

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

Maxim's redesigned DG411/DG412/DG413 analog switches now feature low on-resistance matching between switches (3 Ω max) and guaranteed on-resistance flatness over the signal range ($\Delta 4\Omega$ max). These low on-resistance switches conduct equally well in either direction. They guarantee low charge injection. low power consumption, and an ESD tolerance of 2000V minimum per Method 3015.7. The new design offers lower off-leakage current over temperature (less than 5nA at +85°C).

The DG411/DG412/DG413 are quad, single-pole/single-throw (SPST) analog switches. The DG411 is normally closed (NC), and the DG412 is normally open (NO). The DG413 has two NC switches and two NO switches. Switching times are less than 150ns max for ton and less than 100ns max for toff. These devices operate from a single +10V to +30V supply, or bipolar ±4.5V to ±20V supplies. Maxim's improved DG411/DG412/DG413 are fabricated with a 44V silicongate process.

Applications

Sample-and-Hold Circuits Test Equipment Heads-Up Displays Guidance & Control Systems

Military Radios

Communication Systems Battery-Operated Systems

Audio Signal Routing

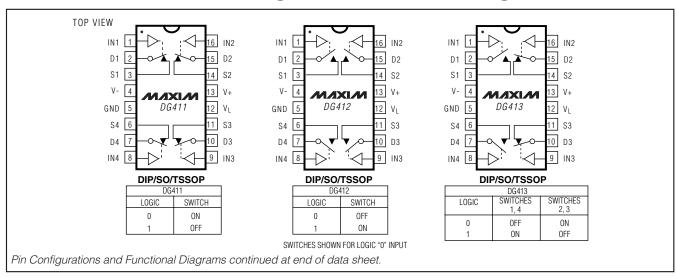
PBX, PABX

New Features

- Plug-In Upgrade for Industry-Standard DG411/DG412/DG413
- ♦ Improved R_{DS(ON)} Match Between Channels $(3\Omega \text{ max})$
- ♦ Guaranteed R_{FLAT}(ON) Over Signal Range (Δ4Ω)
- ♦ Improved Charge Injection (10pC max)
- **Improved Off-Leakage Current Over Temperature** (< 5nA at +85°C)
- ♦ Withstand Electrostatic Discharge (2000V min) per Method 3015.7

Existing Features

- ♦ Low RDS(ON) (35 Ω max)
- ♦ Single-Supply Operation +10V to +30V
- ♦ Bipolar-Supply Operation ±4.5V to ±20V
- **♦** Low Power Consumption (35µW max)
- ♦ Rail-to-Rail Signal Handling
- **♦ TTL/CMOS-Logic Compatible**


Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DG411CJ	0°C to +70°C	16 Plastic DIP
DG411CUE	0°C to +70°C	16 TSSOP
DG411EUE	-40°C to +85°C	16 TSSOP
DG411CY	0°C to +70°C	16 Narrow SO
DG411C/D	0°C to +70°C	Dice†

Ordering Information continued at end of data sheet.

†Contact factory for dice specifications.

Pin Configurations/Functional Diagrams/Truth Tables

MIXIM

ABSOLUTE MAXIMUM RATINGS

(All Voltages Referenced to V)	
V+4	14V
GND2	25V
V _L (GND -0.3V) to (V+ +0.3	3V)
Digital Inputs, V _S , V _D (Note 1)(V2V) to (V++2V) or 30	
(whichever occurs fi	irst
Continuous Current (any terminal)30	mΑ
Peak Current	
(pulsed at 1ms, 10% duty cycle max)100	mΑ

Note 1: Signals on S, D, or IN exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

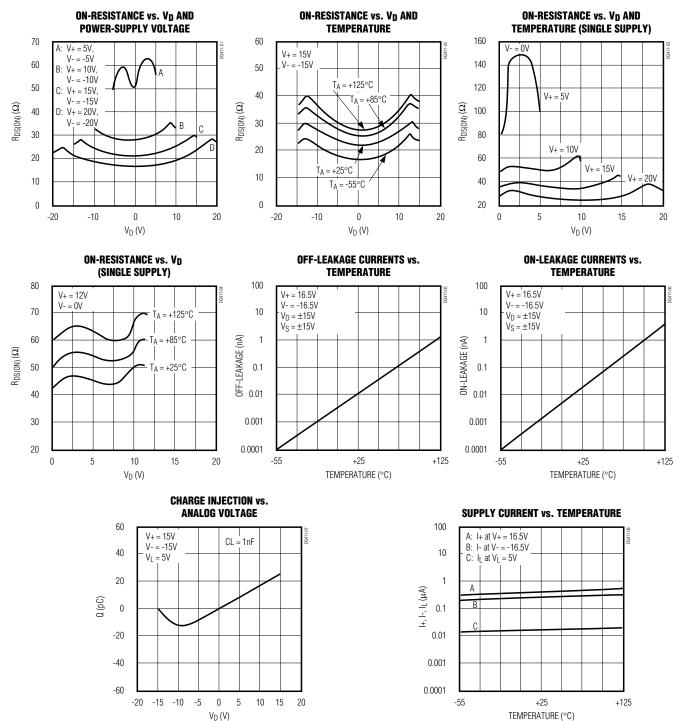
(V+ = 15V, V- = -15V, VL = 5V, VGND = 0V, VINH = 2.4V, VINL = 0.8V, TA = TMIN to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP (Note 2)	MAX	UNITS	
SWITCH									
Analog Signal Range	Vanalog	(Note 3)			-15		15	V	
		V+ = 13.5V,	T _A = +25°C	C, D		17	45		
Drain-Source On-Resistance	RDS(ON)	$V = -13.5V$, $V_D = \pm 8.5V$,	IA = +25 C	А		17	30	Ω	
On-nesistance		$I_S = -10 \text{mA}$	T _A = T _{MIN} to T	MAX			45		
On-Resistance	ADDO(OLD	V+ = 15V, V- = -15V,	T _A = +25°C				3	Ω	
Match Between Channels (Note 4)	ΔR _{DS} (ON)	$V_D = \pm 10V$, $I_S = -10mA$	T _A = T _{MIN} to T	MAX			5	. 12	
On-Resistance Flatness	DEL ATIONS	$V+ = 15V, V- = -15V,$ $V_D = \pm 5V, 0V,$	T _A = +25°C				4	Ω	
(Note 4)	nFLAT(ON)	$I_S = -10mA$	TA = TMIN to TMAX				6	1 22	
0 000	Is $ S(OFF) = V - V_{0}$	IS(OFF)	T _A = +25°C	C, D, A	-0.25	-0.10	0.25		
Source Off-Leakage Current (Note 7)			(ОГГ)	T _A = T _{MIN} to	C, D	-5		5	nA
(1007)			T _{MAX}	А	-10		10		
5 1 0"1 1 0		V+ = 16.5V,	T _A = +25°C	C, D, A	-0.25	-0.10	0.25		
Drain Off-Leakage Current (Note 7)	$I_{D(OFF)}$ $V_{-} = -16.5V,$ $V_{D} = \pm 15.5V,$ $V_{S} = \pm 15.5V$	$V_{\text{D}} = \pm 15.5V,$	D/OFF) '	T _A = T _{MIN} to	C, D	-5		5	nA
			А	-10		10			
Drain On-Leakage Current (Note 7)	I _{D(ON)}	+ V- = -16.5V,	T _A = +25°C	C, D, A	-0.4	-0.1	0.4		
			T _A = T _{MIN} to	C, D	-20		20	nA	
(1007)	13(011)	$V_S = \pm 15.5V$	T _{MAX}	А	-40		40		

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued) $(V+ = 15V, V- = -15V, V_L = 5V, V_{GND} = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
INPUT	<u> </u>						
Input Current with Input Voltage High	IINH	IN = 2.4V, all others = 0.8V		-0.500	0.005	0.500	μA
Input Current with Input Voltage Low	linl	IN = 0.8V, all others =	2.4V	-0.500	0.005	0.500	μΑ
SUPPLY		l	-	_			
Power-Supply Range				±4.5		±20.0	V
Positive Supply Current	-	All channels on or off, V+ = 16.5V,	T _A = +25°C	-1	0.0001	1	μΑ
		V- = -16.5V, V _{IN} = 0V or 5V	TA = TMIN to TMAX	-5		5	F
Negative Supply Current	-	All channels on or off, V+ = 16.5V,	T _A = +25°C	-1	-0.0001	1	μΑ
тодано варру ванон	'	V- = -16.5V, V _{IN} = 0V or 5V	TA = TMIN to TMAX	-5		5	μ
Logic Supply Current	l _L	All channels on or off, V+ = 16.5V,	T _A = +25°C	-1	0.0001	1	μΑ
Logio oupply outlone	''-	V- = -16.5V, V _{IN} = 0V or 5V	TA = TMIN to TMAX	-5		5	μ
Ground Current	IGND	All channels on or off, V+ = 16.5V,	T _A = +25°C	-1	-0.0001	1	μΑ
	IGND	V- = -16.5V, V _{IN} = 0V or 5V	TA = TMIN to TMAX	-5		5	μ/ (
DYNAMIC							
Turn-On Time	ton	$V_D = \pm 10V$,	T _A = +25°C		110	175	ns
		Figure 2	T _A = T _{MIN} to T _{MAX}			220	
Turn-Off Time	toff	$V_D = \pm 10V$, Figure 2	$T_A = +25^{\circ}C$ $T_A = T_{MIN} \text{ to } T_{MAX}$		100	145 160	ns
Break-Before-Make Time Delay	t _D	DG413 only, $R_L = 300\Omega$, $C_L = 35pF$, Figure 3	$T_A = +25^{\circ}C$		25	100	ns
Charge Injection (Note 3)	Q	$C_L = 1.0$ nF, $V_{GEN} = 0V$, $R_{GEN} = 0\Omega$, Figure 4	T _A = +25°C		5	10	рС
Off-Isolation (Note 5)	OIRR	$R_L = 50\Omega$, $C_L = 5pF$, f = 1MHz, Figure 5	T _A = +25°C		68		dB
Crosstalk (Note 6)		$R_L = 50\Omega$, $C_L = 5pF$, f = 1MHz, Figure 6	T _A = +25°C		85		dB
Source Off-Capacitance	Cs(OFF)	f = 1MHz, Figure 7	T _A = +25°C		9		pF
Drain Off-Capacitance	CD(OFF)	f = 1MHz, Figure 7	T _A = +25°C		9		pF
Drain On-Capacitance	C _{D(ON)} + C _{S(ON)}	f = 1MHz, Figure 8	T _A = +25°C		35		рF

ELECTRICAL CHARACTERISTICS—Single Supply


(V+ = 12V, V- = 0V, VL = 5V, VGND = 0V, VINH = 2.4V, VINL = 0.8V, TA = TMIN to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
SWITCH	•			'			l
Analog Signal Range	VANALOG	(Note 3)		0		12	V
Drain-Source On-Resistance	Proven	V+ = 10.8V, $V_D = 3.8V,$	T _A = +25°C		40	80	Ω
Diain-300ice On-nesistance	R _{DS} (ON)	$I_S = -10 \text{mA}$	TA = TMIN to TMAX			100	
SUPPLY							
Positive Supply Current	l+	All channels on or off, $V+ = 13.2V$,	T _A = +25°C	-1	0.0001	1	
rosilive Supply Current	1+	V+=13.2V, $V_{IN}=0V \text{ or } 5V$	TA = TMAX	-5		5	μA
Name time Comment		All channels on or off,	T _A = +25°C	-1	0.0001	1	^
Negative Supply Current	-	V+ = 13.2V, $V_{IN} = 0V \text{ or } 5V$	$T_A = T_{MAX}$	-5		5	μA
		$V_L = 5.25V$,	T _A = +25°C	-1	0.0001	1	
Logic Supply Current	IL		$T_A = T_{MAX}$	-5		5	– μA
Ground Current	1.	All channels on or off,	T _A = +25°C	-1	-0.0001	1	^
Ground Current	IGND	$V_L = 5.25V$, $V_{IN} = 0V$ or $5V$	$T_A = T_{MAX}$	-5		5	μΑ
DYNAMIC			1				
Turn-On Time	ton	Vs = 8V,	T _A = +25°C		175	250	ns
	-011	Figure 2	TA = TMIN to TMAX			315	
Turn-Off Time	toff	Vs = 8V,	T _A = +25°C		95	125	ns
	-	Figure 2	$T_A = T_{MIN}$ to T_{MAX}			140	
Break-Before-Make Time Delay	t _D	DG413 only, R _L = 300Ω , C _L = 35 pF, Figure 3	T _A = +25°C		25		ns
Charge Injection (Note 3)	Q	C _L = 1.0nF, V _{GEN} = 0V, R _{GEN} = 0V, Figure 4	T _A = +25°C		5	10	рС

- **Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
- Note 3: Guaranteed by design.
- Note 4: ΔRON = ΔRON max ΔRON min. On-resistance match between channels and flatness are guaranteed only with bipolar-supply operation. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured at the extremes of the specified analog signal range.
- **Note 5:** Off-Isolation = $20log(V_D/V_S)$, $V_D = output$, $V_S = input$ to off switch. See Figure 5.
- **Note 6:** Between any two switches. See Figure 6.
- Note 7: Leakage parameters Is(OFF), ID(OFF), and ID(ON) are 100% tested at the maximum-rated hot temperature and guaranteed by correlation at +25°C.

Typical Operating Characteristics

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

Р	IN	NAME	FUNCTION	
DIP/SO/TSSOP	QFN	NAME		
1, 16, 9, 8	15, 14, 7, 6	IN1-IN4	Input	
2, 15, 10, 7	16, 13, 8, 5	D1-D4	Analog Switch Drain Terminal	
3, 14, 11, 6	1, 12, 9, 4	S1-S4	Analog Switch Source Terminal	
4	2	V-	Negative-Supply Voltage Input	
5	3	GND	Ground	
12	10	VL	Logic Supply Voltage	
13	11	V+	Positive-Supply Voltage Input—Connected to Substrate	
_	_	EP	Exposed Paddle (QFN Only). Connect EP to V+.	

Applications Information

Operation with Supply Voltages Other Than 15V

Using supply voltages other than 15V will reduce the analog signal range. The DG411/DG412/DG413 switches operate with ± 4.5 V to ± 20 V bipolar supplies or with a ± 10 V to ± 30 V single supply; connect V- to 0V when operating with a single supply. Also, all device types can operate with unbalanced supplies such as ± 24 V and ± 5 V. V_L must be connected to ± 5 V to be TTL compatible, or to V+ for CMOS-logic level inputs. The Typical Operating Characteristics graphs show typical on-resistance with ± 15 V, ± 10 V, and ± 5 V supplies. (Switching times increase by a factor of two or more for operation at ± 5 V.)

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence V+ on first, followed by V_L, V-, and logic inputs. If power-supply sequencing is not possible, add two small, external signal diodes in series with supply pins for overvoltage protection (Figure 1).

Adding diodes reduces the analog signal range to 1V below V+ and 1V below V-, without affecting low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed +44V.

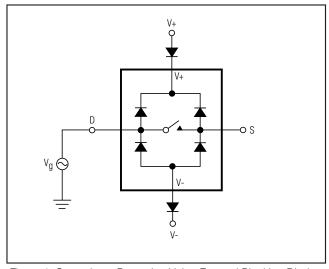


Figure 1. Overvoltage Protection Using External Blocking Diodes

Timing Diagrams/Test Circuits

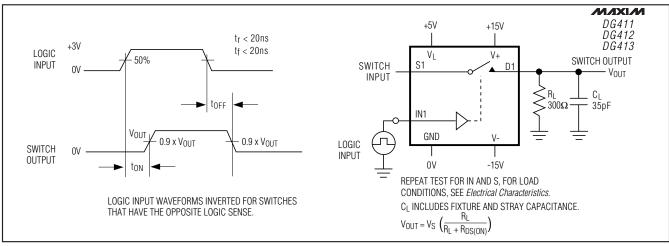


Figure 2. Switching-Time

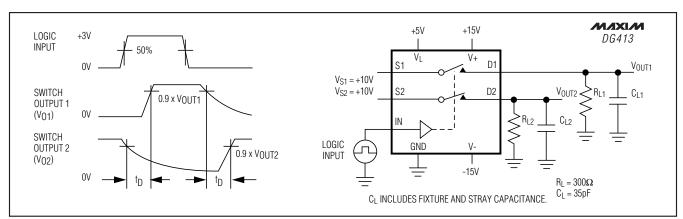


Figure 3. DG413 Break-Before-Make

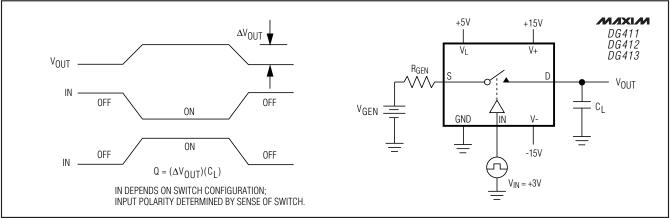


Figure 4. Charge-Injection

Timing Diagrams/Test Circuits (continued)

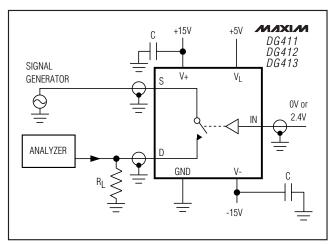


Figure 5. Off-Isolation

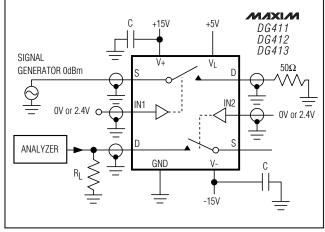


Figure 6. Crosstalk

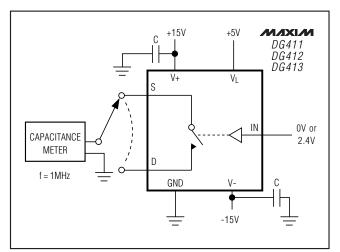
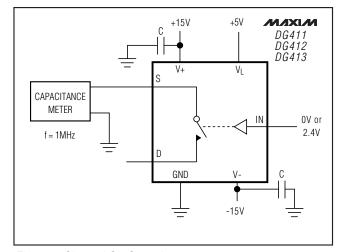
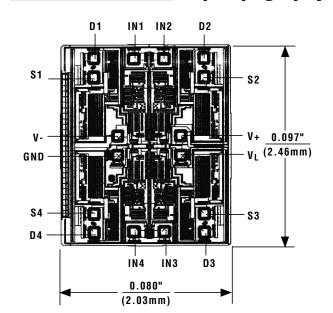


Figure 7. Channel Off-Capacitance



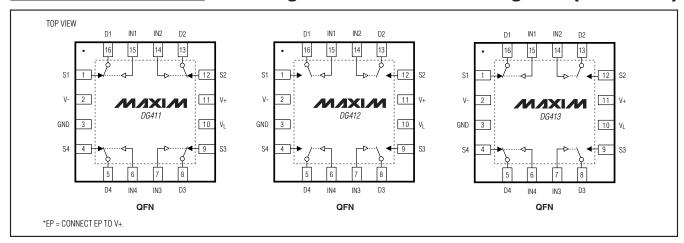

Figure 8. Channel On-Capacitance

Chip Topography

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
DG411EGE	-40°C to +85°C	16 QFN-EP*
DG411DJ	-40°C to +85°C	16 Plastic DIP
DG411DY	-40°C to +85°C	16 Narrow SO
DG411DK	-40°C to +85°C	16 CERDIP
DG411AK	-55°C to +125°C	16 CERDIP**
DG411MY/PR	-55°C to +125°C	16 SO***
DG411MY/PR-T	-55°C to +125°C	16 SO***
DG412CJ	0°C to +70°C	16 Plastic DIP
DG412CUE	0°C to +70°C	16 TSSOP
DG412EUE	-40°C to +85°C	16 TSSOP
DG412CY	0°C to +70°C	16 Narrow SO
DG412C/D	0°C to +70°C	Dice†
DG412DJ	-40°C to +85°C	16 Plastic DIP
DG412EGE	-40°C to +85°C	16 QFN-EP*
DG412DY	-40°C to +85°C	16 Narrow SO
DG412DK	-40°C to +85°C	16 CERDIP
DG412AK	-55°C to +125°C	16 CERDIP**
DG412MY/PR	-55°C to +125°C	16 SO***
DG412MY/PR-T	-55°C to +125°C	16 SO***
DG413CJ	0°C to +70°C	16 Plastic DIP
DG413CUE	0°C to +70°C	16 TSSOP
DG413EUE	-40°C to +85°C	16 TSSOP
DG413CY	0°C to +70°C	16 Narrow SO
DG413C/D	0°C to +70°C	Dice†
DG413EGE	-40°C to +85°C	16 QFN-EP*
DG413DJ	-40°C to +85°C	16 Plastic DIP
DG413DY	-40°C to +85°C	16 Narrow SO
DG413DK	-40°C to +85°C	16 CERDIP
DG413AK	-55°C to +125°C	16 CERDIP**

[†]Contact factory for dice specifications.



^{*}EP = Exposed pad.

^{**}Contact factory for availability and processing to MIL-STD-883B.

^{***}Contact factory for availability.

Pin Configurations/Functional Diagrams (continued)

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
16 QFN-EP	G1655-3	<u>21-0091</u>
16 Plastic DIP	P16-1	<u>21-0043</u>
16 TSSOP	U16-2	21-0066
16 CERDIP	J16-3	<u>21-0045</u>
16 Narrow SO	S16-1	<u>21-0041</u>
16 SO	S16-1	21-0041

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
6	9/07	Addition of exposed pad information	1, 6, 9, 14, 15
7	9/08	Addition of rugged plastic information	1, 9

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.