9	Single-ended input configuration 21			
5	Pack	age information			
6	Orde	ering information			
7	Revision history				

TS4995

1 Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	V
V _{in}	Input voltage ⁽²⁾	GND to V _{CC}	V
T _{oper}	Operating free air temperature range	-40 to + 85	°C
T _{stg}	Storage temperature	-65 to +150	°C
Тj	Maximum junction temperature	150	°C
R _{thja}	Thermal resistance junction to ambient ⁽³⁾	200	°C/W
P _{diss}	Power dissipation	Internally limited	W
ESD	MM: machine model ⁽⁴⁾	200	V
LOD	HBM: human body model ⁽⁵⁾	1.5	kV
Latch-up	Latch-up immunity	200	mA
-	Lead temperature (soldering, 10sec)	260	°C

Table 1. Absolute maximum ratings (AMR)

1. All voltage values are measured with respect to the ground pin.

2. The magnitude of input signal must never exceed V_{CC} + 0.3 V / GND - 0.3 V.

3. The device is protected in case of over temperature by a thermal shutdown activated at 150° C.

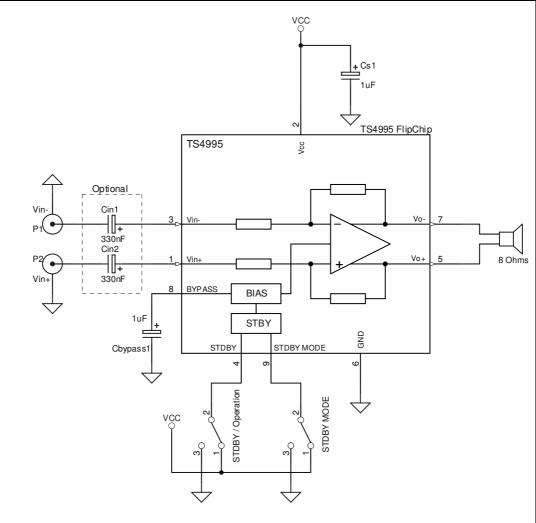
4. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.

5. Human body model: 100 pF discharged through a 1.5 k Ω resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.5 to 5.5	V
V _{SM}	Standby mode voltage input: Standby Active LOW Standby Active HIGH	V _{SM} =GND V _{SM} =V _{CC}	V
V _{STBY}	Standby voltage input: Device ON (V_{SM} =GND) or Device OFF (V_{SM} = V_{CC}) Device OFF (V_{SM} =GND) or Device ON (V_{SM} = V_{CC})	$1.5 \le V_{STBY} \le V_{CC}$ GND $\le V_{STBY} \le 0.4$ ⁽¹⁾	V
T _{SD}	Thermal shutdown temperature	150	°C
RL	Load resistor	≥ 4	Ω
R _{thja}	Thermal resistance junction to ambient	100	°C/W

1. The minimum current consumption (I_{STBY}) is guaranteed when $V_{STB Y}$ = GND or V_{CC} (the supply rails) for the whole temperature range.



2 Typical application schematics

Table 3. External component descriptions

Component	Functional description			
Cs	Supply bypass capacitor that provides power supply filtering.			
Cb	Bypass capacitor that provides half supply filtering.			
$C_{in} \qquad \begin{array}{c} \text{Optional input capacitor that forms a high pass filter together with } R_{in}.\\ (F_{cl} = 1 / (2 \times \pi \times R_{in} \times C_{in}) \end{array}$				

3 Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CC}	Supply current	No input signal, no load		4	7	mA
I _{STBY}	Standby current	No input signal, $V_{STBY} = V_{SM} = GND$, $R_L = 8\Omega$ No input signal, $V_{STBY} = V_{SM} = V_{CC}$, $R_L = 8\Omega$		10	1000	nA
V _{oo}	Differential output offset voltage	No input signal, $R_L = 8\Omega$		0.1	10	mV
V _{IC}	Input common mode voltage		0		4.5	V
Po	Output power	THD = 1% Max, F= 1kHz, $R_L = 8\Omega$	0.8	1.2		W
THD + N	Total harmonic distortion + noise	$P_0 = 850 \text{mW} \text{ rms}, 20 \text{Hz} \le \text{F} \le 20 \text{kHz}, \text{R}_L = 8\Omega$		0.5		%
PSRR _{IG}	Power supply rejection ratio with inputs grounded ⁽¹⁾	F = 217Hz, R = 8 Ω , C _{in} = 4.7 μ F, C _b =1 μ F V _{ripple} = 200mV _{PP}	75 ⁽²⁾	90		dB
CMRR	Common mode rejection ratio	$F = 217Hz, R_L = 8\Omega, C_{in} = 4.7\mu F, C_b = 1\mu F$ $V_{ic} = 200mV_{PP}$		60		dB
SNR	Signal-to-noise ratio	A-weighted filter R _L = 8Ω, THD +N < 0.7%, 20Hz ≤F ≤20kHz		100		dB
GBP	Gain bandwidth product	$R_L = 8\Omega$		2		MHz
V _N	Output voltage noise	20Hz \leq F \leq 20kHz, R _L = 8 Ω Unweighted A-weighted Unweighted, standby A-weighted, standby		11 7 3.5 1.5		μV _{RMS}
Z _{in}	Input impedance		15	20	25	kΩ
-	Gain mismatch		5.5	6	6.5	dB
t _{WU}	Wake-up time ⁽³⁾	C _b =1µF		15		ms

Table 4. $V_{CC} = +5V$, GND = 0V, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

1. Dynamic measurements - $20 \log(rms(V_{out})/rms(V_{ripple}))$. V_{ripple} is the super-imposed sinus signal relative to V_{CC}.

2. Guaranteed by design and evaluation.

3. Transition time from standby mode to fully operational amplifier.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CC}	Supply current	No input signal, no load		3	7	mA
I _{STBY}	Standby current	No input signal, $V_{STBY} = V_{SM} = GND$, $R_L = 8\Omega$ No input signal, $V_{STBY} = V_{SM} = V_{CC}$, $R_L = 8\Omega$		10	1000	nA
	Differential output offset voltage	No input signal, $R_L = 8\Omega$		0.1	10	mV
V _{IC}	Input common mode voltage		0.4		2.3	V
Po	Output power	THD = 1% max, F= 1kHz, $R_L = 8\Omega$	300	500		mW
THD + N	Total harmonic distortion + noise	$P_0 = 300 \text{mW} \text{ rms}, 20 \text{Hz} \le \text{F} \le 20 \text{kHz}, \text{R}_L = 8\Omega$		0.5		%
	Power supply rejection ratio with inputs grounded ⁽¹⁾	F = 217Hz, R = 8 Ω , C _{in} = 4.7 μ F, C _b =1 μ F V _{ripple} = 200mV _{PP}	75 ⁽²⁾	90		dB
CMRR	Common mode rejection ratio	$F = 217Hz, R_L = 8\Omega, C_{in} = 4.7\mu F, C_b = 1\mu F$ $V_{ic} = 200mV_{PP}$		60		dB
SNR	Signal-to-noise ratio	A-weighted filter R _L = 8Ω, THD +N < 0.7%, 20Hz ≤F ≤20kHz		100		dB
GBP	Gain bandwidth product	$R_L = 8\Omega$		2		MHz
V _N	Output voltage noise	20Hz \leq F \leq 20kHz, R _L = 8 Ω Unweighted A weighted Unweighted, standby A weighted, standby		11 7 3.5 1.5		μV _{RMS}
Z _{in}	Input impedance		15	20	25	kΩ
-	Gain mismatch		5.5	6	6.5	dB
t _{WU}	Wake-up time ⁽³⁾	C _b =1µF		10		ms

Table 5. $V_{CC} = +3.3V$ (all electrical values are guaranteed with correlation measurements at
2.6V and 5V), GND = 0V, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

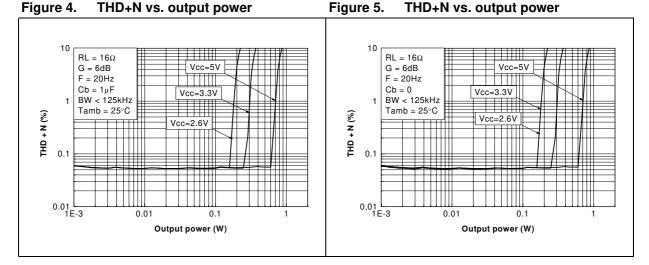
1. Dynamic measurements - $20*\log(rms(V_{out})/rms(V_{ripple}))$. V_{ripple} is the super-imposed sinus signal relative to V_{CC} .

2. Guaranteed by design and evaluation.

3. Transition time from standby mode to fully operational amplifier.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CC}	Supply current	No input signal, no load		3	7	mA
I _{STBY}	Standby current	No input signal, $V_{STBY} = V_{SM} = GND$, $R_L = 8\Omega$ No input signal, $V_{STBY} = V_{SM} = V_{CC}$, $R_L = 8\Omega$		10	1000	nA
V _{oo}	Differential output offset voltage	No input signal, $R_L = 8\Omega$		0.1	10	mV
V _{IC}	Input common mode voltage		0.6		1.5	V
Po	Output power	THD = 1% max, F= 1kHz, $R_L = 8\Omega$	200	300		mW
THD + N	Total harmonic distortion + noise	Po = 225mW rms, 20Hz \leq F \leq 20kHz, R _L = 8 Ω		0.5		%
PSRR _{IG}	Power supply rejection ratio with inputs grounded ⁽¹⁾	$\label{eq:constraint} \begin{array}{l} F = 217 \text{Hz}, \ R = 8 \Omega, C_{\text{in}} = 4.7 \mu \text{F}, \ C_{\text{b}} = 1 \mu \text{F} \\ V_{\text{ripple}} = 200 \text{mV}_{\text{PP}} \end{array}$	75 ⁽²⁾	90		dB
CMRR	Common mode rejection ratio	$eq:rescaled_$		60		dB
SNR	Signal-to-noise ratio	A-weighted filter $R_L = 8\Omega$, THD +N < 0.7%, 20Hz \leq F \leq 20kHz		100		dB
GBP	Gain bandwidth product	$R_L = 8\Omega$		2		MHz
V _N	Output voltage noise	20Hz ≤F ≤20kHz, R_L = 8 Ω Unweighted A weighted Unweighted, standby A weighted, standby		11 7 3.5 1.5		μV _{RMS}
Z _{in}	Input impedance		15	20	25	kΩ
-	Gain mismatch		5.5	6	6.5	dB
t _{WU}	Wake-up time ⁽³⁾	C _b =1µF		10		ms

Table 6. $V_{CC} = +2.6V$, GND = 0V, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)


1. Dynamic measurements - $20*\log(rms(V_{out})/rms(V_{ripple}))$. V_{ripple} is the super-imposed sinus signal relative to V_{CC} .

2. Guaranteed by design and evaluation.

3. Transition time from standby mode to fully operational amplifier.

THD+N vs. output power Figure 3. THD+N vs. output power Figure 2. 10 10 RL = 8Ω RL = 8Ω Vcc=5V Vcc=5V G = 6dB F = 20Hz G = 6dB F = 20Hz Cb = 0 BW < 125kHz Cb = 1µF BW < 125kHz Vcc=3.3V Vcc=3.3V 1 1 Tamb = 25°C $Tamb = 25^{\circ}C$ THD + N (%) THD + N (%) Vcc=2.6V Vcc=2.6V ₩ 0.1 0 1 0.01 L 1E-3 0.01 L 1E-3 0.01 0.1 1 0.01 0.1 1 Output power (W) Output power (W)

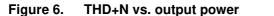
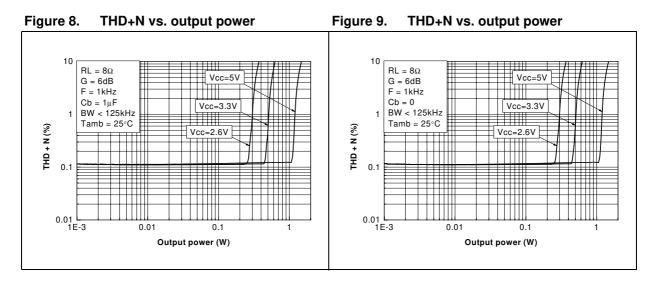
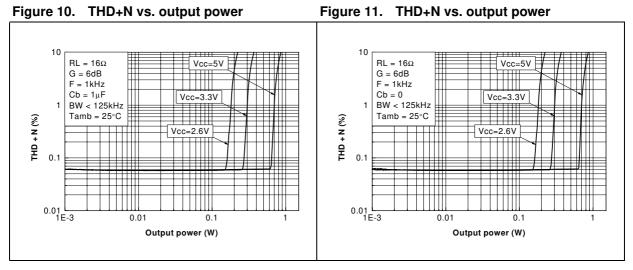
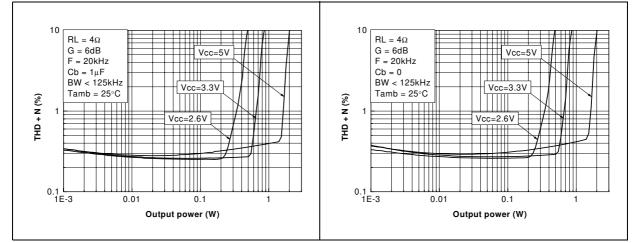
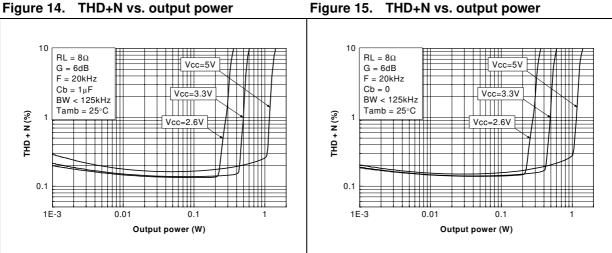
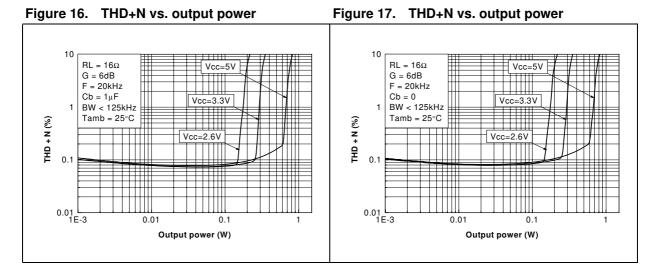
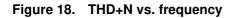



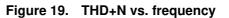
Figure 7. THD+N vs. output power

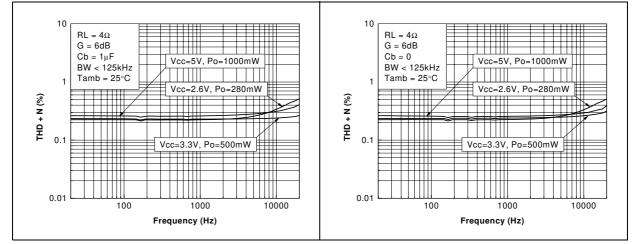
57

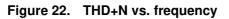







Figure 13. THD+N vs. output power




9/26



10 10 RL = 8Ω RL = 8Ω G = 6 dBG = 6 dB $Cb = 1\mu F$ Cb = 0BW < 125kHz BW < 125 kHzVcc=2.6V, Po=225mW Tamb = 25CTamb = 25C1 Vcc=2.6V, Po=225mW THD + N (%) THD + N (%) Vcc=5V, Po=850mW Vcc=5V, Po=850mW 1 0.1 0.1 Vcc=3.3V, Po=300mW Vcc=3.3V, Po=300mW 0.01 0.01 100 100 1000 10000 1000 10000 Frequency (Hz) Frequency (Hz)

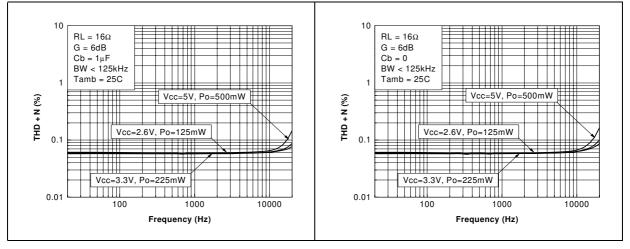
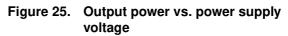



Figure 24. Output power vs. power supply voltage

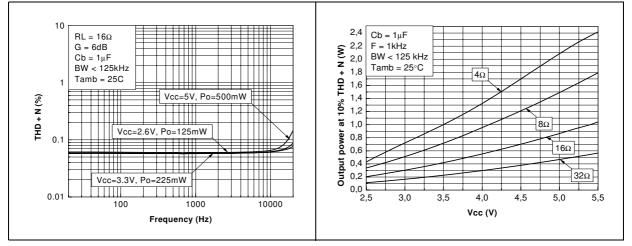


Figure 21. THD+N vs. frequency

Figure 23. THD+N vs. frequency

Figure 26. Output power vs. power supply voltage

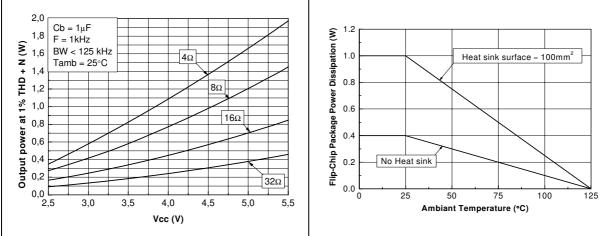


Figure 27. Power derating curves

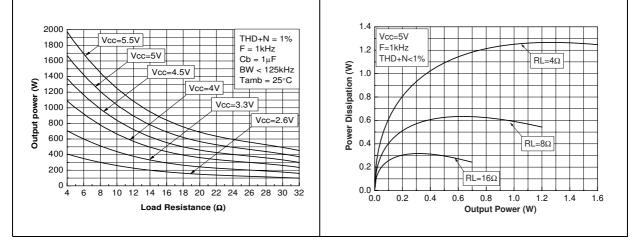


Figure 30. Power dissipation vs. output power Figure 31. Power dissipation vs. output power

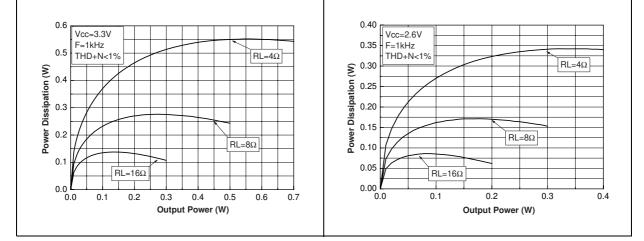
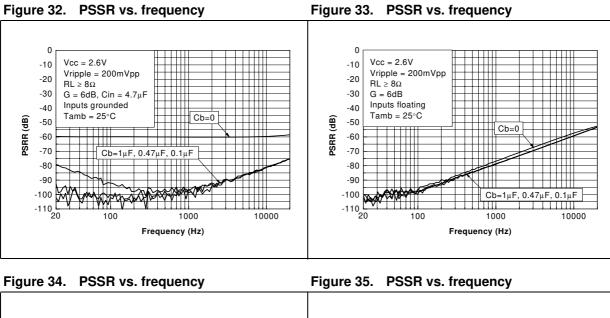



Figure 28. Output power vs. load resistance

12/26

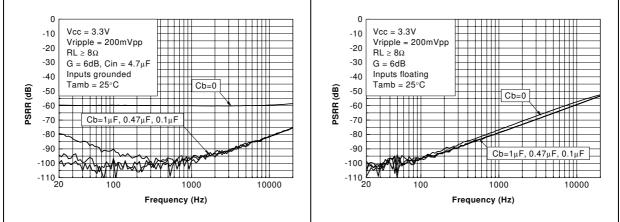
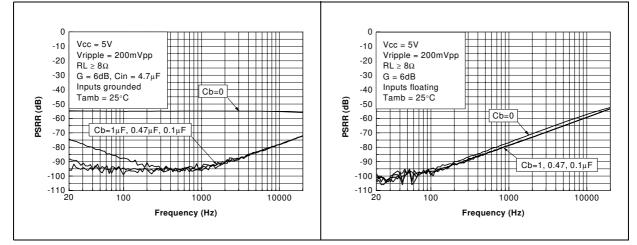



Figure 37. PSSR vs. frequency

13/26

Figure 38. PSSR vs. common mode input voltage

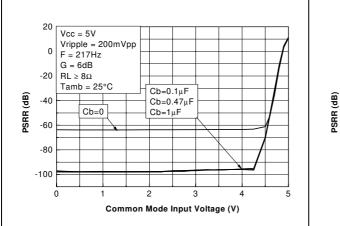
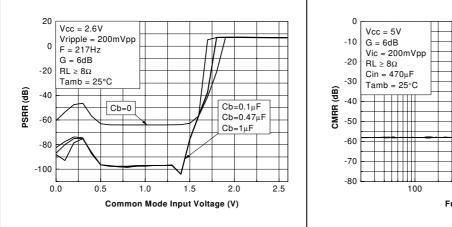



Figure 40. PSSR vs. common mode input voltage

-10

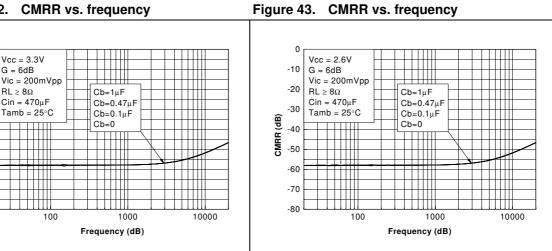
-20

-30

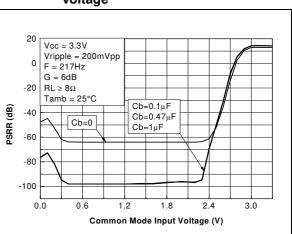
-40

-50

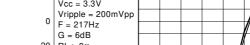
-60


-70

-80


CMRR (dB)

G = 6 dB


 $RL\geq 8\Omega$

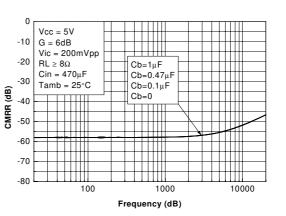


Figure 39. PSSR vs. common mode input voltage

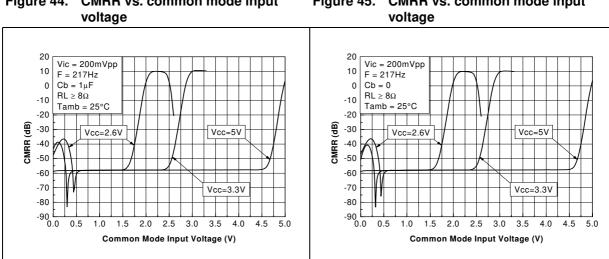


Figure 46. Current consumption vs. power supply voltage

5.0

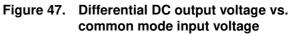
4.5

4.0 (mA)

3.5

2.5

2.0


1.0 0.5

0.0

t consumption 3.0

Current 1.5

5

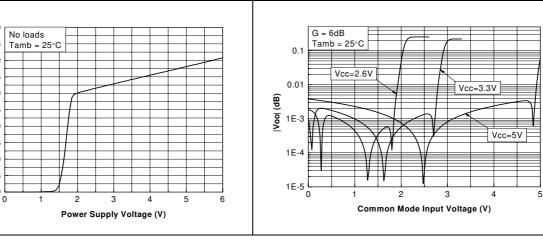


Figure 48. Current consumption vs. standby voltage

Figure 49. Current consumption vs. standby voltage

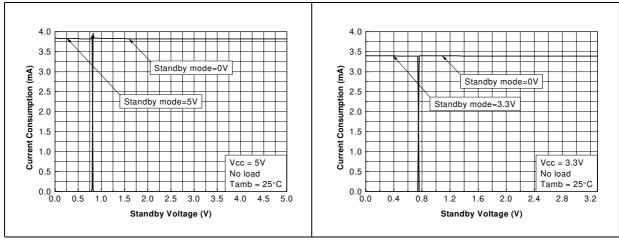
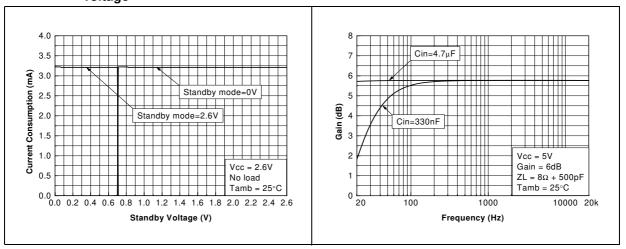



Figure 44. CMRR vs. common mode input

Figure 50. Current consumption vs. standby voltage

Figure 52. Frequency response

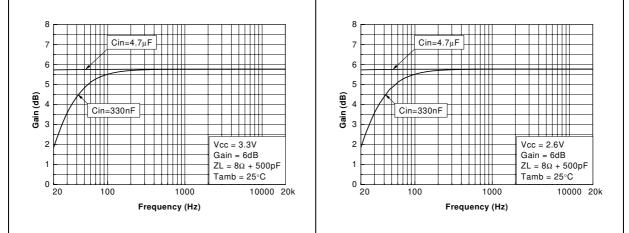
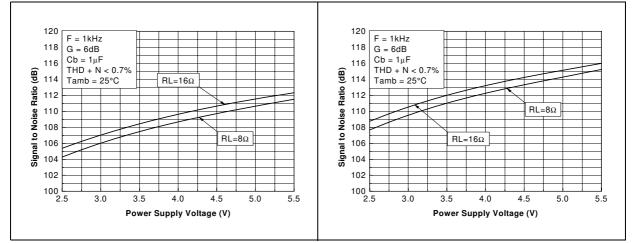



Figure 54. SNR vs. power supply voltage with Figure 55. SNR vs. power supply voltage with unweighted filter

A-weighted filter

TS4995

4 Application information

4.1 Differential configuration principle

The TS4995 is a monolithic full-differential input/ output power amplifier with fixed +6 dB gain. The TS4995 also includes a common mode feedback loop that controls the output bias value to average it at $V_{CC}/2$ for any DC common mode input voltage. This allows maximum output voltage swing, and therefore, to maximize the output power. Moreover, as the load is connected differentially instead of single-ended, output power is four times higher for the same power supply voltage.

The advantages of a full-differential amplifier are:

- Very high PSRR (power supply rejection ratio)
- High common mode noise rejection
- Virtually no pop and click without additional circuitry, giving a faster start-up time compared to conventional single-ended input amplifiers
- Easier interfacing with differential output audio DAC
- No input coupling capacitors required due to common mode feedback loop

In theory, the filtering of the internal bias by an external bypass capacitor is not necessary. However, to reach maximum performance in all tolerance situations, it is recommended to keep this option.

4.2 Common mode feedback loop limitations

As explained previously, the common mode feedback loop allows the output DC bias voltage to be averaged at $V_{CC}/2$ for any DC common mode bias input voltage.

Due to the V_{IC} limitation of the input stage (see *Table 4 on page 5*), the common mode feedback loop can fulfil its role only within the defined range.

4.3 Low frequency response

The input coupling capacitors block the DC part of the input signal at the amplifier inputs. C_{in} and R_{in} form a first-order high pass filter with -3 dB cut-off frequency.

$$F_{CL} = \frac{1}{2 \!\times\! \pi \!\times\! R_{in} \!\times\! C_{in}} \quad (Hz) \label{eq:FCL}$$

Note: The input impedance for the TS4995 is typically $20k\Omega$ and there is tolerance around this value.

From *Figure 56*, you can easily establish the C_{in} value required for a -3 dB cut-off frequency.

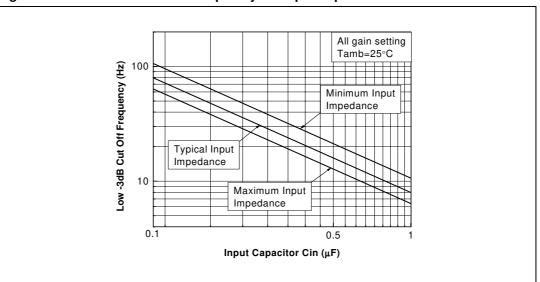


Figure 56. -3 dB lower cut-off frequency vs. input capacitance

4.4 **Power dissipation and efficiency**

Assumptions:

- Load voltage and current are sinusoidal (V_{out} and I_{out})
- Supply voltage is a pure DC source (V_{CC})

The output voltage is:

$$V_{out} = V_{peak} \sin \omega t (V)$$

and

$$I_{out} = \frac{V_{out}}{R_L} (A)$$

and

$$P_{out} = \frac{V_{peak}^2}{2R_L} (W)$$

Therefore, the average current delivered by the supply voltage is:

Equation 1

$$ICC_{AVG} = 2 \frac{V_{peak}}{\pi R_{L}} (A)$$

The power delivered by the supply voltage is:

Equation 2

$$\mathsf{P}_{supply} = \mathsf{V}_{CC} \; \mathsf{I}_{ccAVG} \; (\mathsf{W})$$

Note:

Therefore, the power dissipated by each amplifier is:

 $P_{diss} = P_{supply} - P_{out} (W)$

$$\mathsf{P}_{\mathsf{diss}} = \frac{2\sqrt{2}\mathsf{V}_{\mathsf{CC}}}{\pi\sqrt{\mathsf{R}_{\mathsf{L}}}}\sqrt{\mathsf{P}_{\mathsf{out}}} - \mathsf{P}_{\mathsf{out}}$$

and the maximum value is obtained when:

$$\frac{\partial \mathsf{Pdiss}}{\partial \mathsf{P}_{\mathsf{out}}} = 0$$

and its value is:

Equation 3

$$Pdissmax = \frac{2 Vcc^2}{\pi^2 R_L} (W)$$

This maximum value is only dependent on the power supply voltage and load values.

The **efficiency** is the ratio between the output power and the power supply:

Equation 4

$$\eta = \frac{\mathsf{P}_{out}}{\mathsf{P}_{supply}} = \frac{\pi \mathsf{V}_{peak}}{4\mathsf{V}_{CC}}$$

The maximum theoretical value is reached when $V_{peak} = V_{CC}$, so:

$$\eta = \frac{\pi}{4} = 78.5\%$$

The maximum die temperature allowable for the TS4995 is 125° C. However, in case of overheating, a thermal shutdown set to 150° C, puts the TS4995 in standby until the temperature of the die is reduced by about 5° C.

To calculate the maximum ambient temperature T_{amb} allowable, you need to know:

- The power supply voltage, V_{CC}
- The load resistor value, R_L
- The package type, R_{thia}

Example: V_{CC} =5 V, R_L =8 Ω , $R_{thja-flipchip}$ = 100° C/W (100 mm² copper heatsink).

Using the power dissipation formula given above in *Equation 3*, this gives a result of:

 $P_{dissmax} = 633 mW$

Tamb is calculated as follows:

Equation 5

$$T_{amb} = 125^{\circ} C - R_{thja} \times P_{dissmax}$$

Therefore, the maximum allowable value for T_{amb} is:

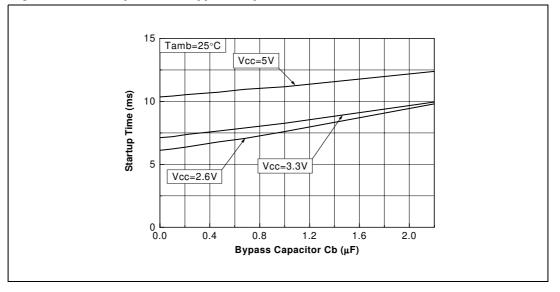
 $T_{amb} = 125-100 \times 0.633 = 61.7^{\circ} C$

4.5 Decoupling of the circuit

Two capacitors are needed to correctly bypass the TS4995: a power supply bypass capacitor $C_{\rm S}$ and a bias voltage bypass capacitor $C_{\rm b}.$

The C_S capacitor has particular influence on the THD+N at high frequencies (above 7 kHz) and an indirect influence on power supply disturbances. With a value for C_S of 1 μ F, one can expect THD+N performance similar to that shown in the datasheet.

In the high frequency region, if C_S is lower than 1 μ F, then THD+N increases and disturbances on the power supply rail are less filtered.


On the other hand, if C_S is greater than 1 $\mu\text{F},$ then those disturbances on the power supply rail are more filtered.

The C_b capacitor has an influence on the THD+N at lower frequencies, but also impacts PSRR performance (with grounded input and in the lower frequency region).

4.6 Wake-up time t_{WU}

When the standby is released to put the device ON, the bypass capacitor C_b is not charged immediately. Because C_b is directly linked to the bias of the amplifier, the bias will not work properly until the C_b voltage is correct. The time to reach this voltage is called the wake-up time or t_{WU} and is specified in *Table 4 on page 5*, with $C_b=1 \ \mu\text{F}$. During the wake-up phase, the TS4995 gain is close to zero. After the wake-up time, the gain is released and set to its nominal value.

If C_b has a value different from 1 μ F, then refer to the graph in *Figure 57* to establish the corresponding wake-up time.

4.7 Shutdown time

When the standby command is set, the time required to put the two output stages in high impedance and the internal circuitry in shutdown mode is a few microseconds.

Note: In shutdown mode, the Bypass pin and V_{in+} , V_{in-} pins are shorted to ground by internal switches. This allows a quick discharge of C_b and C_{in-} .

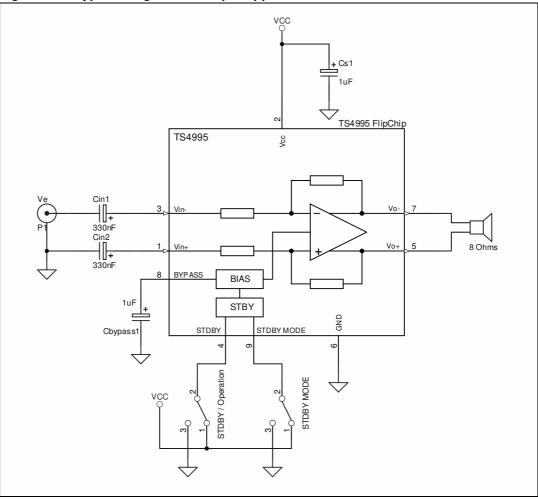
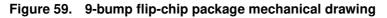
4.8 **Pop performance**

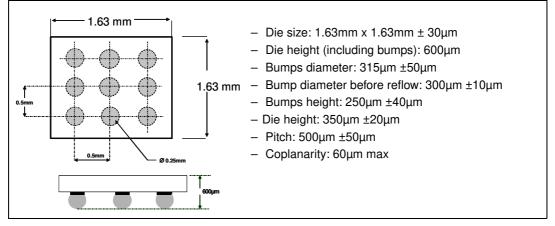
Due to its fully differential structure, the pop performance of the TS4995 is close to perfect. However, due to mismatching between internal resistors R_{in} , R_{feed} , and external input capacitors C_{in} , some noise might remain at startup. To eliminate the effect of mismatched components, the TS4995 includes pop reduction circuitry. With this circuitry, the TS4995 is close to zero pop for all possible common applications.

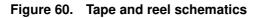
In addition, when the TS4995 is in standby mode, due to the high impedance output stage in this configuration, no pop is heard.

4.9 Single-ended input configuration

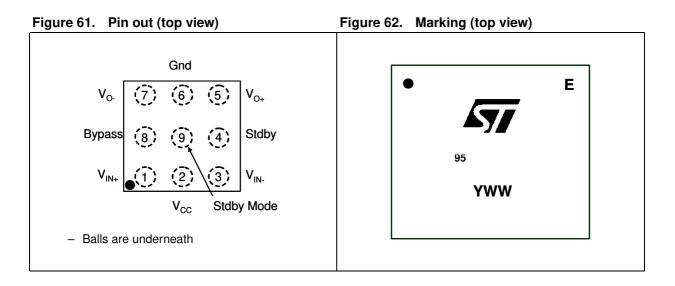
It is possible to use the TS4995 in a single-ended input configuration. However, input coupling capacitors are needed in this configuration. The schematic diagram in *Figure 58* shows an example of this configuration.


Figure 58. Typical single-ended input application




5 Package information


To meet environmental requirements, STMicroelectronics offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: <u>www.st.com</u>.

6 Ordering information

Table 7. Order code

Order code	Temperature Package		Packing	Marking	
TS4995EIJT	-40° C to +85° C	Lead free flip chip 9	Tape & reel	95	

7 Revision history

Table 8.Document revision history

Date	Revision	Changes
1-Jun-2006	1	Final datasheet.
25-Oct-2006	2	Additional information for 4Ω load.
25-Mar-2008	3	Modified <i>Figure 60: Tape and reel schematics</i> to correct die orientation.

