imall

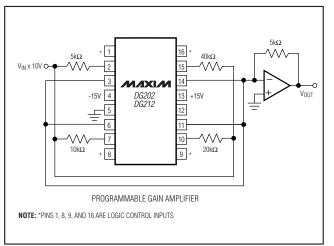
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


General Description

The DG202/DG212 are normally open, quad singlepole single-throw (SPST) analog switches. These CMOS switches can be continuously operated with power supplies ranging from ± 4.5 V to ± 18 V. Maxim guarantees that these switches will not latch up if the power supplies are disconnected with input signals still connected.

The DG202/DG212 are similar to the DG201/DG211 except for inverted control inputs. All devices have guaranteed break-before-make switching, as well as essentially constant on-resistance over the analog signal range. All switches conduct current in either direction and add no offset to the output signal.

Compared to the original manufacturer's products, Maxim's DG202/DG212 consume very little power, making them better suited for portable applications. Maxim has also eliminated the need for the third logic power supply (V_L) that is required for the operation of the original manufacturer's DG212 without sacrificing compatibility.

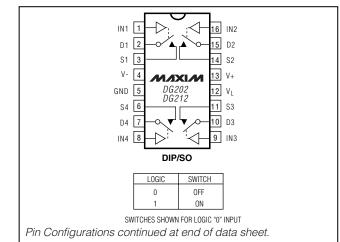
Analog Multiplexers Programmable Gain Amplifiers Communications Systems Sample/Holds Automatic Test Equipment PBX, PABX

Typical Operating Circuit

Applications

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.


_Features

- Guaranteed ±4.5V to ±18V Operation
- No V_L Supply Required
- Nonlatching with Supplies Turned Off and Input Signals Present
- CMOS and TTL Logic Compatible
- Monolithic, Low-Power CMOS Design

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DG202CUE	0°C to +70°C	16 TSSOP
DG202CSE	0°C to +70°C	16 SO
DG202CJ	0°C to +70°C	16 Plastic DIP
DG202C/D	0°C to +70°C	Dice
DG202AEGE	-40°C to +85°C	16 QFN (5mm x 5mm)
DG202AEUE	-40°C to +85°C	16 TSSOP
DG202ADY	-40°C to +85°C	16 SO
DG202ADJ	-40°C to +85°C	16 Plastic DIP
DG202AK	-55°C to +125°C	16 CERDIP
DG212CUE	0°C to +70°C	16 TSSOP
DG212CSE	0°C to +70°C	16 SO
DG212CJ	0°C to +70°C	16 Plastic DIP
DG212C/D	0°C to +70°C	Dice
DG212EGE	-40°C to +85°C	16 QFN (5mm x 5mm)
DG212EUE	-40°C to +85°C	16 TSSOP
DG212DY	-40°C to +85°C	16 SO
DG212DJ	-40°C to +85°C	16 Plastic DIP
DG212ETE	-40°C to +85°C	16 Thin QFN

Pin Configurations

ABSOLUTE MAXIMUM RATINGS (DG212)

V+ to V	44V
VIN to Ground	V-, V+
V _L to Ground	0.3V, 25V
V_S or V_D to V+	0, -40V
V _S or V _D to V	0, 40V
V+ to Ground	25V
V- to Ground	25V
Current, Any Terminal Except S or D	
Continuous Current, S or D	20mA
Peak Current, S or D	
(pulsed at 1ms 10% duty cycle max)	70mA
Storage Temperature Range65	°C to +125°C

Note 1: Device mounted with all leads soldered to PC board.

Operating Temperature Range
DG212C0°C to +70°C
DG212D/E40°C to +85°C
Power Dissipation ($T_A = +70^{\circ}C$) (Note 1)
16-Pin Plastic Dip (derate 10.5mW/°C above +70°C)842mW
16-Pin Narrow SO (derate 8.7mW/°C above+70°C)696mW
16-Pin TSSOP (derate 9.4mW/°C above +70°C)
16-Pin QFN (5mm x 5mm)
(derate 19.2mW/°C above +70°C)1538mW
16-Pin Thin QFN
(derate 14.7mW/°C above +70°C)1177mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (DG212)

 $(V + = +15V, V - = -15V, GND = 0, T_A = +25^{\circ}C, unless otherwise noted.)$ (For more information on TYP values see Note 2.)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	МАХ	UNITS
SWITCH	•			•			
Analog Signal Range	Vanalog			-15		+15	V
Drain-Source ON-Resistance	R _{DS} (ON)	$V_D = \pm 10V,$	$V_{IN} = 2.4V, I_S = 1mA$		115	175	Ω
			$V_{\rm S} = 14 V, V_{\rm D} = -14 V$		0.01	5.0	
Source OFF-Leakage Current	IS (OFF)	VIN = 0.6V	$V_{S} = 14V, V_{D} = -14V$ $V_{S} = -14V, V_{D} = 14V$	-5.0	-0.02		
Drain OFF-Leakage Current		$V_{\rm m} = 0.9V$	$V_{S} = 14V, V_{D} = -14V$ $V_{S} = -14V, V_{D} = 14V$		0.01	5.0	nA
Dialit OFF-Leakage Current	ID (OFF)	VIN = 0.6V	$V_{\rm S} = -14 V, V_{\rm D} = 14 V$	-5.0	-0.02		ПА
Drain ON-Leakage Current		$V_{\rm S} = V_{\rm D} = 1$	14V, V _{IN} = 2.4V		0.1	5.0	1
(Note 3)	ID (ON)	$V_{S} = V_{D} = -$	14V, V _{IN} = 2.4V	-5.0	-0.15		
INPUT							
Input Current with Input Voltage	linh	$V_{IN} = 2.4V$	$V_{IN} = 2.4V$		-0.0004		
High	INH	V _{IN} = 15V			0.003	1.0	
Input Current with Input Voltage Low	I _{INL}	$V_{IN} = 0$		-1.0	-0.0004		μA
DYNAMIC	1						1
Turn-ON Time	ton				460	1000	
Turn-OFF Time	tOFF1		ing Time Test Circuit = $1k\Omega$, CL = 35pF		360	500	ns
Tum-OFF Time	tOFF2	vs – zv, n <u>r</u>	_ = 1ks2, 0L = 33pi		450		1
Source OFF-Capacitance	Cs (OFF)	$V_{S} = 0, V_{IN}$	= 0, f = 1MHz		5		
Drain OFF-Capacitance	CD (OFF)	$V_D = 0, V_{IN} = 0, f = 1MHz$			5		рF
Channel ON-Capacitance	CD + S (ON)	$V_D = V_S = 0$, $V_{IN} = 5V$, f = 1MHz			16		
OFF-Isolation (Note 4)	OIRR				70		
Crosstalk (Channel to Channel)	CCRR		= 1kΩ, C _L = 15pF, S, f = 100kHz		90		dB

ELECTRICAL CHARACTERISTICS (DG212) (continued)

 $(V + = +15V, V - = -15V, GND = 0, T_A = +25^{\circ}C, unless otherwise noted.)$ (For more information on TYP values see Note 2.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
SUPPLY						
Positive Supply Current	l+			0.02	0.4	
Negative Supply Current	-	$V_{IN} = 0$ and 2.4V (all)		0.01	0.4	mA
Logic Supply Current	١L			0	0	
Power-Supply Range for Continous Operation	V _{OP}		±4.5		±18.0	V

Note 2: Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Note 3: I_{D(ON)} is leakage from driver into "ON" switch.

Note 4: OFF-Isolation = 20 log V_S/V_D, V_S = input to OFF switch, V_D = output.

ABSOLUTE MAXIMUM RATINGS (DG202)

Voltages Reference to V-	Operating Temperature Range
V+	DG202C0°C to +70°C
GND25V	DG202D/E40°C to +85°C
Digital Inputs (Note 1), V _S , V _D 2V to (V+ + 2V)	DG202A55°C to +125°C
or 20mA, whichever occurs first	Storage Temperature Range65°C to +150°C
Current, Any Terminal Except S or D	Power Dissipation (Note 2)
Continuous Current, S or D	16-Pin Plastic Dip (derate 10.5mW/°C above +70°C)842mW
Peak Current, S or D	16-Pin SO (derate 8.7mW/°C above +70°C)696mW
(pulsed at 1ms 10% duty cycle max)70mA	16-Pin TSSOP (derate 9.4mW/°C above +70°C)755mW
	16-Pin QFN (5 × 5)

(derate 19.2mW/°C above +70°C)......1538mW 16-Pin CERDIP (derate 10.0mW/°C above +70°C).....800mW

Note 1: Signals on S_, D_, or IN_ exceeding V+ or V- on Maxim's DG202 will be clamped by internal diodes, and are also internally current limited to 25mA.

Note 2: Device mounted with all leads soldered to PC board.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (DG202)

(V+ = +15V, V- = -15V, GND = 0, T_A = +25°C, unless otherwise noted.) (For more information on TYP values see Note 3.)

DADAMETED	CYMPOL	CONDITIONS		DG202A			DG202C, D, E			
PARAMETER	SYMBOL		CONDITIONS		TYP	MAX	MIN	TYP	MAX	UNITS
SWITCH										
Analog Signal Range	VANALOG			-15		15	-15		15	V
Drain-Source ON Resistance	R _{DS} (ON)	$V_D = \pm 10V$,	$V_{IN} = 2.4V, I_S = 1mA$		115	175		115	200	Ω
	IS (OFF)	$V_{IN} = 0.8V$	$V_{\rm S} = 14 V, V_{\rm D} = -14 V$		0.01	1.0		0.01	5.0	
Source OFF-Leakage Current			$V_{S} = -14V, V_{D} = 14V$	-1.0	-0.02		-1.0	-0.02		
		$\lambda = 0.8 \lambda$	$V_{S} = 14V, V_{D} = -14V$		0.01	1.0		0.01	5.0	nA
Drain OFF-Leakage Current	ID (OFF)	$V_{IN} = 0.8V$	$V_{S} = -14V, V_{D} = 14V$	-1.0	-0.02		-1.0	-0.02		ПА
Drain ON-Leakage Current		V 0 4V	$V_{\rm S} = -14V$		0.1	1.0		0.1	1.0	
(Note 4)	ID (ON)	$V_{IN} = 2.4V$	$V_{\rm S} = 14V$	-1.0			-5.0			

DG202/DG212

ELECTRICAL CHARACTERISTICS (DG202) (continued)

(V+ = +15V, V- = -15V, GND = 0, **T_A = +25°C**, unless otherwise noted.) (For more information on TYP values see Note 3.)

PARAMETER	SYMBOL	CONDITIONS			DG202A			DG202C, D, E		
PARAMETER	STMBOL	CONDITIONS		MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
INPUT										
Input Current with Input	linh	$V_{IN} = 2.4V$		-1.0	-0.0004	1	-1.0	-0.000	4	
Voltage High	INH	$V_{IN} = 15V$			0.003	1.0		0.003	1.0	μA
Input Current with Input Voltage Low	linl	$V_{IN} = 0$		-1.0 -0.0004		1	-1.0 -0.0004		4	μΛ
DYNAMIC										
Turn-ON Time	ton	See Figure 1 S	witching Time		480	600		480	600	ns
Turn-OFF Time	tOFF1	Test Circuit			370	450		370	450	115
Charge Injection	Q	$C_L = 1000 pF$, $V_{GEN} = 0$, $R_{GEN} = 0$		20			20		рС	
Source OFF-Capacitance	Cs (OFF)	V _S = 0, V _{IN} = 0			5			5		
Drain OFF-Capacitance	C _D (OFF)				5			5		
Channel ON-Capacitance	C _D (ON) + C _S (ON)	$\begin{array}{l} V_D = V_S = 0, \\ V_{IN} = 5V \end{array}$	f = 140kHz		16			16		рF
OFF-Isolation		$V_{IN} = 0, Z_L = \overline{7}$	75Ω		70			70		
Crosstalk (Channel to Channel)		V _S = 2.0V, f = 100kHz		90			90		dB	
SUPPLY		•								
Positive Supply Current	+	All channels ON or OFF			0.02	0.1		0.02	0.1	mA
Negative Supply Current	-	All channels O	N or OFF	-0.1	-0.01		-0.1	-0.01		ША
Power-Supply Range for Continuous Operation	VOP			±4.5		±18	±4.5		±18.0	V

Note 3: Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. **Note 4:** I_{D (ON)} is leakage from driver into "ON" switch.

M/X/M

ELECTRICAL CHARACTERISTICS (DG202)

(V+ = +15V, V- = -15V, GND = 0, **T**_A = full opearting temperature range, unless otherwise noted.) (For more information on TYP values see Note 3.)

DADAMETED				DG202A			DG202C, D, E			
PARAMETER	SYMBOL		CONDITIONS		ТҮР	MAX	MIN	ТҮР	MAX	UNITS
SWITCH										
Analog Signal Range	VANALOG			-15		+15	-15		+15	V
Drain-Source ON Resistance (Note 5)	R _{DS (ON)}	$V_D = \pm 10V$,	$V_{IN} = 2.4V, I_S = 1mA$			250			250	Ω
			$V_{\rm S} = 14 V, V_{\rm D} = -14 V$			100			100	
Source OFF-Leakage Current	IS (OFF)	$V_{IN} = 0.8V$	$V_{\rm S} = -14 V, V_{\rm D} = 14 V$	-100			-100			
Drain OFF Lookago Current	ID (OFF)	$V_{IN} = 0.8V$	$V_{S} = 14V, V_{D} = -14V$			100			100	nA
Drain OFF-Leakage Current			$V_{S} = -14V, V_{D} = 14V$	-100			-100			ΠA
Drain ON-Leakage Current		V _{IN} = 2.4V	$V_{S} = -14V$			200			200	
(Note 6)	ID (ON)	V N = 2.4V	$V_D = 14V$	-200			-200			
INPUT										
Input Current with Input	IINH	$V_{IN} = 2.4V$		-1.0			-1.0			
Voltage High	INH	V _{IN} = 15V				1.0			1.0	
Input Current with Input Voltage Low	linl	$V_{IN} = 0$		-1.0			-1.0			μA

Note 5: Electrical characteristics, such as On-Resistance, will change when power supplies other than ±15V, are used. **Note 6:** I_{D (ON)} is leakage from driver into "ON" switch.

Pin Description

PI	N	NAME	FUNCTION				
DIP/SO/TSSOP	QFN/TQFN		FUNCTION				
1, 16, 9, 8	15, 14, 7, 6	IN1–IN4	Input				
2, 15, 10, 7	16, 13, 8, 5	D1-D4	Analog Switch Drain Terminal				
3, 14, 11, 6	1, 12, 9, 4	S1–S4	Analog Switch Source Terminal				
4	2	V-	Negative-Supply Voltage Input				
5	3	GND	Ground				
12	10	N.C.	No Connection				
13	11	V+	Positive-Supply Voltage Input—Connected to Substrate				
	EP	EP	Exposed Pad. Connect exposed pad to V+ or leave EP unconnected.				

Switching Time Test Circuit

Switch output waveform shown for V_S = constant with logic input waveform as shown. Note that V_S may be +ve or -ve as per switching times test circuit. V_O is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

Protecting Against Fault _____Conditions

Fault conditions occur when power supplies are turned off when input signals are still present, or when overvoltages occur at the inputs during normal operation. In either case, source-to-body diodes can be forward biased and conduct current from the signal source. If DG202/DG212

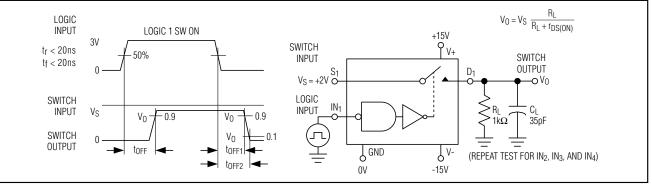


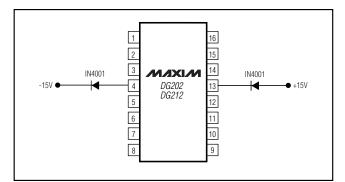
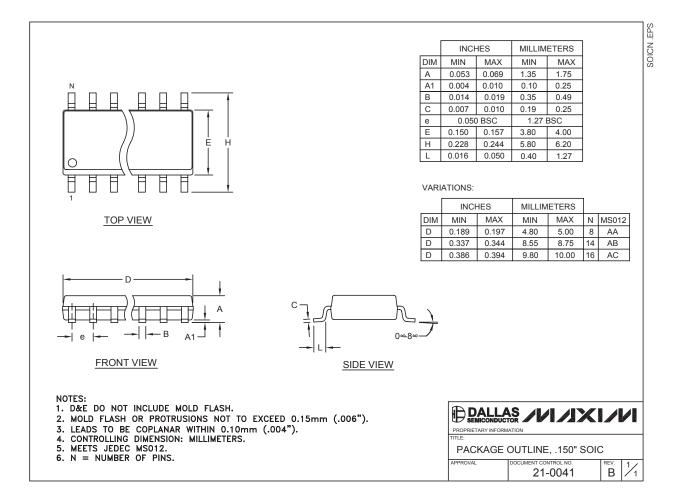
Figure 1. Switching Time

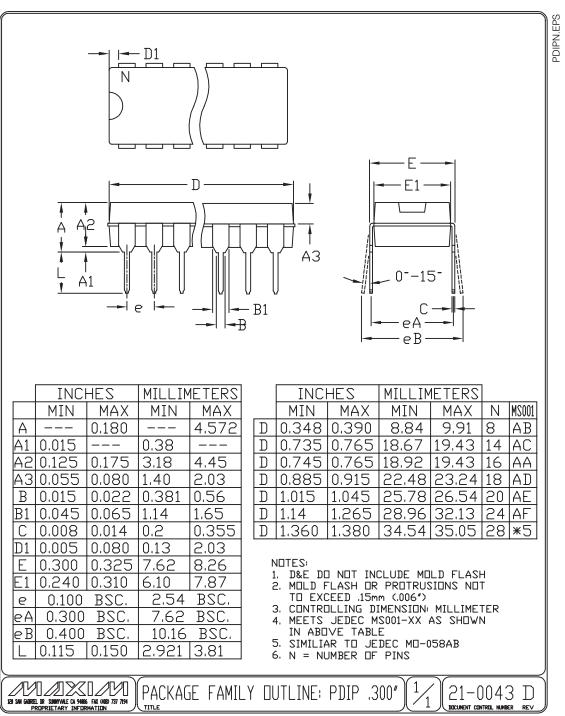
Typical RDS(ON) vs. Power Supplies for Maxim's DG202, and DG212

POWER SUPPLIES		R	DS(ON) AT ANAL	OG SIGNAL LEVE	iL	
POWER SUPPLIES	-5V	+5V	-10V	+10V	-15V	+15V
±5V	350Ω	380Ω	—	_	_	—
±10V	—	—	165Ω	250Ω	_	—
±15V		—	125Ω	160Ω	135Ω	155Ω

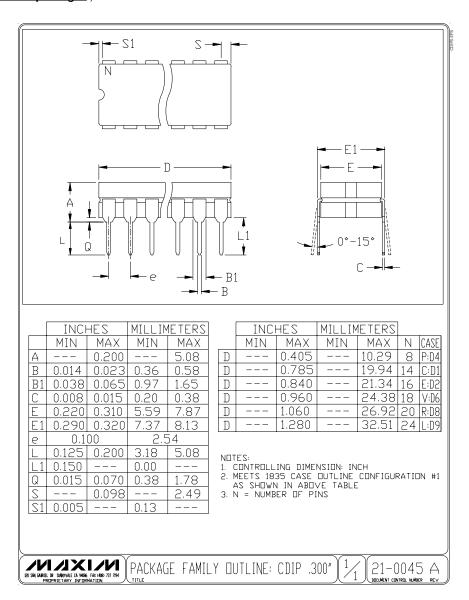
this current is required to be kept to low (μ A) levels then the addition of external protection diodes is recommended.

To provide protection for overvoltages up to 20V above the supplies, a 1N4001 or 1N914 type diode should be placed in series with the positive and negative supplies as shown in Figure 2. The addition of these diodes will reduce the analog signal range to 1V below the positive supply and 1V above the negative supply.

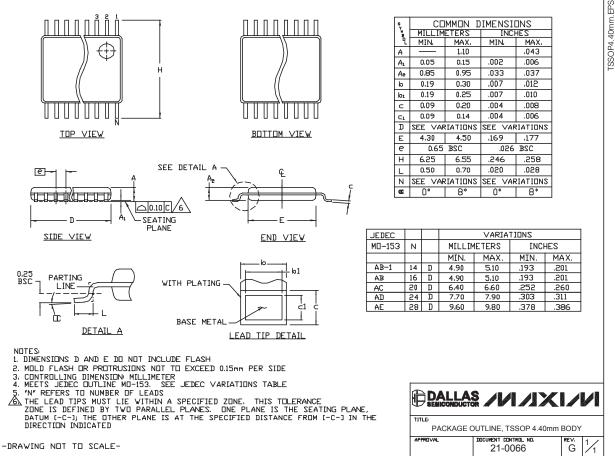



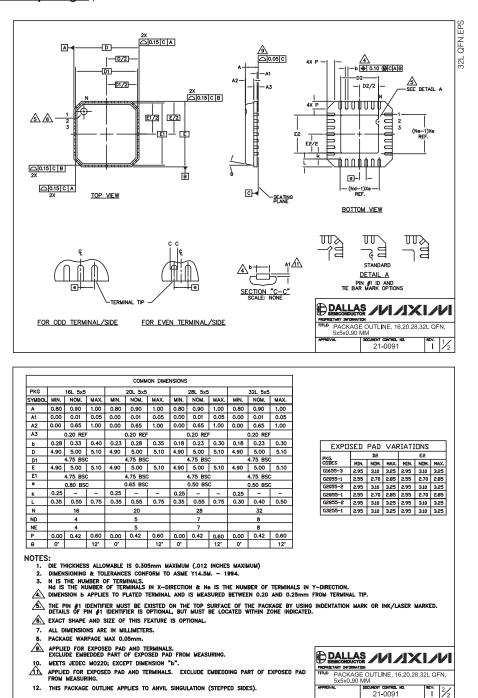

Figure 2. Protection against Fault Conditions

_Package Information

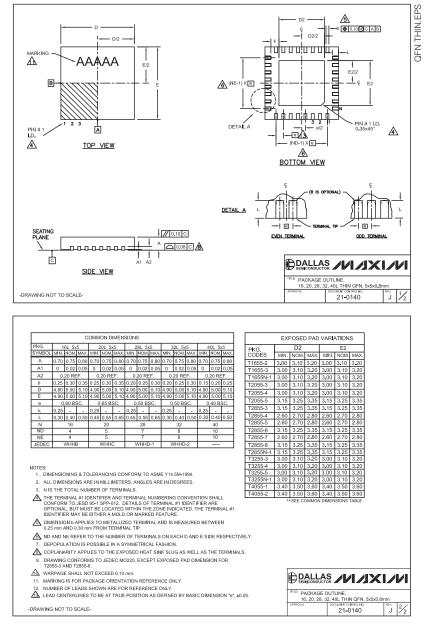


_Package Information (continued)


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <u>www.maxim-ic.com/packages</u>.)


Package Information (continued)

_Package Information (continued)



Package Information (continued)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Revision History

Pages changed at Rev3: 1-6, 11

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

12

© 2006 Maxim Integrated Products

MAXIM is a registered trademark of Maxim Integrated Products, Inc.