
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ATmega128RFA1 Dev Board Hookup Guide
CONTRIBUTORS: JIMB0

Overview

The ATmega128RFA1 is a really nifty system-on-chip, which combines an

ATmega128 microcontroller with a 2.4GHz, 802.15.4 RF transceiver. It’s

what you might get if you smashed a wireless module, like Zigbee or

Synapse, into an AVR microcontroller (like those on many Arduinos). We at

SparkFun thought the chip was neat enough to warrant its own

development board.

This tutorial is focused on documenting the schematic and hardware layout

of the development board. It’ll also explain how to program the board via

the pre-programmed serial bootloader, from the comfy confines of the

Arduino IDE. We’ll finish off the tutorial with some example code, detailing

the basics of the ATmega128RFA1’s RF communication capabilities.

ATmega128RFA1 Devlopment Board Features:

� Arduino R3 Form Factor (Arduino shield compatible)

� On-Board Chip Antenna

� 33 Digital I/O’s

◦ SPI, TWI (I C), and UART hardware interfaces

� 8 Analog Inputs (10-bit resolution)

� 16 MHz operating frequency

� ATmegaBOOT bootloader pre-programmed (making it

programmable with an FTDI Basic and the Arduino IDE)

� On-board 3.3V regulator

� Other standard ATmega128RFA1 features:

◦ 6 Timers

◦ 128 KB Flash

2

Page 1 of 20

ATmega128RFA1 Development Board Hookup Guide

SparkFun Wish List

◦ 16 KB SRAM

◦ 4096 Bytes EEPROM

◦ 2.4 GHz RF Transciever

Required Materials

In this tutorial, we’ll cover the basics of getting the ATmega128RFA1

Development Board up-and-running. There will be a focus on programming

the board via the bootloader (in the Arduino IDE), using an FTDI Board. To

follow along, you’ll need these materials:

Break Away Male Headers - Right Angle
PRT-00553

A row of right angle male headers - break to fit. 40 pins that can be cu…

Break Away Headers - Straight
PRT-00116

A row of headers - break to fit. 40 pins that can be cut to any size. Us…

Female Headers
PRT-00115

Single row of 40-holes, female header. Can be cut to size with a pair …

SparkFun FTDI Basic Breakout - 3.3V
DEV-09873

This is the newest revision of our [FTDI Basic](http://www.sparkfun.co…

DC Barrel Power Jack/Connector
PRT-00119

DC power jack/connector. This is a common barrel-type power jack fo…

Male headers are useful for soldering into programming headers, while

female headers help to add shield compatibility. A pair of

ATmega128RFA1s – either the SparkFun board, or another development

platform – are required to test communication between the chips.

Required Tools

This assembly will require some simple soldering, so you’ll need a soldering

iron and a bit of solder. If you’ve never soldered before, check out our how

to solder guide.

Suggested Reading

Page 2 of 20

This tutorial assumes some previous electronics knowledge to get along. If

you’re not familiar with these concepts, consider checking out our tutorials

on the subject!

� What is an Arduino - While not directly using an Arduino platform,

this tutorial will make use of the IDE.

� Installing FTDI Drivers - If you’ve never used an FTDI cable or board

before, you’ll need to install drivers.

� Serial Communication - We’ll be using the ATmega128RFA1 boards

as wireless bridges between two serial devices.

� How to Use GitHub - All of the source code and design files are

hosted on Github.

About the ATmega128RFA1

The ATmega128RFA1 is a portmanteau of sorts – two separate

components combined to form one device. Half microcontroller, half RF

transceiver.

ATmega128

Half of the ATmega128RFA1 is an ATmega128, an old mainstay of Atmel

AVR microcontrollers. The 128 is an 8-bit microcontroller with 128kB of

programmable flash, an abundance of I/O pins, an analog-to-digital

converter, and much more.

Low-Power 2.4GHz Transceiver

The other half of the ATmega128RFA1 – the “RFA1” part – is what really

makes it unique. That’s because built into the chip is a 2.4GHz wireless

radio transceiver. So one ATmega128RFA1 could talk to another up to

about 75m away, at speeds of up to 2 Mbps.

Because it has built-in hardware support for IEEE 802.15.4, the chip can

also talk to RF modules, like ZigBee’s, Synapse modules, and

IPv6/6LoWPAN devices. 802.15.4 defines a personal area network (PAN)

of wireless devices. It’s very similar to the Bluetooth standard (802.15.1) in

that way. Unlike Bluetooth though, which can send data at around 3Mbps,

802.15.4 can’t achieve as high a data rate, maxing out at around 250kbps.

Still, 802.15.4 is an excellent, cost-sensitive choice when you don’t need to

quickly send huge chunks of wireless data.

In comparison to the other wireless standards and protocols out there, the

ATmega128RFA1’s transceiver is geared towards low-level, low-power,

low-speed, low-data rate, low-range communication between devices. This

isn’t like WiFi, where we need to stream video, while downloading pictures

of cats, and syncing our dropboxes. 802.15.4 is for sending data between

embedded devices. Maybe you want to periodically transmit data from a

Page 3 of 20

weather station to a display in your house, or turn your coffee machine on

from the bed. That’s the type of situation 802.15.4 works best in! That

sounds like a job for the ATmega128RFA1 Dev Board!

Schematic and Hardware

The development board surrounds the ATmega128RFA1 with all of the

supporting circuitry one might need to get up-and-running with the chip.

Click the image to get a bigger view of the schematic. Or you can download

a PDF of it.

Power Input

The power input section of the circuit includes a voltage regulator, which

feeds 3.3V to the rest of the circuit. The following footprints are provided for

power input:

� DC Barrel Jack

� JST connector (2-Pin, Right-Angle)

� 3.5mm 2-Pin Screw Terminal

� Standard 0.1"-spaced header

The slide-switch on the side of the board controls the flow of the input

power sources above to the regulator.

The 3.3V and GND pins are also broken out along the side of the board.

These nets are unregulated, but can be used to supply a clean, regulated

3.3V voltage source to the board.

ATmega128RFA1 Circuitry

The ATmega128RFA1 is supported by a 16MHz crystal and an assortment

of decoupling caps. The RF section of the board has a crystal of its own, as

well as a chip antenna and circuitry to support the RF interface. Try to

avoid placing components near the antenna, as they may interfere with

signal strength.

Page 4 of 20

All digital I/O pins of the ATmega128RFA1 are broken out in some form or

another. Two on-board LEDs are connected to the MCU’s pins B6 and B7.

The remaining I/O’s are broken out to the outer headers of the board. The

eight analog inputs on port F are available in the same place you’d expect

to find an Arduino’s analog pins. Key digital pins, like the hardware SPI, I C,

and UART pins, are broken out to the same locations found on Arduinos as

well.

Programming Headers

There are two programming headers on the board. One 6-pin (2x3) ICSP

header, which can be used to program the chip using a standard AVR in-

circuit programmer. A 6-pin serial header near the power inputs can also be

used to program the chip (assuming the bootloader’s still on there); this

header should match up to common FTDI headers and cables (just make

sure they’re the 3.3V variety).

Powering the Board

There are a variety of ways to power the development board. Input jacks

are broken out for barrel jack, JST, screw, and 0.1" connectors. Whichever

voltage supply you choose to power the board, it should be between 4.5

and 15V. Each of these power sources is fed into the voltage regulator,

which drops the voltage down to 3.3V.

If you’re using the barrel jack, a 5V or 9V wall-wart is a good choice for

power source.

Voltage can be fed directly to the chip, using the headers labeled “3.3V” –

just make sure the voltage doesn’t exceed 3.6V. The ATmega128RFA1 can

only operate at voltages between 1.8 and 3.6V.

One of the ATmega128RFA1’s key features is its low power consumption.

Sending or receiving RF data should only require 16 to 18mA of current.

Idling, the chip should only require about 1-4.5mA. Each of the output pins

can source/sink between 2-8mA.

Check out the datasheet for more electrical specs.

2

Page 5 of 20

How To Program

Below, we’ll explain the two interfaces available for programming the

ATmega128RFA1. There is a serial bootloader pre-programmed onto the

board, or you can use the standard AVR 6-pin ISP header. In either case,

you’ll probably need to solder headers onto the programming port pins to

connect a programmer.

ATmegaBOOT Serial Bootloader

Bootloaders are small programs loaded onto a chip, which make uploading

compiled code easier. Instead of requiring a specialized (often expensive)

piece of hardware – a programmer – a more generalized tool can be used

to upload to the board.

The ATmega128RFA1 Development Board ships with a pre-programmed

serial bootloader. Either an (archaic) serial port can be used to upload code

to the board, or a more common USB-to-Serial converter can be used. We

recommend the 3.3V FTDI Basic board, which interfaces directly to the

6-pin serial header of the dev board.

A 3.3V FTDI Basic Board connected to the development board’s serial

programming header. Right-angle headers were previously soldered to the

header. As a bonus, the FTDI basic can also power the dev board.

The bootloader on the ATmega128RFA1 Dev Board is a variation of the

ATmegaBOOT serial bootloader, which was used on older Arduinos like the

Duemilanove. This bootloader uses the UART0 of the ATmega128RFA1,

and expects uploaded code at a baud rate of 57600.

If you’re familiar with avrdude, a command like the one below should

upload a compiled piece of code.

avrdude p atmega128rfa1 c arduino P \\.\COM## b 57600 D V U flash:w:testsketch.hex:i

Page 6 of 20

Or, skip avrdude, and use the Arduino IDE with the bootloader, as we’ll

explain in the following pages.

ISP Programmer

If you’ve got an AVR programmer and would rather skip working with the

bootloader, the standard AVR 2x3 pin programming header is broken out

on the board. Pin 1 of the programming port is marked with a silk-screened

dash.

An AVR Pocket Programmer connected to the development board’s ISP

header. Straight headers were previously soldered to the header to allow

for the connection.

If you don’t have an AVR programmer but would still prefer using this

method for uploading code, we’d recommend the USB Pocket AVR

Programmer. Using that, an avrdude command like below can be used to

upload a program:

avrdude p atmega128rfa1 c usbtiny P usb D V U flash:w:testsketch.hex:i

If you have an Arduino, that can work as an alternative to the AVR

programmer – check out the the ArduinoISP sketch under the examples

menu.

Arduino Compatibility

Everyone loves Arduino! The simplified IDE and host of libraries and

supporting code make it an awesome place to start prototyping. The

ATmega128RFA1 shares a lot in common with the popular ATmega328

used on the Arduino Uno, so it seems reasonable that we should be able to

program the board using the Arduino software. There are just a few extra

steps which need to be taken to do so.

First, if you haven’t already, download and install Arduino. Then…

Update WinAVR (For Windows Users)

Page 7 of 20

WinAVR is a wonderful, free, and open-source package of AVR utilities

(including avr-gcc and avrdude) and definition files. It forms the backbone

of most AVR development, including any AVR-based Arduino.

Unfortunately, Arduino is (as of v1.0.5) packaged with an out-of-date

version of WinAVR, which does not support the ATmega128RFA1. But it’s

easy to upgrade!

Download the most recent version of WinAVR (WinAVR-20100110 as of

writing this) from the WinAVR project page. It should be installed over the

old version of WinAVR included with Arduino, which is located in the

Arduino\hardware\tools\avr directory. Follow these steps to update

WinAVR:

1. Run the WinAVR installer (WinAVR-20100110-install.exe).

2. Cick "Run", Select your install Language, Click "Next", Click "I

Agree" (unless you don't?), until you get to the install location screen.

3. On the install location screen, click Browse..., and navigate to

the ../hardware/tools/avr directory inside your Arduino install (with the

Arduino installer, it should go to the location seen in this image):

4. Click next. On the next screen, make sure Install files and Add

Directories to PATH are selected. Install Programmers Notepad is

optional.

Page 8 of 20

5. Click Install and wait for the install to finish.

Alternative to that method, you can install WinAVR to a standalone

directory, and copy/paste it into the Arduino directory.

Update AVRGCC, Etc. With CrossPack (For Mac
Users)

If you’re using the ATmega128RFA1 Dev Board with Mac, a similar set of

steps is required to update your AVRGCC and AVR include files.

CrossPack is an excellent source for up-to-date AVR development files.

Go to their download page, and grab the most recent version.

Once the disk image is downloaded, you can install the “CrossPack-

AVR.pkg” file. By default, the package will install

to /usr/local/CrossPackAVR20131216 (the date part of that name is

subject to change). Now you’ll need to copy everything from that directory

into your Arduino application.

To copy them into your Arduino app, right-click on the “Arduino” app and

select Show Package Contents. Then navigate to

the /Contents/Resources/Java/hardware/tools/avr folder within there.

Finally, copy everything from the CrossPack download into that Arduino

app directory.

Voila! Onto the next step, adding the board definition.

Add the Board Definitions File

We also need to add a board definition file to be able to use the

ATmega128RFA1 Dev Board within the Arduino environment. To begin,

download the ATmega128RFA1 arduino addon.

Page 9 of 20

The 128RFA1-DEV folder from that download should be added to a

hardware directory within your Arduino sketchbook. Normally the

sketchbook will install to your documents/Arduino folder. If a hardware

folder isn’t already there, make it.

This directory contains a boards.txt file which defines the ATmega128RFA1

Dev Board, and adds a selectable option under the Tools > Board menu.

When you open the Arduino IDE (close and reopen it if it’s already open),

this option should be added to the menu:

When OS X prompts you, to ask what to do with merge conflicts, tell it to

Keep Newer. This will keep any old, un-updated files, in place.

Pin Mapping

After you’ve added ATmega128RFA1-compatibility to your Arduino IDE,

you can take advantage of all of the wonderful libraries you may have

grown acustomed to, including Serial, SPI, and Wire. In addition to that

each pin is mapped to a unique pin number, which you can invoke all of

your digitalWrite , digitalRead , analogWrite , and analogRead needs

upon.

The addon defines all of the ATmega128RFA1’s pins as singular numbers.

Just as Arduino has pins 0-13, and A0-A6, this development board has pins

0-25, and A0-A7. Here’s how the pins are mapped out:

Page 10 of 20

There are a few pins with PWM functionality – 3, 4, 5, 8, 9, 19, 34, and 35

– which you can use for analogWrite . Note that pins 34 and 35 are not

broken out to pins. They’re only connected to on-board LEDs.

The SPI, UART, and I C pins are where you’d expect them to be on an

equivalent R3-or-later Arduino Uno. There is a second UART – UART1 –

on pins D2 and D3.

Example Code

Example Sketch: RF Chat

You can download the RF chat example here (or grab it from github). This

is a simple example of how to make use of the RF functionality of the

ATmega128RFA1. The radio-specific functions are split off into a secondary

file – RadioFunctions.h.

You’ll need two ATmega128RFA1’s for this example (it’s hard to demo the

RF functionality without something to talk to!). They can be tied to the same

computer, or a few rooms away. The maximum distance should be around

75m, but that’s with complete line-of-sight, walls will diminish the range.

Upload the same sketch to each dev board. Then open up a serial monitor

on each. You can use either the Arduino Serial Monitor, or a stand-alone

terminal program (Tera Term is great for Windows users, Cool Term should

work for Mac). Open up each serial port to 9600 bps (8 data bits, no parity,

1 stop bit), and start typing away! What’s typed into one terminal should

pop up into another.

2

Page 11 of 20

Understanding the Sketch

There are a few key functions, and a few interrupt routines that are key to

the workings of the RF transceiver.

rfBegin()

First, the radio must be initialized by calling the rfBegin() function. This is

called in the setup() portion of the sketch. Check out the comments within

the code for a line-by-line explanation. This function initializes the

ATmega128RFA1’s radio. The lone parameter for this function sets the

radio’s 2.4GHz channel, which should be some value between 11 and 26.

Radios must be on the same channel to communicate with each other.

Page 12 of 20

// Initialize the RFA1's lowpower 2.4GHz transciever.
// Sets up the state machine, and gets the radio into
// the RX_ON state. Interrupts are enabled for RX
// begin and end, as well as TX end.
uint8_t rfBegin(uint8_t channel)
{
for (int i=0; i<128; i++)

 {
 radioRXBuffer.buffer[i] = 0;

 }
 radioRXBuffer.tail = 0;

 radioRXBuffer.head = 0;

// Setup RX/TX LEDs: These are pins B6/34 (RX) and B7/35 (T
X).

pinMode(RX_LED, OUTPUT);
digitalWrite(RX_LED, LOW);
pinMode(TX_LED, OUTPUT);
digitalWrite(TX_LED, LOW);

// Transceiver Pin Register TRXPR.

// This register can be used to reset the transceiver, witho
ut

// resetting the MCU.
 TRXPR |= (1<<TRXRST); // TRXRST = 1 (Reset state, resets a
ll registers)

// Transceiver Interrupt Enable Mask IRQ_MASK

// This register disables/enables individual radio interrupt
s.

// First, we'll disable IRQ and clear any pending IRQ's
 IRQ_MASK = 0; // Disable all IRQs

// Transceiver State Control Register TRX_STATE

// This regiseter controls the states of the radio.
// First, we'll set it to the TRX_OFF state.

 TRX_STATE = (TRX_STATE & 0xE0) | TRX_OFF; // Set to TRX_OF
F state
delay(1);

// Transceiver Status Register TRX_STATUS

// This readonly register contains the present state of th
e radio transceiver.
// After telling it to go to the TRX_OFF state, we'll make s

ure it's actually
// there.
if ((TRX_STATUS & 0x1F) != TRX_OFF) // Check to make sure st

ate is correct

Page 13 of 20

return 0; // Error, TRX isn't off

// Transceiver Control Register 1 TRX_CTRL_1

// We'll use this register to turn on automatic CRC calculat
ions.

 TRX_CTRL_1 |= (1<<TX_AUTO_CRC_ON); // Enable automatic CRC
calc.

// Enable RX start/end and TX end interrupts
 IRQ_MASK = (1<<RX_START_EN) | (1<<RX_END_EN) | (1<<TX_END_E

N);

// Transceiver Clear Channel Assessment (CCA) PHY_CC_CCA

// This register is used to set the channel. CCA_MODE shoul
d default
// to Energy Above Threshold Mode.
// Channel should be between 11 and 26 (2405 MHz to 2480 MH

z)

if ((channel < 11) || (channel > 26)) channel = 11;
 PHY_CC_CCA = (PHY_CC_CCA & 0xE0) | 11; // Set the channel t
o 11

// Finally, we'll enter into the RX_ON state. Now waiting fo
r radio RX's, unless

// we go into a transmitting state.
 TRX_STATE = (TRX_STATE & 0xE0) | RX_ON; // Default to receiv
er

return 1;

}

rfWrite(uint8_t b) and rfPrint(String toPrint)

These two functions are your go-to routines for sending data out of the

radio. There’s one function to write a single byte at a time and another to

send a whole string (up to 127 characters) at once.

In the main sketch, rfPrint() is called at the very beginning to shout out

to other 128RFA1 devices that the board has booted up. rfWrite() is

called whenever the board sees serial data come in.

Page 14 of 20

// This function sends a string of characters out of the radi
o.

// Given a string, it'll format a frame, and send it out.
void rfPrint(String toPrint)

{
 uint8_t frame[127]; // We'll need to turn the string into a
n arry
int length = toPrint.length(); // Get the length of the str

ing

for (int i=0; i<length; i++) // Fill our array with bytes i
n the string
 {
 frame[i] = toPrint.charAt(i);

 }

// Transceiver State Control Register TRX_STATE

// This regiseter controls the states of the radio.
// Set to the PLL_ON state this state begins the TX.

 TRX_STATE = (TRX_STATE & 0xE0) | PLL_ON; // Set to TX star
t state
while(!(TRX_STATUS & PLL_ON))

 ; // Wait for PLL to lock

digitalWrite(TX_LED, HIGH);

// Start of frame buffer TRXFBST

// This is the first byte of the 128 byte frame. It should c
ontain

// the length of the transmission.
 TRXFBST = length + 2;

memcpy((void *)(&TRXFBST+1), frame, length);
// Transceiver Pin Register TRXPR.

// From the PLL_ON state, setting SLPTR high will initiate t
he TX.
 TRXPR |= (1<<SLPTR); // SLPTR high
 TRXPR &= ~(1<<SLPTR); // SLPTR low

// After sending the byte, set the radio back into the RX wa
iting state.
 TRX_STATE = (TRX_STATE & 0xE0) | RX_ON;

}

// This function will transmit a single byte out of the radio.
void rfWrite(uint8_t b)
{
 uint8_t length = 3;

// Transceiver State Control Register TRX_STATE

Page 15 of 20

// This regiseter controls the states of the radio.
// Set to the PLL_ON state this state begins the TX.

 TRX_STATE = (TRX_STATE & 0xE0) | PLL_ON; // Set to TX star
t state
while(!(TRX_STATUS & PLL_ON))

 ; // Wait for PLL to lock

digitalWrite(TX_LED, HIGH); // Turn on TX LED

// Start of frame buffer TRXFBST

// This is the first byte of the 128 byte frame. It should c
ontain

// the length of the transmission.
 TRXFBST = length;

// Now copy the bytetosend into the address directly afte
r TRXFBST.
memcpy((void *)(&TRXFBST+1), &b, 1);

// Transceiver Pin Register TRXPR.

// From the PLL_ON state, setting SLPTR high will initiate t
he TX.
 TRXPR |= (1<<SLPTR); // SLPTR = 1
 TRXPR &= ~(1<<SLPTR); // SLPTR = 0 // Then bring it back l
ow

// After sending the byte, set the radio back into the RX wa
iting state.
 TRX_STATE = (TRX_STATE & 0xE0) | RX_ON;

}

rfAvailable() and rfRead()

These functions operate in a manner similar to the Arduino Serial library, if

you’re familiar with that. Data coming into the radio is stored in a buffer It’s

up to you to empty that buffer. rfAvailable() returns a number explaining

how many bytes of data are still un-read in the buffer. It can be 0, meaning

the buffer is empty.

rfRead() returns a single byte from the front of the receive buffer. In the

main sketch loop, we continuously check if RF data is available. If there is

data, we use rfRead() to collect it and print it out to the serial monitor.

Page 16 of 20

// Returns how many unread bytes remain in the radio RX buffe
r.

// 0 means the buffer is empty. Maxes out at RF_BUFFER_SIZE.
unsigned int rfAvailable()

{
return (unsigned int)(RF_BUFFER_SIZE + radioRXBuffer.head

radioRXBuffer.tail) % RF_BUFFER_SIZE;
}

// This function reads the oldest data in the radio RX buffer.
// If the buffer is emtpy, it'll return a 255.
char rfRead()

{
if (radioRXBuffer.head == radioRXBuffer.tail)

 {
return 1;

 }
else

 {
// Read from the buffer tail, and update the tail pointer.
char c = radioRXBuffer.buffer[radioRXBuffer.tail];

 radioRXBuffer.tail = (unsigned int)(radioRXBuffer.tail +
1) % RF_BUFFER_SIZE;

return c;

 }
}

Interrupt Routines

Three interrupt routines are working behind the scenes, whenever there is a

radio receive or transmit. Two simple interrupt service routines (ISRs) – the

transmit end, and receieve start – trigger the RX/TX LEDs. The receive end

ISR does a lot of heavy-lifting, on the other hand. It accesses the radio’s

received data registers and stores the data into the shard receive buffer.

None of these functions can be called manually. They all just do their job

whenever called upon by the processor.

Page 17 of 20

// This interrupt is called when radio TX is complete. We'll j
ust

// use it to turn off our TX LED.
ISR(TRX24_TX_END_vect)

{
digitalWrite(TX_LED, LOW);

}

// This interrupt is called the moment data is received by th
e radio.
// We'll use it to gather information about RSSI signal str
ength
// and we'll turn on the RX LED.
ISR(TRX24_RX_START_vect)

{
digitalWrite(RX_LED, HIGH); // Turn receive LED on

 rssiRaw = PHY_RSSI; // Read in the received signal strength
}

// This interrupt is called at the end of data receipt. Here w
e'll gather
// up the data received. And store it into a global variable.
We'll

// also turn off the RX LED.
ISR(TRX24_RX_END_vect)

{
 uint8_t length;
// Maximum transmission is 128 bytes

 uint8_t tempFrame[RF_BUFFER_SIZE];

// The received signal must be above a certain threshold.
if (rssiRaw & RX_CRC_VALID)

 {
// The length of the message will be the first byte receiv

ed.

 length = TST_RX_LENGTH;

// The remaining bytes will be our received data.
memcpy(&tempFrame[0], (void*)&TRXFBST, length);

// Now we need to collect the frame into our receive buffe
r.

// k will be used to make sure we don't go above the leng
th

// i will make sure we don't overflow our buffer.
unsigned int k = 0;

unsigned int i = (radioRXBuffer.head + 1) % RF_BUFFER_SIZ
E; // Read buffer head pos and increment;

while ((i != radioRXBuffer.tail) && (k < length2))

Page 18 of 20

 {
// First, we update the buffer with the first byte in th

e frame
 radioRXBuffer.buffer[radioRXBuffer.head] = tempFrame[k+

+];

 radioRXBuffer.head = i; // Update the head
 i = (i + 1) % RF_BUFFER_SIZE; // Increment i % BUFFER_SI
ZE

 }
 }

digitalWrite(RX_LED, LOW); // Turn receive LED off, and w
e're out
}

Those functions should serve as a backbone for all of your radio needs.

Instead of setting up a chat server, you could set one outside to monitor

weather conditions and relay that back to a display indoors. Or set up one

under your mattress, with pressure sensors strategically connected, while

another dev board connected to your coffee machine could wait for a signal

to start brewing a cup. These are neat little boards, we’d love to hear about

what applications you’ve come up with!

Resources

All of the example code, hardware layout, and Arduino addon files can be

found on this project’s github repo. Other resources include:

� Schematic

� ATmega128RFA1 Datasheet

� Atmel’s ATmega128RFA1 Product Page

The example in this tutorial is as basic as it gets; the ATmega128RFA1 has

a powerful transceiver, which can even be synced up to 802.15.4 networks

(like Zigbee). Here are some other resources out there, if you’re looking for

something more robust:

� Lightweight Mesh - A (proprietary) Atmel Lightweight Mesh software

stack.

� IEEE 802.15.4 MAC - Another Atmel-provided software stack. This

one implements IEEE 802.15.4.

� BitCloud ZigBee Pro - If you’re looking to make your

ATmega128RFA1 communicate with ZigBee PROs, BitCloud is the

software you’ll need to do it. This link includes documentation and

source code downloads.

Page 19 of 20

� Synapse Wireless - Synapse is a nifty wireless platform, because

each of the wireless modules run a python scrip and interpreter.

That, along with self-healing-mesh clouds and remote procedure

calls, makes Synapse totally awesome. The ATmega128RFA1

Development Board is Synapse-compatible, you can upload a

Synapse hex file to it, and it’ll work just like an RF200. Licenses for

the Synapse software aren’t free, so keep that in mind.

� ZigDuino - A really well done Arduino plug-in for the

ATmega128RFA1. We’re big fans.

Going Further

Now that you know how to hook up the ATmega128RFA1 Development

Board, what components will you be adding with the RF transceiver to help

make wireless? Need some inspiration? Check out some of these products

and tutorials:

� Synapse Modules – The Synapse RF266 in particular is based on

the ATmega128RFA1. These are nifty little wireless modules, which

can interpret python scripts. Check out our tutorial for working with

them as well.

� XBee Modules – With the right firmware (ZigBee), an

ATmega128RFA1 could be made to communicate with these

modules.

� Using the BlueSMiRF – If your looking for easy wireless

communication, Bluetooth might be for you! In this guide we explain

how to set up the [BlueSMiRF]

(https://www.sparkfun.com/products/10269 Bluetooth modules.

Or check out some of these tutorials:

� IR Communication – If you’re only really looking to transmit data

short, wireless distances, infrared may be a better/cheaper option.

� Using the OpenSegment – The OpenSegment displays are really

easy-to-use 4-digit 7-segment displays. You could use one of these

displays to print messages received from other ATmega128RFA1

nodes.

Or, check out our how to use GitHub tutorial, and help us make the

ATmega128RFA1 example code better by adding new features!

Page 20 of 20

2/12/2015https://learn.sparkfun.com/tutorials/atmega128rfa1-dev-board-hookup-guide?_ga=1.80617105.725293211.1...

	Contact us

