: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

TTL Compatible CMOS Analog Switches

Abstract

General Description Maxim's DG300-DG303 and DG300A-DG303A CMOS dual and quad analog switches combine low power operation with fast switching times and superior DC and AC switch characteristics. On-resistance is less than 50Ω and is essentially constant over the analog signal range. Device specifications are ideal for batterypowered circuitry. These switches are available in a variety of formats as outlined in the Pin Configurations section. The switch control logic inputs are fully TTL and CMOS compatible. Also featured are "break-before-make" switching and low charge injection. Maxim's DG300-DG303 and DG300A-DG303A families are electrically compatible and pin compatible with the original manufacturer's devices. All devices operate with power supplies ranging from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$. Single-supply operation is implemented by connecting V - to GND.

Applications

Portable Instruments
Low-Power Sample/Holds
Power-Supply Switching
Programmable Gain Amplifiers
SPDT and DPDT Functions
Process Control and Telemetry

Features

- Monolithic Low-Power CMOS
- Latchup Proof Construction
- Fully Compatible 2nd Source
- Low On-Resistance, <50
- Fast Switching Time
- V+ to V- Analog Signal Range
- Single-Supply Capability

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DG300C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
DG300C O	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP
DG300CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Wide SO
DG300CK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead CERDIP
DG300BWE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Wide SO
DG300BK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead CERDIP
DG300BA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 Lead Metal Can
DG300AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead CERDIP
DG300AA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Lead Metal Can

Ordering Information continued at end of data sheet.
Pin Configurations

DUAL SPST DG300/DG300A
V+ (SUBSTRATE AND CASE)

LOGIC	SWITCH
0	OFF
1	0 N

SPDT DG301/DG301A

DUAL DPST DG302/DG302A

DUAL SPDT DG303/DG303A

SWITCH STATES ARE FOR LOGIC "1" INPUTS (POSITIVE LOGIC).

TTL Compatible CMOS Analog Switches

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to V-
V+ (DG300-DG303)..36V
V+ (DG300A-DG303A) ... 44 V
GND ...25V
Digital Inputs, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$, (Note 1)....................... 4 V to ($\mathrm{V}++4 \mathrm{~V}$) or
30 mA , whichever occurs first
Current, Any Terminal Except S or D................................... 30 mA
Continuous Current, S or D.. 30 mA
(pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max) 100 mA
Storage Temperature (A \& B suffix)...
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(C suffix) \qquad $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS
($\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

	PARAMETER	SYMBOL	TEST CONDITIONS		$\begin{gathered} \text { DG300-DG303A } \\ \text { DG300A-DG303AA } \end{gathered}$			$\begin{gathered} \text { DG300-DG303B/C } \\ \text { DG300A-DG303AB/C } \end{gathered}$			UNITS
					MIN (Note 2)	$\begin{gathered} \hline \text { TYP } \\ \text { (Note 3) } \end{gathered}$	MAX	$\begin{gathered} \text { MIN } \\ \text { (Note 2) } \end{gathered}$	$\begin{gathered} \hline \text { TYP } \\ \text { (Note 3) } \end{gathered}$		
	Analog Signal Range	VANALOG	IS $=10 \mathrm{~mA}$,	V IN $=0.8 \mathrm{~V}$ or 4.0V	-15		+15	-15		+15	V
	Drain-Source	RDS(ON)	$\begin{gathered} \mathrm{V} \text { IN }=0.8 \mathrm{~V} \\ \text { or } \\ \mathrm{VIN}=0.8 \mathrm{~V} \end{gathered}$	IS $=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$		30	50		30	50	Ω
	ON-Resistance			IS $=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$		30	50		30	50	
	Source OFF-	IS(OFF)		$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$		0.1	1		0.1	5	nA
	Leakage Current			$V_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-1	-0.1		-5	-0.1		
	Drain OFF-	ID(OFF)		$V_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$		0.1	1		0.1	5	nA
	Leakage Current			$V_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-1	-0.1		-5	-0.1		
	Drain ON-	I (ON)		$V_{D}=V_{S}=14 \mathrm{~V}$		0.1	2		0.1	5	nA
	Leakage Current			$V_{D}=V_{S}=-14 \mathrm{~V}$	-2	-0.1		-5	-0.1		
	Input Current/	IINH	V IN $=5.0 \mathrm{~V}$		-1	-0.001		-1	-0.001		$\mu \mathrm{A}$
	Voltage High		V IN $=15 \mathrm{~V}$			0.001	1	$\begin{array}{ll} & 0.001 \\ -1 & -0.001\end{array}$			
$\underline{\mathbf{Z}}$	Input Current/ Voltage Low	IINL	V IN $=0 \mathrm{~V}$		-1	-0.001					$\mu \mathrm{A}$
$\stackrel{0}{0}$	Turn-ON Time	ton	See Switching Time Test Circuit			150	300		150	300	ns
	Turn-OFF Time	toff				130	250		130	250	ns
	Break-Before-Make Interval	ton - toff	See Break-Before-Make Time Test Circuit, DG301(A)/DG303(A) only			50			50		ns
	Charge Injection	Q	$\mathrm{CL}_{\mathrm{L}}=10 \mathrm{nF}, \mathrm{RGEN}=0 \Omega, \mathrm{VGEN}=0 \mathrm{~V}$			12			12		pC
	Source OFFCapacitance	Cs(OFF)	$\begin{gathered} f=1 \mathrm{MHz}, \\ \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \\ \text { or } \\ \mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V} \end{gathered}$	V S $=0 \mathrm{~V}$		14			14		pF
	Drain OFFCapacitance	$\mathrm{CD}_{\text {(}}^{\text {OFF }}$)		$V_{D}=0 \mathrm{~V}$		14			14		pF
	Channel ONCapacitance	$\begin{array}{\|c} \hline \mathrm{C}_{\mathrm{D}(\mathrm{ON})+} \\ \mathrm{CS}_{\mathrm{S}(\mathrm{ON})} \\ \hline \end{array}$		V S $=\mathrm{VD}=0 \mathrm{~V}$		40			40		pF
	Input Capacitance	CIN	$f=1 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		6			6		pF
				$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$		7			7		
	Off-Isolation (Note 4)		$\begin{aligned} & V_{I N}=0 V, R_{L}=1 \mathrm{k} \Omega \\ & V_{S}=1 V_{\text {RMS }}, f=500 \mathrm{kHz} \end{aligned}$			62			62		dB
	Crosstalk (Channel-to-Channel)					74			74		dB

TTL Compatible CMOS Analog Switches

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

	PARAMETER	SYMBOL	TEST CONDITIONS	$\begin{array}{r} \text { DG3 } \\ \text { DG30 } \end{array}$	$\begin{aligned} & \text { 300-DG3 } \\ & \text { JOA-DG3 } \end{aligned}$	$\begin{aligned} & \hline 03 \mathrm{~A} \\ & \text { 03AA } \end{aligned}$	$\begin{array}{\|r\|} \hline \text { DG30 } \\ \text { DG300 } \\ \hline \end{array}$	$\begin{aligned} & \text { 00-DG30 } \\ & \text { JA-DG30 } \end{aligned}$	$\begin{aligned} & 3 B / C \\ & 3 A B / C \end{aligned}$	
				MIN (Note 2)	$\begin{gathered} \hline \text { TYP } \\ \text { (Note 3) } \\ \hline \end{gathered}$	MAX	$\begin{array}{\|c\|} \hline \text { MIN } \\ \text { (Note 2) } \\ \hline \end{array}$	$\begin{gathered} \hline \text { TYP } \\ \text { (Note 3) } \\ \hline \end{gathered}$	MAX	
$\begin{aligned} & \grave{\lambda} \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \end{aligned}$	Positive Supply Current	I+	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}$ (one input) (all others = 0)		0.23	0.5		0.23	0.5	mA
	Negative Supply Current	I-		-10	-0.001		-10	-0.001		$\mu \mathrm{A}$
	Positive Supply Current	$1+$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ (all inputs)		0.001	10		0.001	10	$\mu \mathrm{A}$
	Negative Supply Current	I-		-10	-0.001		-10	-0.001		$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS (Over Temperature)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\right.$ Over Temperature Range, unless otherwise noted.)

	PARAMETER	SYMBOL	TEST CONDITIONS		$\begin{gathered} \hline \text { DG300-DG303A } \\ \text { DG300A-DG303AA } \end{gathered}$		DG300-DG303B/CDG300A-DG303AB/C		UNITS
					$\begin{array}{\|c\|} \hline \text { MIN } \\ \text { (Note 2) } \\ \hline \end{array}$	TYP MAX (Note 3)	MIN (Note 2)	TYP MAX (Note 3)	
	Analog Signal Range	VANALOG	IS $=-10 \mathrm{~mA}$,	$\mathrm{V} \mathrm{IN}=0.8 \mathrm{~V}$ or 4.0V	-15	+15	-15	+15	V
	Drain-Source	RDS(ON)	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \\ \quad \text { or } \\ \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \end{gathered}$	$\mathrm{IS}_{S}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$		75		75	Ω
	ON-Resistance			IS $=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$		75		75	
	Source OFF-	IS(OFF)		$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$		100		100	nA
	Leakage Current			$V_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-100		-100		
	Drain OFF-	ID(OFF)		$\mathrm{V}_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$		100		100	nA
	Leakage Current			$V_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-100		-100		
	Drain ON-	$\mathrm{Id}(\mathrm{ON})$		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=14 \mathrm{~V}$		200		200	nA
	Leakage Current			$V_{D}=V_{S}=-14 \mathrm{~V}$	-200		-200		
号	Input Current/	IINH	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$		-1		-10		$\mu \mathrm{A}$
	Voltage High		$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$			1		10	
	Input Current/ Voltage Low	IINL	V IN $=0 \mathrm{~V}$		-1		-10		$\mu \mathrm{A}$
$\begin{aligned} & \text { خ } \\ & \text { à } \\ & \stackrel{n}{2} \end{aligned}$	Positive Supply Current	I+	V IN $=4 \mathrm{~V}$ (one input) (all others = 0)			1		1	mA
	Negative Supply Current	I-			-100		-200		mA
	Positive Supply Current	I+	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ (all inputs)			100		200	$\mu \mathrm{A}$
	Negative Supply Current	I-			-100		-200		$\mu \mathrm{A}$
	Turn-ON Time	ton	See Switching Time Test Circuit			500			ns
	Turn-OFF Time	toFF				450			ns

TTL Compatible CMOS Analog Switches

ELECTRICAL CHARACTERISTICS (Over Temperature) (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\right.$ Over Temperature Range, unless otherwise noted.)

Note 1: Signals on S_{X}, D_{X}, or $I N_{X}$ exceeding $V+$ or V - are clamped by internal diodes. Limit diode forward current to maximum current ratings.
Note 2: The algebraic convention whereby the most negative value is a minimum, and the most positive value is a maximum is used in this data sheet.
Note 3: Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
Note 4: $O F F-$ isolation $=20 \log \frac{V_{S}}{V_{D}}, V_{S}=$ input to $O F F$ switch, $V_{D}=$ output.
Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

OFFISOLATION AND INSERTION LOSS vs. FREQUENCY

SWITCHING TIME
vs. TEMPERATURE

TTL Compatible CMOS Analog Switches

Figure 1. Charge Injection Test Circuit

Figure 2. Break-Before-Make Time Test Circuit SPDT (DG301(A), DG303(A)

Figure 3. Switching Time Test Circuit

TTL Compatible CMOS Analog Switches

Table 1. Typical Single Supply Parameters

PARAMETER		V+ SUPPLY VOLTAGE (V- = 0V)			
		+10V	+15V	+20V	+30V
Switching Time ($\mathrm{RL}=1 \mathrm{k} \Omega$)	ton	190ns	150ns	110ns	70ns
	toff	40ns	40ns	40ns	40ns
On-Resistance	$\mathrm{V}_{\text {SIGNAL }}=+1 \mathrm{~V}$	71Ω	51Ω	42Ω	31Ω
	$\mathrm{V}_{\text {SIGNAL }}=\mathrm{V}+\mathrm{l} 2$	77Ω	54Ω	43Ω	30Ω
	$\mathrm{V}_{\text {SIGNAL }}=\mathrm{V}_{+}$	84Ω	63Ω	54Ω	43Ω
Input Logic Levels		0.8V, 4.0V	0.8V, 4.0 V	0.8V, 4.0V	0.8V, 4.5 V

Applications Information

All DG300 family switches will operate with $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ power supplies. They can also be used with single-ended power supplies ranging from +10 V to +30 V where the V terminal is connected to ground. In either case, analog signals ranging from $\mathrm{V}+$ to V - can be switched.
The on-resistance variation with analog signal and supply voltage is shown in the Typical Operating Characteristics. The temperature coefficient of RON is typically $0.5 \% /{ }^{\circ} \mathrm{C}$. Typical on-resistance matching from channel to channel is 10%. In addition, Table 1 outlines some typical parameters for single-supply operation.

Table 2. Charge Injection ($\pm 15 \mathrm{~V}$ Supplies)

ANALOG INPUT (V)	INJECTED Q (pC)
+10	4
+5	8
0	12
-5	8
-10	5

The charge injection test circuit is shown in Figure 1. Table 2 lists the typical injected charge for DG300 series switches with various input voltages.

Chip Topography

DIE PAD	DG300 DG300A	DG301 DG301A	DG302/DG303 DG302A/DG303A
a	N.C.	N.C.	S3
b	D1	D1	D3
c	N.C.	S1	D1
d	S1	N.C.	S1
e	IN1	IN1	IN1
f	N.C.	N.C.	N.C.
g	GND	GND	GND
h	V-	V-	V-
i	IN2	N.C.	IN2
j	S2	N.C.	S2
k	N.C.	N.C.	D2
l	D2	S2	D4
m	N.C.	D2	S4
n	V+	V+	V+

TTL Compatible CMOS Analog Switches

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
DG300AC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
DG300ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP
DG300ACWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Wide SO
DG300ACK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead CERDIP
DG300ABWE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Wide SO
DG300ABK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead CERDIP
DG300ABA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 Lead Metal Can
DG301C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
DG301CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP
DG301CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Wide SO
DG301CK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead CERDIP
DG301BWE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Wide SO
DG301BK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead CERDIP
DG301BA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 Lead Metal Can
DG301AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead CERDIP
DG301AA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Lead Metal Can
DG301AC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
DG301ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP
DG301ACWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Wide SO
DG301ACK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead CERDIP
DG301ABWE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Wide SO
DG301ABK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead CERDIP
DG301ABA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 Lead Metal Can
DG302C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
DG302CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP

PART	TEMP RANGE	PIN-PACKAGE
DG302CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Wide SO
DG302CK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead CERDIP
DG302BWE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Wide SO
DG302BK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead CERDIP
DG302AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead CERDIP
DG302AC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
DG302ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP
DG302ACWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Wide SO
DG302ACK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead CERDIP
DG302ABWE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Wide SO
DG302ABK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead CERDIP
DG303C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
DG303CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP
DG303CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Wide SO
DG303CK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead CERDIP
DG303BWE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Wide SO
DG303BK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead CERDIP
DG303AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead CERDIP
DG303AC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
DG303ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP
DG303ACWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Wide SO
DG303ACK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead CERDIP
DG303ABWE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Wide SO
DG303ABK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead CERDIP

TTL Compatible CMOS Analog Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

TTL Compatible CMOS Analog Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

TTL Compatible CMOS Analog Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

TTL Compatible CMOS Analog Switches

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$2 / 88$	Initial release	-
1	$6 / 99$	Errors in the test limits and pin configuration	-
2	$9 / 04$	Fixed Truth Table	-
3	$11 / 07$	Correction to pin configuration	1

