

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CMOS Analog Switches

General Description

Maxim's DG304-DG307 and DG304A-DG307A CMOS dual and quad analog switches combine low power operation with fast switching times and superior DC and AC switch characteristics. On resistance is less than 50Ω and is essentially constant over the analog signal range. Device specifications are ideal for battery powered circuitry.

These switches are available in a variety of formats as outlined below in the Pin Configurations section. The switch control logic inputs are compatible with CMOS logic. Also featured are "break-before-make" switching and low charge injection.

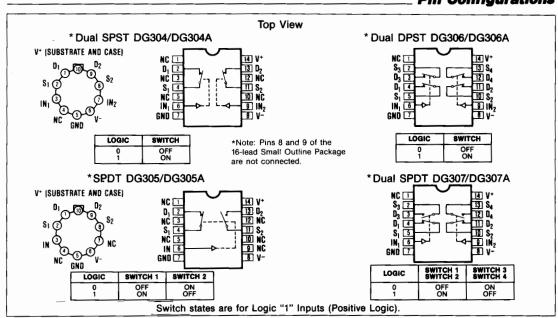
Maxim's DG304-DG307 and DG304A-DG307A families are electrically compatible and pin compatible with the original manufacturer's devices. All devices will operate with power supplies ranging from ±5V to ±18V. Single supply operation is implemented by connecting V⁻ to GND.

Applications

Portable Instruments Low Power Sample/Holds Power Supply Switching Programmable Gain Amplifiers SPDT and DPDT Functions **Process Control and Telemetry**

Monolithic Low Power CMOS

- **Latch-Up Proof Construction**
- **Fully Compatible 2nd Source**
- Low On Resistance, $<50\Omega$
- **Fast Switching Time**
- V⁺ to V⁻ Analog Signal Range
- Single Supply Capability


Ordering Information

Features

PART	TEMP. RANGE	PACKAGE
DG304C/D	0°C to +70°C	Dice
DG304CJ	0°C to +70°C	14 Lead Plastic DIP
DG304CWE	0°C to +70°C	16 Lead Wide SO
DG304CK	0°C to +70°C	14 Lead CERDIP
DG304BWE	-25°C to +85°C	16 Lead Wide SO
DG304BK	-25°C to +85°C	14 Lead CERDIP
DG304BA	-25°C to +85°C	10 Lead Metal Can
DG304AK	-55°C to +125°C	14 Lead CERDIP
DG304AA	-55°C to +125°C	10 Lead Metal Can

Ordering Information continued at end of data sheet.

Pin Configurations

/VIXI/VI

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to V
V ⁺ (DG304-DG307) 36V
V ⁺ (DG304A-DG307A) 44V
GND 25V
Digital Inputs, V_S , V_D (Note 1)4V to $(V^+ + 4V)$ or
30mA, whichever occurs first
Current, Any Terminal Except S or D 30mA
Continuous Current, S or D 30mA
(Pulsed at 1msec, 10% duty cycle max) 100mA
Storage Temperature (A & B Suffix)65°C to 150°C
(C Suffix)65°C to 125°C

Operating Temperature (A Suffix)55°C to 1	25°C
(B Suffix)25°C to	85° C
(C Suffix) 0°C to	70° C
Lead Temperature (Soldering 10 sec.)+3	300°C
Power Dissipation*	
Cerdip (K) (Derate 11mW/°C above 75°C) 82	25mW
Plastic DIP (J) (Derate 6.5mW/°C above 25°C) 47	70mW
Metal Can (A) (Derate 6mW/°C above 75°C) 45	50mW

Device mounted with all leads soldered or welded to PC board.

Stresses listed under "Absolute Maximum Ratings" may be applied (one at a time) to devices without resulting in permanent damage. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (V* = +15V, V" = -15V, GND = 0V, T_A = 25°C, unless otherwise indicated)

			TEST CONDITIONS			304-DG3 4A-DG3			04-DG30 A-DG30			
	PARAMETER	SYMBOL	TEST CONDITIONS			MIN (Note 2)	TYP (Note 3)	MAX	MIN (Note 2)	TYP (Note 3)	MAX	UNITS
	Analog Signal Range	V _{ANALOG}	i _s = 10mA,	V _{in} =	3.5V or 11.0V	-15		15	-15		15	٧
	Drain-Source			-	-10 mA, $V_D = 10V$		30	- 50		30	50	Ω
ļ	ON Resistance	r _{DS(on)}		I _s =	10mA, $V_D = -10V$		30	50		30	50	` ''
돐	Source OFF	1			14V, V _D = -14V		0.1	11		0.1	5	
SWITCH	Leakage Current	I _{S(off)}			-14V, V _D = 14V	-1	-0.1		-5	-0.1		
S	Drain OFF	I _{D(off)}	V _{in} = 11.0V	V _s =	-14V, V _D = 14V		0.1	1		0.1	5	nA
	Leakage Current	'D(off)			14V, V _D = -14V	-1	-0.1		-5	-0.1		, ,,,
	Drain ON_	I _{D(on)}			= V _S = 14V		0.1	1		0.1	5	
<u> </u>	Leakage Current	-D(on)		V _D =	= V _S = -14V	-2	-0.1		-5	-0.1		
ا ا	Input Current/	I _{INH}	V _{in} = 5.0V			-1	-0.001		-1	-0.001		
INPUT	Voltage High	INFI	V _{in} = 15V				0.001	1		0.001	1	μA
Z	Input Current/ Voltage Low	I _{INL}	V _{in} = 0V	V _{in} = 0V		-1	-0.001		-1	-0.001		,
	Turn-ON Time	t _{on}	See Switch	nina T	Fime Test Circuit		110	250		110	250]
	Turn-OFF Time	t _{off}	OCC OWNOR	9	Time rest official		70	150		70	150	
	Break-Before-Make Interval	t _{on} -t _{off}	Time Test	See Break-Before-Make Time Test Circuit DG305(A)/DG307(A) Only			50			50		ns
	Charge Injection	Q	C _L = 10nF,	R _{gen}	= 0Ω , V_{gen} = $0V$		12			12		рC
2	Source OFF Capacitance	C _{S(off)}	f = 1MH:	Z.	V _S = 0V	_	14			14		
DYNAMIC	Drain OFF Capacitance	C _{D(off)}	V _{in} = 3.5 or	v	V _D = 0V		14			14		ا ۔ ا
	Channel ON Capacitance	C _{D(on)} + C _{S(on)}	V _{in} = 11.0) V	$V_S = V_D = 0V$		40			40		pF
	Input Capacitance	C _{in}	f = 1MH		V _{in} = 0V		6			6]
	при Сараспапсе	O _{in}	1 - 110117	_	V _{in} = 15V		7			7		
	Off Isolation (Note 4)		V = 0V =		ارم س		62			62		
	Crosstalk (Channel to Channel)		V _{in} = 1 V _{RM}	$V_{in} = 0V, R_{L} = 1k\Omega$ $V_{S} = 1 V_{RMS}, f = 500kHz$			74			74		dB

(See Notes next page).

ELECTRICAL CHARACTERISTICS (Continued)

(V* = +15V, V" = -15V, GND = 0V, TA = 25°C, unless otherwise indicated)

	PARAMETER	SYMBOL	BOL TEST CONDITIONS DG304-DG307		DG304-DG307B/C DG304A-DG307AB/C	UNITS
	PARAMETER	STMBOL	TEST CONDITIONS	MIN TYP MAX (Note 2) (Note 3)	MIN TYP MAX (Note 2) (Note 3)	OMIS
	Positive Supply Current	I ⁺	V = 15 0V (All Innuts)	0.001 10	0.001 10	
PLY	Negative Supply Current	r	V _{in} = 15.0V (All Inputs)	-10 -0.001	-10 -0.001	
SUPPLY	Positive Supply Current	I ⁺	V = OV (All Inputs)	0.001 10	0.001 10	μΑ
	Negative Supply Current	1-	V _{in} = 0V (All Inputs)	-10 -0.001	-10 -0.001	

ELECTRICAL CHARACTERISTICS (Over Temperature) (V⁺ = +15V, GND = 0V, T_A = Over Temperature Range, unless otherwise noted)

	PARAMETER	SYMBOL	TEC	DG304-DG307 DG304A-DG307						UNITS	
	PARAMETER	STMBUL	159		MIN (Note 2)	TYP (Note 3)	MAX	MIN (Note 2)	TYP (Note 3)	MAX	UNIIS
	Analog Signal Range	V _{ANALOG}	I _S = 10mA	, V _{in} = 3.5V or 11.0V	-15		15	-15		15	V
	Drain-Source ON Resistance	r _{DS(on)}		$I_S = -10\text{mA}, V_D = 10V$ $I_S = 10\text{mA}, V_D = -10V$			75 75			75 75	Ω
SWITCH	Source OFF Leakage Current	I _{S(off)}	V _{in} = 3.5V	V _S = 14V, V _D = -14V V _S = -14V, V _D = 14V	-100		100	-100		100	
SW	Drain OFF Leakage Current	I _{D(off)}		V _S = -14V, V _D = 14V V _S = 14V, V _D = -14V	-100		100	-100		100	nA
	Drain ON Leakage Current	I _{D(on)}		$V_D = V_S = 14V$ $V_D = V_S = -14V$	-200		100	-200		100	
INPUT	Input Current/ Voltage High	I _{INH}	V _{in} = 5.0V V _{in} = 15V		-1		1	-10		10	
Ä	Input Current/ Voltage Low	I _{INL}	V _{in} = 0V		-1			-10			μΑ
	Positive Supply Current	I ⁺	V - 45 0V (A	/ (All Inputs)			100			200	
SUPPLY	Negative Supply Current	1-	v _{in} - 15.00	(All lilputs)	-100			-200			
SUF	Positive Supply Current	1+	V - 0V (All Innuts)			100			200	μΑ
	Negative Supply Current	ı	v _{in} – UV ()	V _{in} = 0V (All Inputs)				-200			

Note 1: Signals on S_X, D_X, or IN_X exceeding V⁺ or V⁻ will be clamped by internal diodes. Limit diode forward current to maximum current ratings.

Note 2: The algebraic convention whereby the most negative value is a minimum, and the most positive value is a maximum is used in this data sheet.

Note 3: Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Note 4: OFF isolation = $20 \log \frac{V_S}{V_D}$, V_S = input to OFF switch, V_D = Output.

Typical Operating Characteristics rds(on) vs. Vd AND POWER SUPPLY VOLTAGE rds(ON) vs. VD AND TEMPERATURE OFF ISOLATION AND INSERTION LOSS vs. FREQUENCY 100 V+ = +15V 100 V = -15V $V^{+} = +10V$, $V^{-} = -10V$ 2 8 8 80 = +7.5V, V- = -7.5V 9 R_L = 100Ω INSERTION = +5V, V- = -5V 80 ISOLATION LOSS INSERTION 60 60 rosian) (OHMS) ros(on) (OHMS) 60 OFF 40 40 SSOT 40 _55°C **≊**|**≥** 20 V+ = +15V, V-20 $C_{LOAO} = 3pF$ V_S = 1 V_{RMS} 20 0 111111111 n -10 -5 10 108 -15 -10 -5 0 10 15 -15 0 10 105 DRAIN VOLTAGE (VOLTS) DRAIN VOLTAGE (VOLTS) FREQUENCY (Hz) SWITCHING TIME **SWITCHING TIME** SWITCHING TIME vs. **NEGATIVE SUPPLY VOLTAGE** vs. TEMPERATURE vs. POSITIVE SUPPLY VOLTAGE 240 240 220 SWITCHING TIME/BREAK-BEFORE-MAKE TIME 200 = -15V TA = +25°C V+ = +15V TA = +25°C 180 V+ = +15V V = -15V200 200 V_{INH} = +15.0V V_{INL} = 0V V_{INH} = +15.0V V_{INL} = 0V VINH = V+ <u>≅</u> 160 VINL = OV tow 140 160 TIME 160 120 SWITCHING 100 120 120 80 60 ton 80 80 toff 40 20 40 40 TEMPERATURE (°C) POSITIVE SUPPLY VOLTAGE (VOLTS) NEGATIVE SUPPLY VOLTAGE (VOLTS)

Test Circuits

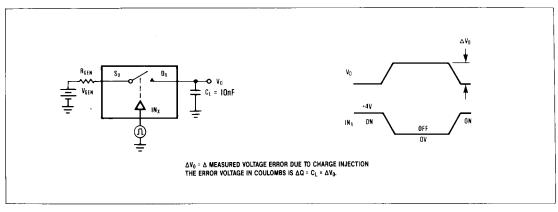


Figure 1. Charge Injection Test Circuit.

Test Circuits (Continued)

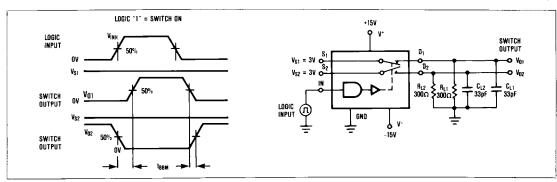


Figure 2. Break-Before-Make Time Test Circuit SPDT DG305(A), DG307(A).

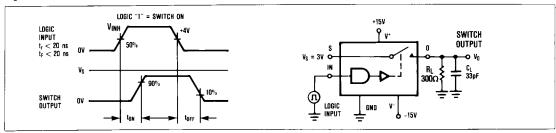


Figure 3. Switching Time Test Circuit.

Application Information

All DG304 family switches will operate with ± 5 to ± 15 V power supplies. They can also be used with single ended power supplies ranging from +10V to +30V where the V⁻ terminal is connected to ground. In either case analog signals ranging from V⁺ to V⁻ can be switched.

The on resistance variation with analog signal and supply voltage is shown in the Typical Operating Characteristics graphs. The temperature coefficient of R_{ON} is typically 0.5%/°C. Typical on resistance matching from channel to channel is 10%. In addition, Table 1 outlines some typical parameters for single supply operation.

Table 1. Typical Single Supply Parameters

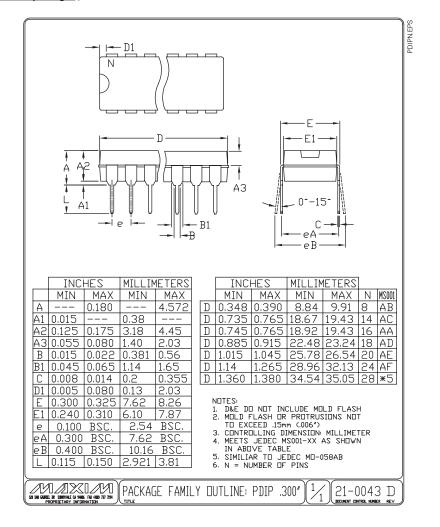
		V* SUPPLY VOI	TAGE (V = 0V)	
	+10V	+15V	+20V	+30V
Switching Time (R _L = 1k Ω) t_{ON} t_{OFF}	220ns 60ns	180ns 40ns	165ns 30ns	110ns 20ns
On Resistance V _{SIGNAL} = +1V V _{SIGNAL} = V ⁺ /2 V _{SIGNAL} = V ⁺	71Ω 77Ω 84Ω	51Ω 54Ω 63Ω	42Ω 43Ω 54Ω	31Ω 30Ω 43Ω
Input Logic Levels	3.5V, 11.0V	3.5V, 11.0V	3.5V, 12.5V	3.5V, 22.0V

The charge injection test circuit is shown in Figure 1. Table 2 lists the typical injected charge for DG304 series switches with various input voltages.

Table 2. Charge Injection (±15V Supplies)

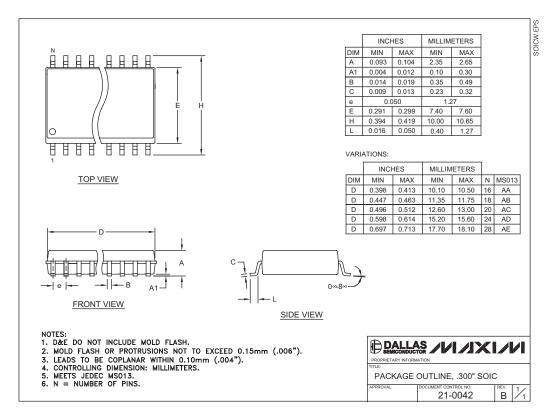
ANALOG INPUT	INJECTED Q
+10V	4pC
+5V	8pC
l ov	12pC
-5V	8pC
-10V	5pC

Ordering Information (continued)

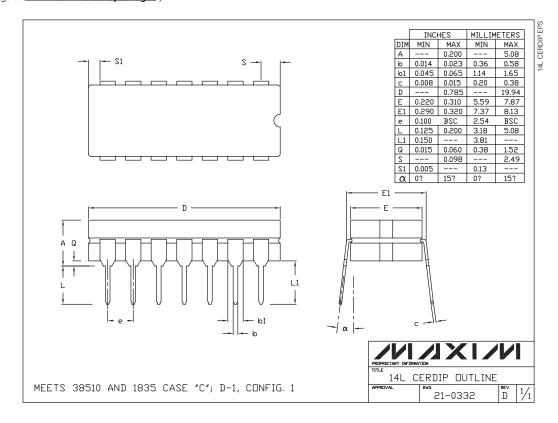

PART	TEMP. RANGE	PACKAGE
DG304AC/D	0°C to +70°C	Dice
DG304ACJ	0°C to +70°C	14 Lead Plastic DIP
DG304ACWE	0°C to +70°C	16 Lead Wide SO
DG304ACK	0°C to +70°C	14 Lead CERDIP
DG304ABWE	-25°C to +85°C	16 Lead Wide SO
DG304ABK	-25°C to +85°C	14 Lead CERDIP
DG304ABA	-25°C to +85°C	10 Lead Metal Can
DG305C/D	0°C to +70°C	Dice
DG305CJ	0°C to +70°C	14 Lead Plastic DIP
DG305CWE	0°C to +70°C	16 Lead Wide SO
DG305CK	0°C to +70°C	14 Lead CERDIP
DG305BWE	-25°C to +85°C	16 Lead Wide SO
DG305BK	-25°C to +85°C	14 Lead CERDIP
DG305BA	-25°C to +85°C	10 Lead Metal Can
DG305AK	-55°C to +125°C	14 Lead CERDIP
DG305AA	-55°C to +125°C	10 Lead Metal Can
DG305AC/D	0°C to +70°C	Dice
DG305ACJ	0°C to +70°C	14 Lead Plastic DIF
DG305ACWE	0°C to +70°C	16 Lead Wide SO
DG305ACK	. 0°C to +70°C	14 Lead CERDIP
DG305ABWE	-25°C to +85°C	16 Lead Wide SO
DG305ABK	-25°C to +85°C	14 Lead CERDIP
DG305ABA	-25°C to +85°C	10 Lead Metal Can

PART	TEMP RANGE	PACKAGE
DG306C/D	0°C to +70°C	Dice
DG306CJ	0°C to +70°C	14 Lead Plastic DIP
DG306CWE	0°C to +70°C	16 Lead Wide SO
DG306CK	0°C to +70°C	14 Lead CERDIP
DG306BWE	-25°C to +85°C	16 Lead Wide SO
DG306BK	-25°C to +85°C	14 Lead CERDIP
DG306AK	-55°C to +125°C	14 Lead CERDIP
DG306AC/D	0°C to +70°C	Dice
DG306ACJ	0°C to +70°C	14 Lead Plastic DIP
DG306ACWE	0°C to +70°C	16 Lead Wide SO
DG306ACK	0°C to +70°C	14 Lead CERDIP
DG306ABWE	-25°C to +85°C	16 Lead Wide SO
DG306ABK	-25°C to +85°C	14 Lead CERDIP
DG307C/D	0°C to +70°C	Dice
DG307CJ	0°C to +70°C	14 Lead Plastic DIF
DG307CWE	0°C to +70°C	16 Lead Wide SO
DG307CK	0°C to +70°C	14 Lead CERDIP
DG307BWE	-25°C to +85°C	16 Lead Wide SO
DG307BK	-25°C to +85°C	14 Lead CERDIP
DG307AK	-55°C to +125°C	14 Lead CERDIP
DG307AC/D	0°C to +70°C	Dice
DG307ACJ	0°C to +70°C	14 Lead Plastic DIF
DG307ACWE	0°C to +70°C	16 Lead Wide SO
DG307ACK	0°C to +70°C	14 Lead CERDIP
DG307ABWE	-25°C to +85°C	16 Lead Wide SO
DG307ABK	-25°C to +85°C	14 Lead CERDIP

6 MAXIM


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)


Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

is a registered trademark of Maxim Integrated Products.