

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

Maxim's redesigned DG401/DG403/DG405 analog switches now feature guaranteed low on-resistance matching between switches (2Ω max) and guaranteed on-resistance flatness over the signal range (3 Ω max). These low on-resistance switches (20 Ω typ) conduct equally well in either direction and are guaranteed to have low charge injection (15pC max). The new design offers lower off leakage current over temperature (less than 5nA at $+85^{\circ}C$).

The DG401/DG403/DG405 are dual, high-speed switches. The single-pole/single-throw DG401 and double-pole/single-throw DG405 are normally open dual switches. The dual, single-pole/double-throw DG403 has two normally open and two normally closed switches. Switching times are 150ns max for ton and 100ns max for tOFF, with a maximum power consumption of 35µW. These devices operate from a single +10V to +30V supply, or bipolar supplies of ±4.5V to ±20V. Maxim's improved DG401/DG403/DG405 are fabricated with a 44V silicon-gate process.

Applications

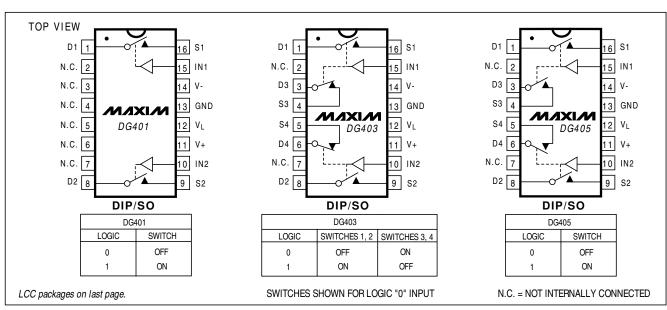
Sample-and-Hold Circuits Guidance and Control Systems **Communications Systems** Battery-Operated Systems Military Radios

Test Equipment Heads-Up Displays PBX, PABX Audio Signal Routing

New Features

- ◆ Plug-In Upgrade for Industry-Standard DG401/DG403/DG405
- ♦ Improved r_{DS(ON)} Match Between Channels (2Ω max)
- ♦ Guaranteed rFLAT(ON) Over Signal Range (3Ω max)
- ♦ Improved Charge Injection (15pC max)
- ♦ Improved Off Leakage Current Over Temperature (<5nA at +85°C)

Existing Features


- ♦ Low rds(ON) (30 Ω max)
- ♦ Single-Supply Operation +10V to +30V Bipolar-Supply Operation ±4.5V to ±20V
- ♦ Low Power Consumption (35µW max)
- ♦ Rail-to-Rail Signal Handling Capability
- **♦ TTL/CMOS-Logic Compatible**

Ordering Information

PART	TEMP. RANGE	PIN PACKAGE
DG401CJ	0°C to +70°C	16 Plastic DIP
DG401CY	0°C to +70°C	16 Narrow SO
DG401C/D	0°C to +70°C	Dice*

Ordering Information continued on last page. *Contact factory for dice specifications.

Pin Configurations/Functional Diagrams/Truth Tables

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Voltage Referenced to V-	
V+	44V
GND	25V
V _L	(GND - $0.3V$) to $(V+ + 0.3V)$
Digital Inputs, V _S , V _D (Note 1)(V 2V) to (V+ + 2V) or 20mA
	(whichever occurs first)
Continuous Current (any terminal).	30mA
Continuous Current, S or D	20mA
Peak Current, S or D	
(pulsed at 1ms, 10% duty cycle	max)100mA

Continuous Power Dissipation ($T_A = +70^{\circ}C$)
16-Pin Plastic DIP(derate 10.53mW/°C above +70°C)842mW
16-Pin Narrow SO (derate 8.70mW/°C above +70°C)696mW
16-Pin CERDIP (derate 10.00mW/°C above 70°C)800mW
20-Pin LCC (derate 9.09mW/°C above +70°C)727mW
Operating Temperature Ranges
DG40_C0°C to +70°C
DG40_D40°C to +85°C
DG40_A55°C to +125°C
Storage Temperature Range65°C to +150°C
_ead Temperature (soldering, 10sec)+300°C

Note 1: Signals on S, D or IN exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V+ = 15V, V- = -15V, V_L = +5V, GND = 0V, V_{INH} = +2.4V, V_{INL} = +0.8V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.)$

PARAMETER	SYMBOL	COND	TEMP. RANGE	MIN	TYP (Note 2)	MAX	UNITS	
SWITCH								
Analog Signal Range	Vanalog	(Note 3)			-15		+15	V
		V+ = 13.5V, V- = -13.5V, I _S = -10mA, V _D = ±10V,	T _A = +25°C	C,D		20	45	Ω
Drain-Source				Α		20	30	
On-Resistance	rDS(ON)	$V_D = \pm 10V$, $V_{INH} = 2.4V$.	Ta Tanu to Tanay	C,D			55	1 22
		VINL = 0.8V	$T_A = T_{MIN}$ to T_{MAX}	Α			45	1
Drain-Source On-Resistance Match	Δr _{DS} (ON)	V+ = 15V, V- = -15V, I _S = -10mA, V _D = ±10V	T _A = +25°C	C, D, A		0.5	2	Ω
Between Channels (Note 4)			$T_A = T_{MIN}$ to T_{MAX}	0, b, A			3	
On-Resistance Flatness	rFLAT(ON)	V+ = 15V, V- = -15V, I _S = -10mA, V _D = ±5V, 0V	T _A = +25°C	C, D, A			3	Ω
(Note 4)			T _A = T _{MIN} to T _{MAX}	- C, D, A			6	
Source-Off Leakage Current (Note 7)	IS(OFF)	$V_{+} = 16.5V, V_{-} = -16.5V, V_{D} = \mp 15.5V, V_{S} = \pm 15.5V,$	T _A = +25°C	C, D	-0.50	-0.01	0.50	4
				Α	-0.25	-0.01	0.25	
			$T_A = T_{MIN}$ to T_{MAX}	C, D	-5		5	
,				Α	-10		10	
Drain-Off Leakage Current (Note 7)	I _{D(OFF)}	$V+ = 16.5V, V- = -16.5V, V_D = \pm 15.5V, V_S = \mp 15.5V$	T _A = +25°C	C, D	-0.50	-0.01	0.50	
				Α	-0.25	-0.01	0.25	nA
			T _A = T _{MIN} to T _{MAX}	C, D	-5		5	
				Α	-10		10	
Drain-On Leakage Current	I _{D(ON)} or I _{S(ON)}	$V+ = 16.5V, V- = -16.5V, V_D = \pm 15.5V, V_S = \pm 15.5V$	TA = +25°C	C, D	-1.0	-0.04	1.0	nA
				Α	-0.4	-0.04	0.4	
(Note 7)			TA = TMIN to TMAX	C, D	-10		10	
/			·// ·/wii/ to ·/wi//	Α	-20		20	

ELECTRICAL CHARACTERISTICS (continued)

 $(V+ = 15V, V- = -15V, V_L = +5V, GND = 0V, V_{INH} = +2.4V, V_{INL} = +0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP (Note 2)	MAX	UNITS
INPUT				•			
Input Current with Input Voltage High	linh	V _{IN} = 2.4V, all others = 0.8V		-1.0	0.005	1.0	μΑ
Input Current with Input Voltage Low	linl	V _{IN} = 0.8V, all others = 2	.4V	-1.0	0.005	1.0	μΑ
SUPPLY				•			•
Power-Supply Range				±4.5		±20	V
Positive Supply Current	l+	All channels on or off, V+ = 16.5V, V- = -16.5V,	T _A = +25°C	-1.0	0.01	1.0	μА
Toolivo cappiy carron		$V_{IN} = 0V \text{ or } 5V$	T _A = T _{MIN} to T _{MAX}	-5.0		5.0	- μΑ
Negative Supply Current	l-	All channels on or off, V+ = 16.5V, V- = -16.5V,	T _A = +25°C	-1.0	0.01	1.0	μА
Trogative Supply Salitonia	·	V _{IN} = 0V or 5V	TA = TMIN to TMAX	-5.0		5.0	
Logic Supply Current	IL	V+ = 16.5V, V- = -16.5V,	T _A = +25°C	-1.0	0.01	1.0	- μΑ
Logic Supply Surrent	"-		TA = TMIN to TMAX	-5.0		5.0	
Ground Current	IGND	All channels on or off, V+ = 16.5V, V- = -16.5V,	T _A = +25°C	-1.0	0.01	1.0	μΑ
Circuit Guirent	IGND	V _{IN} = 0V or 5V	$T_A = T_{MIN}$ to T_{MAX}	-5.0		5.0	μΛ
DYNAMIC				·			
Turn-On Time	ton	Figure 2	$T_A = +25^{\circ}C$		100	150	ns
Turn-Off Time	toff	Figure 2	T _A = +25°C		60	100	ns
Break-Before-Make Delay (Note 3)	t _D	DG403 only, Figure 3	T _A = +25°C	10	20		ns
Charge Injection (Note 3)	Q	$C_L = 1.0$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0\Omega$, Figure 4	T _A = +25°C		10	15	рС
Off Isolation (Note 5)	OIRR	$R_L = 100\Omega$, $C_L = 5pF$, $f = 1MHz$, Figure 5	T _A = +25°C		72		dB
Crosstalk (Note 6)		$R_L = 50\Omega$, $C_L = 5pF$, $f = 1MHz$, Figure 6	T _A = +25°C		90		dB
Source-Off Capacitance	C _{S(OFF)}	f = 1MHz, Figure 7	T _A = +25°C		12		pF
Drain-Off Capacitance	C _D (OFF)	f = 1MHz, Figure 7	T _A = +25°C		12		pF
Channel-On Capacitance	C _{D(ON)} or C _{S(ON)}	f = 1MHz, Figure 8	T _A = +25°C		39		pF

- **Note 2:** This data sheet uses the algebraic convention, where the most negative value is a minimum and the most positive value is a maximum.
- Note 3: Guaranteed by design.
- Note 4: $\Delta r_{ON} = \Delta r_{ON}(max) \Delta r_{ON}(min)$. On-resistance match between channels and flatness are guaranteed only with specified voltages. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured at the extremes of the specified analog signal range.
- **Note 5:** Off isolation = $20\log (V_S/V_D)$, $V_D = \text{output}$, $V_S = \text{input to off switch}$.
- Note 6: Between any two switches.
- Note 7: Leakage parameters I_{S(OFF)}, I_{D(OFF)}, and I_{D(ON)} are 100% tested at the maximum rated hot temperature and guaranteed by correlation at +25°C.

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

Improved, Dual, High-Speed Analog Switches

_Typical Operating Characteristics

ON-RESISTANCE vs. VD ON-RESISTANCE vs. VD AND ON-RESISTANCE vs. VD **TEM PERATURE (DUAL SUPPLIES)** (DUAL SUPPLIES) (SINGLE SUPPLY) 55 35 140 A: $V + = 5\dot{V}$, V - = -5VV - = 0V50 B: V+ = 10V, V- = -10V 30 120 C: V+ = 15V, V- = -15V $T_A = +125^{\circ}C$ 45 D: V+ = 20V, V- = -20V $T_A = +85^{\circ}C$ 40 T_A = +25°C 25 100 V+ = 5V $\mathsf{rDS}\left(\mathsf{ON}\right)\left(\Omega\right)$ 35 (ON) (OO) 30 20 80 ros O 25 15 60 20 V + = 10V15 10 40 V+ = 15V 10 V+ = 15V, V- = -15VV + = 20V5 20 10 20 10 20 -20 -10 0 10 20 $V_D(V)$ $V_D(V)$ $V_D(V)$ ON-RESISTANCE vs. VD AND OFF LEAKAGE CURRENTS vs. ON LEAKAGE CURRENTS vs. TEM PERATURE (SINGLE SUPPLY) **TEM PERATURE TEM PERATURE** 70 100 100 V + = 16.5VV + = 16.5VV = -16.5VV = -16.5V60 10 10 $V_D = \pm 15V$ $V_D = \pm 15V$ = +125°C $V_{S} = \pm 15V$ $V_S = \pm 15V$ LEAKAGE (nA) 50 .EAKAGE (nA) T_A = +85°C 40 0.1 0.1 T_A = +25° C H 0.01 ₹ 0.01 30 20 0.001 0.001 V+ = 12V, V- = 0V 0.0001 0.0001 10 10 20 -55 125 -55 125 TEMPERATURE (°C) TEMPERATURE (°C) $V_D(V)$ CHARGE INJECTION vs. SUPPLY CURRENT vs. ANALOG VOLTAGE **TEM PERATURE** 60 100 40 10 20 I+ at V+ = 16.5V I+, I-, I_L (μA) Q (pC) 0 0.1 I- at V- = -16.5V

0.01

0.001

0.0001

-55

 T_L at $V_L = 5V$

TEMPERATURE (°C)

-20

-40

-60

-20

V+ = 15V, V- = -15V

0

 $V_D(V)$

10

-10

125

Pin Description

			_		
	DG401		FUNCTION		
DIP/SO	LCC	NAME	1 611611611		
1, 8	2, 10	D1, D2	Drain (Analog Signal)		
2-7	1, 3-9, 11, 16	N.C.	Not internally connected		
9, 16	12, 20	S2, S1	Source (Analog Signal)		
10, 15	13, 19	IN2, IN1	Digital Logic Inputs		
11	14	V+	Positive Supply-Voltage Input—connected to substrate		
12	15	VL	Logic Supply-Voltage Input		
13	17	GND	Ground		
14	18	V-	Negative Supply-Voltage Input		
DG	403	NAME	FUNCTION		
DIP/SO	LCC	NAME	FUNCTION		
1, 8, 3, 6	2, 10, 4, 8	D1-D4	Drain (Analog Signal)		
2, 7	1, 3, 6, 9, 11, 16	N.C.	Not internally connected		
16, 9, 4, 5	20, 12, 5, 7,	S1-S4	Source (Analog Signal)		
10, 15	13, 19	IN2, IN1	Digital Logic Inputs		
11	14	V+	Positive Supply-Voltage Input—connected to substrate		
12	15	VL	Logic Supply-Voltage Input		
13	17	GND	Ground		
14	18	V-	Negative Supply-Voltage Input		
DG	405	NASAT	FUNCTION		
DIP/SO	LCC	NAME	FUNCTION		
1, 8, 3, 6	2, 10, 4, 8	D1-D4	Drain (Analog Signal)		
2, 7	1, 3, 6, 9, 11, 16	N.C.	Not internally connected		
16, 9, 4, 5	20, 12, 5, 7,	S1-S4	Source (Analog Signal)		
10, 15	13, 19	IN2, IN1	Digital Logic Inputs		
11	14	V+	Positive Supply-Voltage Input—connected to substrate		
12	15	VL	Logic Supply-Voltage Input		
12					
13	17	GND	Ground		

Applications Information

Operation with Supply Voltages Other than ±15V

The DG401/DG403/DG405 switches operate with ±4.5V to ±20V bipolar supplies or with a +10V to +30V single supply. In either case, analog signals ranging from V+ to V- can be switched. The *Typical Operating Characteristics* graphs illustrate typical analog-signal and supply-voltage on-resistance variations. The usual on-resistance temperature coefficient is 0.5%/°C (typ).

Logic Inputs

These devices operate with a single positive supply or with bipolar supplies. They maintain TTL compatibility with supplies anywhere in the $\pm 4.5 \text{V}$ to $\pm 20 \text{V}$ range as long as VL = +5 V. If VL is connected to V+ or another supply at voltages other than +5 V, the devices will operate at CMOS-logic-level inputs.

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence V+ on first, followed by V_L, V-, and logic inputs. If power-supply sequencing is not possible, add two small, external signal diodes in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog-signal range to 1V below V+ and 1V below V-, without affecting low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed +44V.

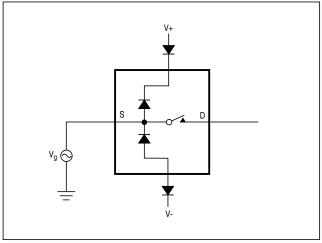


Figure 1. Overvoltage Protection Using External Blocking Diodes

_Timing Diagrams/Test Circuits

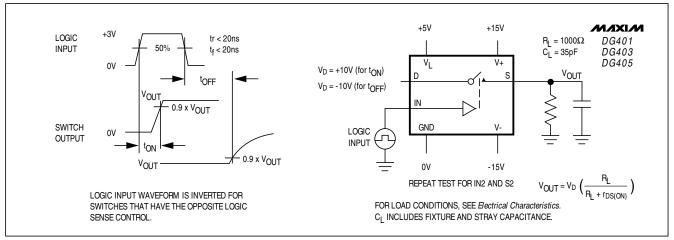


Figure 2. Switching Time

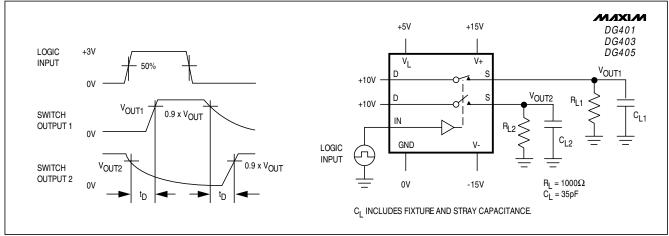


Figure 3. Break-Before-Make Interval

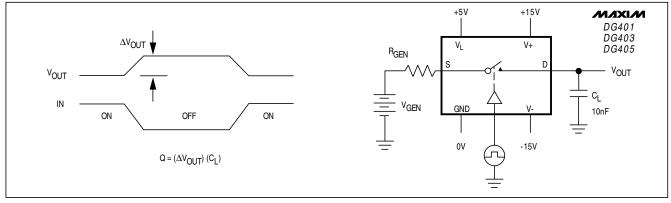


Figure 4. Charge Injection

Timing Diagrams/Test Circuits (continued)

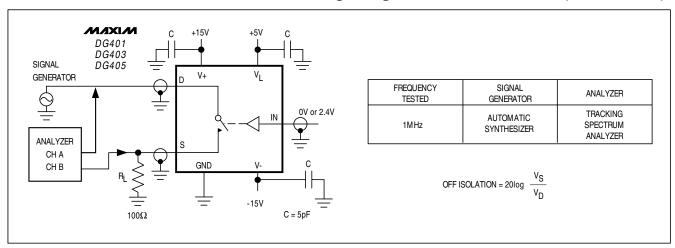


Figure 5. Off Isolation

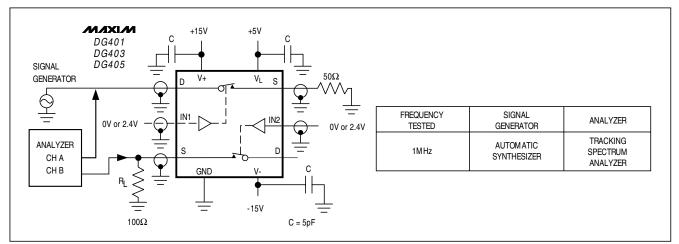


Figure 6. Crosstalk

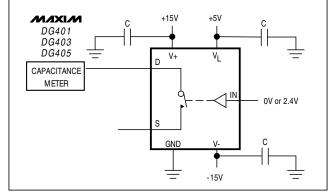
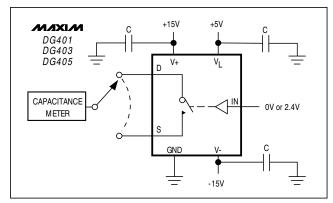
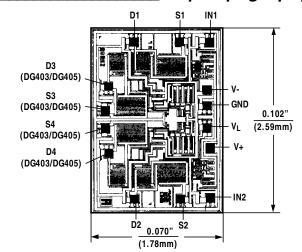


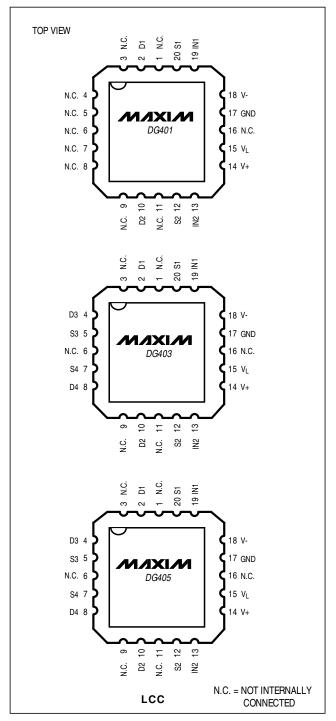
Figure 7. Channel-Off Capacitance




Figure 8. Channel-On Capacitance

_Ordering Information (continued)

_	•	•
PART	TEMP. RANGE	PIN PACKAGE
DG401DJ	-40°C to +85°C	16 Plastic DIP
DG401DY	-40°C to +85°C	16 Narrow SO
DG401DK	-40°C to +85°C	16 CERDIP
DG401AK	-55°C to +125°C	16 CERDIP**
DG401AZ	-55°C to +125°C	20 LCC**
DG403CJ	0°C to +70°C	16 Plastic DIP
DG403CY	0°C to +70°C	16 Narrow SO
DG403C/D	0°C to +70°C	Dice*
DG403DJ	-40°C to +85°C	16 Plastic DIP
DG403DY	-40°C to +85°C	16 Narrow SO
DG403DK	-40°C to +85°C	16 CERDIP
DG403AK	-55°C to +125°C	16 CERDIP**
DG403AZ	-55°C to +125°C	20 LCC**
DG405CJ	0°C to +70°C	16 Plastic DIP
DG405CY	0°C to +70°C	16 Narrow SO
DG405C/D	0°C to +70°C	Dice*
DG405DJ	-40°C to +85°C	16 Plastic DIP
DG405DY	-40°C to +85°C	16 Narrow SO
DG405DK	-40°C to +85°C	16 CERDIP
DG405AK	-55°C to +125°C	16 CERDIP**
DG405AZ	-55°C to +125°C	20 LCC**


^{*} Contact factory for dice specifications.

Chip Topography

TRANSISTOR COUNT: 66 SUBSTRATE CONNECTED TO V+

Pin Configurations (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

^{* *}Contact factory for availability and processing to MIL-STD-883B.