: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low Voltage, Low On-Resistance, Dual DPDT Analog Switch

DESCRIPTION

The DG2799 is a dual double-pole/double-throw monolithic CMOS analog switch designed for high performance switching of analog signals. Combining low power, high speed, low on-resistance and small physical size, the DG2799 is ideal for portable and battery powered applications requiring high performance and efficient use of board space.
The DG2799 is built on Vishay Siliconix's low voltage process. An epitaxial layer prevents latchup. Break-beforemake is guaranteed.
The switch conducts equally well in both directions when on, and blocks up to the power supply level when off.
As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For analog switching products manufactured in QFN packages, the lead (Pb)-free "-E3/E4" only suffix is being used as a designator. Lead (Pb)free QFN products purchased at any time will have either a nickel-palladium-gold device termination or a 100% matte tin device termination. The different lead (Pb)-free materials are interchangeable and meet all JEDEC standards for reflow and MSL rating.

FEATURES

- Low Voltage Operation (1.65 V to 4.3 V)
- Low On-Resistance - ron: 0.25Ω @ 2.7 V
- Fast Switching: $\mathrm{t}_{\mathrm{ON}}=28 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{OFF}}=17 \mathrm{~ns}$
- QFN-16 (3 x 3) Package
- Latch-Up Current > 300 mA (JESD78)

BENEFITS

- Reduced Power Consumption
- High Accuracy
- Reduce Board Space
- TTL/1.8-V Logic Compatible
- High Bandwidth

APPLICATIONS

- Cellular Phones
- Speaker Headset Switching
- Audio and Video Signal Routing
- PCMCIA Cards
- Battery Operated Systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	NC1, 2, 3 and 4	NO1, 2, 3 and 4
0	ON	OFF
1	OFF	ON

ORDERING INFORMATION		
Temp Range	Package	Part Number
-40 to $85^{\circ} \mathrm{C}$	$16-\mathrm{Pin}$ QFN $(3 \times 3 \mathrm{~mm})$ Variation 2	DG2799DN-T1—E4

NOTE:
Underside exposed pad has no device electrical connection. It is recommended that no electrical connection is made to it.

ABSOLUTE MAXIMUM RATINGS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted				
Parameter		Symbol	Limit	Unit
Reference to GND	V+		-0.3 to 5.0	V
	$\mathrm{IN}, \mathrm{COM}, \mathrm{NC}, \mathrm{NO}^{\text {a }}$		-0.3 to (V++0.3)	
Current (Any terminal except NO, NC or COM)			30	mA
Continuous Current (NO, NC, or COM)			± 300	
Peak Current (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)			± 500	
Storage Temperature (D Suffix)			-65 to 150	${ }^{\circ} \mathrm{C}$
Package Solder Reflow Conditions ${ }^{\text {d }}$	16-Pin QFN ($3 \times 3 \mathrm{~mm}$)		250	
Power Dissipation (Packages) ${ }^{\text {b }}$	QFN-16 ${ }^{\text {c }}$		1385	mW

Notes
a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $17.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$
d. Manual soldering with iron is not recommended for leadless components. The QFN is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

SPECIFICATIONS (V+ = $\mathbf{1 . 8} \mathbf{~ V) ~}$

Parameter	Symbol	Test Condition Otherwise Unless Specified $\mathrm{V}+=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4$ or $1.1 \mathrm{~V}^{\mathrm{e}}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO},} \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	${ }^{\text {ron }}$	$\mathrm{V}+=1.8 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA}$	Room		0.35	1.3	Ω
		$\mathrm{V}+=1.8 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0.9 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA}$			0.45		
			Full			1.4	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.1			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		6		pF
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	t_{ON}	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Romm Full		62	$\begin{aligned} & 94 \\ & 97 \end{aligned}$	ns
Turn-Off Time	$t_{\text {OFF }}$		Room Full		24	$\begin{aligned} & 52 \\ & 55 \end{aligned}$	
Break-Before-Make Time	t_{d}		Full	8			
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		66		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$	Room		-74		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-74		
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$	Room		108		pF
	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$		Room		108		
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (on) }}$		Room		240		
	$\mathrm{C}_{\mathrm{NC} \text { (on) }}$		Room		240		
Power Supply							
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full			1.0	$\mu \mathrm{A}$

SPECIFICATIONS (V+ = 3 V)							
Parameter	Symbol	Test Condition Otherwise Unless Specified $\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.5$ or $1.4 \mathrm{~V}^{\mathrm{e}}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	${ }^{\text {ron }}$	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA}$	Room		0.3	0.45	Ω
		$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA}$			0.25		
			Full			0.55	
$\mathrm{ran}^{\text {Flatness }}{ }^{\text {d }}$	ron Flatness	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \text { to } \mathrm{V}+, \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA} \end{gathered}$	Room		0.07	0.15	
ron Match ${ }^{\text {d }}$	$\Delta_{\text {r }}$		Room		0.05		
Switch Off Leakage Current	${ }^{\mathrm{I}} \mathrm{NO}$ (off), $\mathrm{I}_{\mathrm{NC} \text { (offif) }}$	$\begin{gathered} \mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.3 \mathrm{~V} / 3.0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{COM}}=3.0 \mathrm{~V} / 0.3 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	nA
	$\mathrm{I}_{\text {COM (off) }}$		Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	
Channel-On Leakage Current	$\mathrm{I}_{\text {COM(on) }}$	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V} / 3.0 \mathrm{~V}$	Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.4			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.5	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		6		pF
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\mathrm{INH}}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Romm Full		28	$\begin{aligned} & 57 \\ & 60 \end{aligned}$	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room Full		17	$\begin{aligned} & 45 \\ & 47 \end{aligned}$	
Break-Before-Make Time	t_{d}		Full	1			
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		160		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$	Room		-75		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-75		
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+\mathrm{f}=1 \mathrm{MHz}$	Room		102		pF
	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$		Room		102		
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (on) }}$		Room		234		
	$\mathrm{C}_{\mathrm{NC} \text { (on) }}$		Room		234		
Power Supply							
Power Supply Range	V+			2.7		3.3	V
Power Supply Current	$1+$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full			1.0	$\mu \mathrm{A}$

SPECIFICATIONS (V+ = 4.3 V)							
Parameter	Symbol	Test Condition Otherwise Unless Specified $\mathrm{V}+=4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.5$ or $1.6 \mathrm{~V}^{\mathrm{e}}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	${ }^{\text {ron }}$	$\mathrm{V}+=4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA}$	Room		0.29	0.43	Ω
		$\mathrm{V}+=4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=2.1 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA}$			0.21		
			Full			0.53	
ron Flatness ${ }^{\text {d }}$	ron Flatness	$\begin{gathered} \mathrm{V}_{+}=4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \text { to } \mathrm{V}+, \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA} \end{gathered}$	Room		0.07	0.15	
ron Match ${ }^{\text {d }}$	${ }^{\text {r }}$ ON		Room		0.05		
Switch Off Leakage Current ${ }^{\text {d }}$	${ }^{1} \mathrm{NO}$ (off), $\mathrm{I}_{\mathrm{NC} \text { (offif) }}$	$\begin{gathered} \mathrm{V}_{+}=4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.3 \mathrm{~V} / 4.0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{COM}}=4.0 \mathrm{~V} / 0.3 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} \hline-10 \\ -100 \end{gathered}$		$\begin{gathered} 10 \\ 100 \end{gathered}$	nA
	$\mathrm{I}_{\text {COM (off) }}$		Room Full	$\begin{gathered} \hline-10 \\ -100 \end{gathered}$		$\begin{gathered} \hline 10 \\ 100 \end{gathered}$	
Channel-On Leakage Current ${ }^{\text {d }}$	$\mathrm{I}_{\text {Com(on) }}$	$\mathrm{V}+=4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=3.0 \mathrm{~V} / 4.0 \mathrm{~V}$	Room Full	$\begin{gathered} \hline-10 \\ -100 \end{gathered}$		$\begin{gathered} \hline 10 \\ 100 \end{gathered}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.6			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.5	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		6		pF
Input Current	$\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		320		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$	Room		-73		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-73		
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$, $\mathrm{f}=1 \mathrm{MHz}$	Room		100		pF
	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$		Room		100		
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (on) }}$		Room		230		
	$\mathrm{C}_{\mathrm{NC} \text { (on) }}$		Room		230		
Power Supply							
Power Supply Range	V+					4.3	V
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full			1.0	$\mu \mathrm{A}$

Notes
a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, not subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Vishay Siliconix
TYPICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Charge Injection vs. Analog Voltage

TEST CIRCUITS

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

$$
v_{\text {OUT }}=v_{\text {COM }}\left(\frac{R_{L}}{R_{\mathrm{L}}+R_{\mathrm{ON}}}\right)
$$

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection

TEST CIRCUITS

Figure 4. Off-Isolation

Figure 5. Channel Off/On Capacitance

[^0]
Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?72922.

