: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

8 x 4 Wideband Video Crosspoint Array

DESCRIPTION

The DG884 contains a matrix of 32 T-switches configured in an 8×4 crosspoint array. Any of the IN/OUT pins may be used as an input or output. Any of the IN pins may be switched to any or simultaneously to all OUT pins.

The DG884 is built on a proprietary D/CMOS process that combines low capacitance switching DMOS FETs with low power CMOS control logic and drivers. The ground lines between adjacent signal input pins help to reduce crosstalk. The low on-resistance and low on-capacitance of the DG884 make it ideal for video and wideband signal routing.

Control data is loaded individually into four Next Event latches. When all Next Event latches have been programmed, data is transferred into the Current Event latches via a SALVO command. Current Event latch data readback is available to poll array status.

Output disable capabilities make it possible to parallel multiple DG884s to form larger switch arrays. DIS outputs provide control signals used to place external buffers in a power saving mode.

For additional information see applications note AN504 (FaxBack document number 70610).

FEATURES

- Routes Any Input to Any Output
- Wide Bandwidth: 300 MHz
- Low Crosstalk: - 85 dB at 5 MHz
- Double Buffered TTL-Compatible Latches with Readback
- Low $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}: 45 \Omega$
- Optional Negative Supply

BENEFITS

- Reduced Board Space
- Improved System Bandwidth
- Improved Channel Off-Isolation
- Simplified Logic Interfacing
- Allows Bipolar Signal Swings
- Reduced Insertion Loss
- High Reliability

APPLICATIONS

- Wideband Signal Routing and Multiplexing
- High-End Video Systems
- NTSC, PAL, SECAM Switchers
- Digital Video Routing
- ATE Systems

FUNCTIONAL BLOCK DIAGRAM

[^0]
PIN CONFIGURATION AND ORDERING INFORMATION

$\overline{\mathrm{RS}}$	İ/O	$\overline{\text { CS }}$	$\overline{\text { WR }}$	$\overline{\text { SALVO }}$	Actions
1	0	1	V	1	No change to Next Event latches
1	0	0	Σ	1	Next Event latches loaded as defined in table below
1	0	0	0	1	Next Event latches are transparent
1	0	0	\triangle	1	Next Event data latched-in
1	0	X	1	\pm	Data in all Next Event latches is simultaneously loaded into the Current Event latches, i.e., all new crosspoint addresses change simultaneously when SALVO goes low
1	0	0	x	0	Current Event latches are transparent
1	0	X	1	Δ	Current Event data latched-in
1	0	0	0	0	Both next and Current Event latches are transparent
1	1	1	1	1	$A_{0}, A_{1}, A_{2}, A_{3}$ - High impedance
1	1	0	1	1	$A_{0}, A_{1}, A_{2}, A_{3}$ become outputs and reflect the contents of the Current Event latches B_{0}, B_{1} determine which Current Event latches are being read
0	X	X	1	1	All crosspoints opened (but data in Next Event latches is preserved)

All other states are not recommended.

TRUTH TABLE II

$\overline{\text { WR }}$	B_{1}	B_{0}	A_{3}	A_{2}	A_{1}	A_{0}	Next Event Latches
0	0	0	1 1	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	IN_{1} to OUT_{1} Loaded IN_{2} to OUT_{1} Loaded IN_{3} to OUT_{1} Loaded IN_{4} to OUT_{1} Loaded IN_{5} to OUT_{1} Loaded IN_{6} to OUT_{1} Loaded IN_{7} to OUT_{1} Loaded IN_{8} to OUT_{1} Loaded
			0	X	X	X	Turn Off OUT ${ }_{1}$ Loaded
	0	1	1	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	0 0 1 1 0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	IN_{1} to OUT_{2} Loaded IN_{2} to OUT_{2} Loaded IN_{3} to OUT_{2} Loaded IN_{4} to OUT_{2} Loaded N_{5} to OUT_{2} Loaded IN_{6} to OUT_{2} Loaded IN_{7} to OUT_{2} Loaded IN_{8} to OUT_{2} Loaded
			0	X	X	X	Turn Off OUT_{2} Loaded
	1	0	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	0 0 1 1 0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	IN_{1} to OUT_{3} Loaded IN_{2} to OUT_{3} Loaded IN_{3} to OUT_{3} Loaded IN_{4} to OUT_{3} Loaded IN_{5} to OUT_{3} Loaded IN_{6} to OUT_{3} Loaded IN_{7} to OUT_{3} Loaded IN_{8} to OUT_{3} Loaded
			0	X	X	X	Turn Off OUT_{3} Loaded
	1	1	1	0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	IN_{1} to OUT_{4} Loaded IN_{2} to OUT_{4} Loaded IN_{3} to OUT_{4} Loaded IN_{4} to OUT_{4} Loaded IN_{5} to OUT_{4} Loaded IN_{6} to OUT_{4} Loaded IN_{7} to OUT_{4} Loaded NN_{8} to OUT_{4} Loaded
			0	X	X	X	Turn Off OUT ${ }_{4}$ Loaded

Notes:
When $\overline{W R}=0$ Next Event latches are transparent. Each crosspoint is addressed individually, e.g., to connect IN_{1} to OUT_{1} thru OUT 4 requires $A_{0}, A_{1}, A_{2}=0$ to be latched with each combination of B_{0}, B_{1}. When $\overline{R S}=0$, all four DIS outputs pull low simultaneously.

ABSOLUTE MAXIMUM RATINGS

Parameter		Limit	Unit
V+ to GND		-0.3 to 21	V
$\mathrm{V}+$ to V-		-0.3 to 21	
V- to GND		- 10 to 0.3	
V_{L} to GND		0 to (V+)+0.3	
Digital Inputs		$(\mathrm{V}-)-0.3 \text { to }\left(\mathrm{V}_{\mathrm{L}}\right)+0.3$ or 20 mA , whichever occurs first	
$\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(V-)-0.3 \text { to }(V-)+14$ or 20 mA , whichever occurs first	
Current (any terminal) Continuous		20	mA
Current (S or D) Pulsed 1 ms 10 \% Duty		40	
Storage Temperature	(A Suffix)	- 65 to 150	${ }^{\circ} \mathrm{C}$
	(D Suffix)	-65 to 125	
Operating Temperature	(A Suffix)	- 55 to 125	
	(D Suffix)	-40 to 85	
Power Dissipation (Package) ${ }^{\text {a }}$	44-Pin Quad J Lead PLCC ${ }^{\text {b }}$	450 1200	mW

Notes:

a. All leads soldered or welded to PC Board.
b. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$
c. Derate $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

Vishay Siliconix

SPECIFICATIONS ${ }^{\text {a }}$									
Parameter	Symbol	Test Conditions Unless Specified $\begin{aligned} & \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \overline{\mathrm{RS}}=2.0 \mathrm{~V} \end{aligned}$ SALVO, $\overline{C S}, \overline{W R}, \bar{I} / \mathrm{O}=0.8 \mathrm{~V}$	Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { D Suffix } \\ -40 \text { to } 85^{\circ} \mathrm{C} \\ \hline \end{gathered}$		Unit Unit
					Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$	$\mathrm{V}-=-5 \mathrm{~V}$	Full		-5	8	- 5	8	V
Drain-Source On-Resistance	${ }^{\text {dSS(on) }}$	$\mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	45		$\begin{gathered} 90 \\ 120 \end{gathered}$		$\begin{gathered} 90 \\ 120 \end{gathered}$	ת
Resistance Match Between Channels	$\Delta^{r_{\text {DS }}(\mathrm{on})}$	Sequence Each Switch On	Room	3		9		9	Ω
Source Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, \overline{\mathrm{RS}}=0.8 \mathrm{~V}$	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$		$\begin{gathered} \hline-20 \\ -200 \end{gathered}$	$\begin{gathered} 20 \\ 200 \end{gathered}$	$\begin{gathered} -20 \\ -200 \end{gathered}$	$\begin{gathered} \hline 20 \\ 200 \end{gathered}$	
Drain Off Leakage Current	$I_{\text {(off) }}$	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V}, \overline{\mathrm{RS}}=0.8 \mathrm{~V}$	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$		$\begin{gathered} \hline-20 \\ -200 \end{gathered}$	$\begin{gathered} 20 \\ 200 \end{gathered}$	$\begin{gathered} -20 \\ -200 \end{gathered}$	$\begin{gathered} \hline 20 \\ 200 \end{gathered}$	nA
Total Switch On Leakage Current	$I_{\text {(on) }}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=8 \mathrm{~V}$	Room Full		$\begin{gathered} \hline-20 \\ -2000 \end{gathered}$	$\begin{gathered} 20 \\ 2000 \end{gathered}$	$\begin{gathered} \hline-20 \\ -200 \end{gathered}$	$\begin{gathered} 20 \\ 200 \end{gathered}$	
Digital Input/Output									
Input Voltage High	$\mathrm{V}_{\text {AIH }}$		Full		2		2		
Input Voltage Low	$\mathrm{V}_{\text {AIL }}$		Full			0.8		0.8	V
Address Input Current	I_{Al}	$\mathrm{V}_{\mathrm{Al}}=0 \mathrm{~V}$ or 2 V or 5 V	Room Full	0.1	$\begin{gathered} -1 \\ -10 \end{gathered}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	$\begin{aligned} & -1 \\ & -10 \end{aligned}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	$\mu \mathrm{A}$
Address Output Current	I_{AO}	$\mathrm{V}_{\mathrm{AO}}=2.7 \mathrm{~V}$, See Truth Table	Room	-600		-200		-200	
		$\mathrm{V}_{\mathrm{AO}}=0.4 \mathrm{~V}$, See Truth Table	Room	1500	500		500		
DIS Pin Sink Current	IDIS		Room	1.5					mA
Dynamic Characteristics									
On State Input Capacitance ${ }^{\mathrm{e}}$	$\mathrm{C}_{\text {S(on) }}$	1 In to 1 Out, See Figure 11	Room	30				40	pF
		1 In to 4 Out, See Figure 11	Room	120				160	
Off State Input Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{S}_{\text {(off) }}}$	See Figure 11	Room	8		20		20	
Off State Output Capacitance ${ }^{\mathrm{e}}$	$\mathrm{C}_{\mathrm{D} \text { (off) }}$		Room	10		20		20	
Transition Time	$\mathrm{t}_{\text {trans }}$	See Figure 5	Room					300	ns
Break-Before-Make Interval	topen		Full			10		10	
SALVO, $\overline{W R}$ Turn On Time	t_{O}	$R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF}$ 50 \% Control to 90 \% Output See Figure 3	Room Full			$\begin{aligned} & 300 \\ & 500 \end{aligned}$		300	
SALVO, WR Turn Off Time	$t_{\text {OFF }}$		Room Full			$\begin{aligned} & 175 \\ & 300 \end{aligned}$		175	
Charge Injection	Q	See Figure 6	Room	-100					pC
Matrix Disabled Crosstalk	$\mathrm{X}_{\text {TALK(DIS) }}$	$\mathrm{R}_{\mathrm{IN}}=\mathrm{R}_{\mathrm{L}}=75 \Omega$ $\mathrm{f}=5 \mathrm{MHz}$, See Figure 10	Room	-82					
Adjacent Input Crosstalk	$\mathrm{X}_{\text {TALK(AI) }}$	$\begin{aligned} & R_{\text {IN }}=10 \Omega, R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{f}=5 \mathrm{MHz} \text {, See Figure } 9 \end{aligned}$	Room	-85					dB
All Hostile Crosstalk	$\mathrm{X}_{\text {TALK(AH) }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{IN}}=10 \Omega, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{f}=5 \mathrm{MHz}, \text { See Figure } 8 \end{aligned}$	Room	-66					
Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$, See Figure 7	Room	300					MHz

SPECIFICATIONS ${ }^{\text {a }}$									
Parameter	Symbol	Test Conditions Unless Specified $\begin{aligned} & \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \overline{\mathrm{RS}}=2.0 \mathrm{~V} \end{aligned}$ $\overline{S A L V O}, \overline{C S}, \overline{W R}, \bar{I} / \mathrm{O}=0.8 \mathrm{~V}$	Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	A Suffix-55 to $125^{\circ} \mathrm{C}$		$\begin{gathered} \text { D Suffix } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit Unit
					Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	
Power Supplies									
Positive Supply Current	I+	All Inputs at GND or 2 V$\overline{\mathrm{RS}}=2 \mathrm{~V}$	Room Full	1.5		3		$\begin{aligned} & 3 \\ & 6 \end{aligned}$	
Negative Supply Current	I-		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	-1.5	$\begin{aligned} & -3 \\ & -5 \end{aligned}$		$\begin{aligned} & -3 \\ & -5 \end{aligned}$		
Digital GND Supply Current	${ }^{\text {dG }}$		Full	-275	- 750		- 750		$\mu \mathrm{A}$
Logic Supply Current	IL		Full	200		500		500	
Functional Operating Supply Voltage Range ${ }^{e}$	V+ to V-	See Operating Voltage Range (Typical Characteristics) page 6	Full		13	20	13	20	
	V - to GND		Full		-5.5	0	-5.5	0	v
	V+ to GND		Full		10	20	10	20	
Minimum Input Timing Requirements									
Address Write Time	t_{AW}	See Figure 1	Full	20	50		50		ns
Minimum WR Pulse Width	$t_{\text {wp }}$		Full	50	100		100		
Write Address Time	${ }^{\text {twA }}$		Full	-10	10		10		
Chip Select Write Time	${ }_{\text {t }}^{\text {c }}$ w		Full	50	100		100		
Write Chip Select Time	${ }_{\text {tw }}$		Full	25	75		75		
Minimum SALVO Pulse Width	$t_{\text {SP }}$		Full	50	100		100		
SALVO Write Time	$t_{\text {sw }}$		Full	-10	10		10		
Write SALVOTime	${ }^{\text {tws }}$		Room	20			50		
Input Output Time	t_{10}		Room	150	200		200		
Address Output Time	t_{AO}		Room	150	200		200		
Chip Select Output Time	t_{CO}		Room	150	200		200		
Chip Select Address Time	t_{CA}		Room	60			100		
Reset to SALVO	$\mathrm{t}_{\text {RS }}$		Full		50		50		
I/O Address Input Time	t_{I}		Room	50					

Notes:
a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Vishay Siliconix
TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

TIMING DIAGRAMS

Figure 1. Input Timing Requirements

Figure 2. Output Timing Requirements

PARAMETER DEFINITIONS

Symbol	Parameter	Description
$\mathrm{T}_{\text {AW }}$	Address to Write	Minimum time address must be valid before $\overline{\mathrm{WR}}$ goes high
TWA	Write to Address	Minimum time address must remain valid after $\overline{W R}$ pulse goes high
TWP	$\overline{W R}$ Pulse	Minimum time of $\overline{\mathrm{WR}}$ pulse width to write address into Next Event latches
$\mathrm{T}_{\text {CW }}$	Chip Select to WR	Minimum time chip select must be valid before a $\overline{W R}$ pulse
T Wc	$\overline{\text { WR }}$ to Chip Select	Minimum time chip select must remain valid after $\overline{\mathrm{WR}}$ pulse
$\mathrm{T}_{\text {SP }}$	SALVO Pulse	Minimum time of $\overline{\text { SALVO }}$ pulse width
TWS	$\overline{\mathrm{WR}}$ to $\overline{\text { SALVO }}$	Minimum time from $\overline{\mathrm{WR}}$ pulse to $\overline{\text { SALVO}}$ to load new address
$\mathrm{T}_{\text {SW }}$	$\overline{\text { SALVO }}$ to $\overline{\mathrm{WR}}$	Minimum time from $\overline{\text { SALVO }}$ pulse to $\overline{\mathrm{WR}}$ to load current address
$\mathrm{T}_{\text {IA }}$	İ/O to Address In	Minimum time Ī/O must be valid before address applied
T_{RS}	$\overline{\mathrm{RS}}$ to $\overline{\text { SALVO }}$	Minimum time $\overline{\mathrm{RS}}$ must be valid before $\overline{\text { SALVO }}$ pulse
T_{10}	İ/O to Output	Minimum time Ī/O must be valid before address output valid
T_{AO}	Address to Output	Minimum time address B_{X} must be valid until address A_{X} output valid
T_{CO}	$\overline{\mathrm{CS}}$ to Output	Minimum time $\overline{\mathrm{CS}}$ must be valid until A_{X} output is valid
T_{CA}	$\overline{\mathrm{CS}}$ to Address In	Minimum time $\overline{\mathrm{CS}}$ must be valid before address applied if $\overline{\mathrm{I}} / \mathrm{O}$ is high

TEST CIRCUITS

Figure 3. SALVO Turn On/Off Time

Figure 4. $\overline{W R}$ Turn On/Off Time

Figure 5. Transition Time and Break-Before-Make Interval

TEST CIRCUITS

Figure 6. Charge Injection

Figure 8. All Hostile Crosstalk

Figure 10. Matrix Disabled Crosstalk

Figure 7. -3 dB Bandwidth

Figure 9. Adjacent Input Crosstalk

Figure 11. On-State and Off-State Capacitances

PIN DESCRIPTION		
Pin	Symbol	Description
$\begin{gathered} 1,3,4,6,8,10,12,14 \\ 16,18,20,41,43 \end{gathered}$	GND	Analog Signal Ground
39	DGND	Digital Ground
26	V+	Positive Supply Voltage
21	V -	Negative Supply Voltage
38	V	Logic Supply Voltage - generally 5 V
5, 7, 9, 11, 13, 15, 17, 19	IN_{1} to IN_{8}	8 Analog Input Channels
2, 40, 42, 44	OUT_{1} to OUT_{4}	4 Analog Output Channels
29	İ/O	Determines whether data is being written into the Next Event latches or read from the Current Event latches
30	CS	Chip Select - a logic input
31, 32, 33, 34	$\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$	IN Address - logic inputs or outputs as defined by Ī/O pin, select one of eight IN channels
27, 28	$\mathrm{B}_{0}, \mathrm{~B}_{1}$	OUT Address - logic inputs, select one of four OUT channels
35	$\overline{\mathrm{WR}}$	Write command that latches $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ into the Next Event latches
36	SALVO	Master write command, that in one action, transfers all the data from Next Event latches into Current Event latches
37	RS	Reset - a low will clear the Current Event latches
22, 23, 24, 25	$\overline{\mathrm{DIS}}_{1}$ to $\overline{\mathrm{DIS}}_{4}$	Open drain disable outputs - these outputs pull low when the corresponding OUT channel is off

DEVICE DESCRIPTION

The DG884 is the world's first monolithic wideband crosspoint array that operates from dc to $>100 \mathrm{MHz}$. The DG884 offers the ability to route any one of eight input signals to any one of four OUT pins. Any input can be routed to one, two, three or four OUTs simultaneously with no risk of shorting inputs together (guaranteed by design).

Each crosspoint is configured as a " T " switch in which DMOS FETs are used due to their excellent low resistance and low capacitance characteristics. Each OUT line has a series switch that minimizes capacitive loading when the OUT is off.

Interfacing

The DG884 was designed to allow complex matrices to be developed while maintaining a simple control interface. The status of the $\overline{\mathrm{I}} / \mathrm{O}$ pin determines whether the DG884 is being written to or read from (see Figures 1 and 2).

In order to WRITE to an individual latch, $\overline{\mathrm{CS}}$ and $\overline{\mathrm{I}} / \mathrm{O}$ need to be low, while $\overline{\mathrm{RS}}, \overline{\mathrm{WR}}$ and $\overline{\mathrm{SALVO}}$ must be high. The IN to OUT path is selected by using address A_{0} through A_{3} to define the IN line and address B_{0} and B_{1} to define the OUT line. That is, The $I N$ defined by A_{0} through A_{3} is electrically connected to the OUT defined by B_{0}, B_{1}. This chosen path is loaded into the Next Event latches when $\overline{W R}$ goes low and returns high again. This operation is repeated up to three more times if other crosspoint connections need to be changed.

Upon completing all crosspoint connections that are to be changed in a single device, other DG884s can be similarly preset by taking the $\overline{\mathrm{CS}}$ pin low on the appropriate device. When all DG884s are preset, the Current Event latches are simultaneously changed by a single SALVO command applied to all devices. In this manner the crosspoint configuration of any number of devices can be simultaneously updated.

DIS Outputs

Four open drain disable OUTs are provided to control external line drivers or to provide visual or electrical signaling. For example, any or all of the DIS OUTs can directly interface with a CLC410 Video Amplifier to place it into a high impedance, low-power standby mode when the corresponding OUT is not being used. (See Figure 15). The $\overline{\text { DIS }}$ outputs are low and sink to V - when corresponding OUT is open or $\overline{\mathrm{RS}}$ is low.

Reset

The reset function ($\overline{\mathrm{RS}}$) allows the resetting of all crosspoints to a known state (open). At power up, the reset facility may be used to guarantee that all switches are open. It should be noted that $\overline{\mathrm{RS}}$ clears the Current Event latches, but the Next Event latches remain unchanged. This useful facility allows the user to return the matrix to its previous state (prior to reset) by simply applying the SALVO command. Alternatively, the user can reprogram the Next Event latches, and then apply the $\overline{\text { SALVO }}$ command to reconfigure the matrix to a new state.

DEVICE DESCRIPTION

Readback

The $\overline{/} / \mathrm{O}$ facility enables the user to write data to the Next Event latches or to read the contents of the Current Event latches. This feature permits the central controller to periodically monitor the state of the matrix. If a power loss to
the controller occurs, the readback feature helps the matrix to recover rapidly. It also offers a means to perform PC board diagnostics both in production and in system operation.

Figure 12. Control Circuitry

APPLICATIONS

Figure 13. Fully Buffered 8×4 Crosspoint

APPLICATIONS

Figure 14. DG884 Power Supply Decoupling

Figure 15. Switching Threshold Voltage vs. V_{L}

Rules:

1) Decoupling capacitors should be incorporated on all power supply pins (V+, $\mathrm{V}^{-}, \mathrm{V}_{\mathrm{L}}$).
2) They should be mounted as close as possible to the device pins.
3) Capacitors should have good high frequency characteristics - tantalum bead and/or monolithic ceramic disc types are suitable.

Recommended decoupling capacitors are 1 to $10 \mu \mathrm{~F}$ tantalum bead, in parallel with 100 nF monolithic ceramic.
4) Additional high frequency protection may be provided by 51Ω carbon film resistors connected in series with the power supply pins (see Figure 14).

The V_{L} pin permits interface to various logic types. The device is primarily designed to be TTL or CMOS logic compatible with +5 V applied to V_{L}. The actual logic threshold can be raised simply by increasing V_{L}.

It is established RF design practice to incorporate sufficient bypass capacitors in the circuit to decouple the power supplies to all active devices in the circuit. The dynamic performance of the DG884 is adversely affected by poor decoupling of power supply pins. Also, since the substrate of the device is connected to the negative supply, proper decoupling of this pin is essential.

APPLICATIONS

A typical switching threshold versus V_{L} is shown in Figure 15.
These devices feature an address readback facility whereby the last address written to the device may be read by the system. This allows improved status monitoring and hand shaking without additional external components.

When the \bar{I} / O assigns the address output condition, the A_{X} address pins can sink or source current for logic low and high, respectively. Note that V_{L} is the logic high output condition. This point must be respected if V_{L} is varied for input logic threshold shifting.

Note: Even though these devices are designed to be latchup resistant, V_{L} must not exceed $\mathrm{V}+$ by more than 0.3 V in operation or during power supply on/off sequencing.

Layout

The PLCC package pinout is optimized so that large crosspoint arrays can be easily implemented with a minimum number of PCB layers (see Figure 16). Crosstalk is minimized and off-isolation is optimized by having ground pins located adjacent to each input and output signal pins. Optimum off-isolation and low crosstalk performance can only be achieved by the proper use of RF layout techniques: avoid sockets, use ground planes, avoid ground loops, bypass the power supplies with high frequency type capacitors (low ESR, low ESL), use striplines to maintain transmission line impedance matching.

Figure 16. 16 X 8 Expandable Crosspoint Matrix Using DG884

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?70071.

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

[^0]: * Pb containing terminations are not RoHS compliant, exemptions may apply

