

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

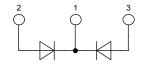






 $I_{FAV} = 2x 20 A$ 




preliminary

# **Sonic Fast Recovery Diode**

High Performance Fast Recovery Diode Low Loss and Soft Recovery Common Cathode

Part number

DHG 40 C 1200 HB



# 1 3

1200 V

200 ns

Backside: cathode

#### Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- · Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
  - Power dissipation within the diode
  - Turn-on loss in the commutating switch

### **Applications:**

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

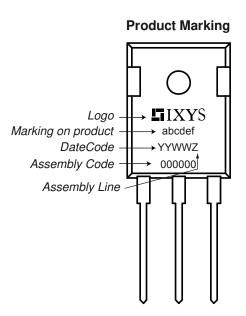
## Package:

 $V_{RRM} =$ 

- Housing: TO-247
- Industry standard outline
- Epoxy meets UL 94V-0
- RoHS compliant

#### Ratings

| Symbol            | Definition                                        | Conditions                                |                           | min. | typ. | max. | Unit |
|-------------------|---------------------------------------------------|-------------------------------------------|---------------------------|------|------|------|------|
| $V_{RRM}$         | max. repetitive reverse voltage                   |                                           | T <sub>VJ</sub> = 25°C    |      |      | 1200 | V    |
| I <sub>R</sub>    | reverse current                                   | V <sub>R</sub> = 1200 V                   | $T_{VJ} = 25^{\circ}C$    |      |      | 25   | μΑ   |
|                   |                                                   | V <sub>R</sub> = 1200 V                   | $T_{VJ} = 125$ °C         |      |      | 0.4  | mA   |
| V <sub>F</sub>    | forward voltage                                   | I <sub>F</sub> = 20 A                     | $T_{VJ} = 25^{\circ}C$    |      |      | 2.24 | V    |
|                   |                                                   | $I_F = 40 A$                              |                           |      |      | 2.89 | V    |
|                   |                                                   | I <sub>F</sub> = 20 A                     | T <sub>VJ</sub> = 125°C   |      |      | 2.24 | V    |
|                   |                                                   | $I_F = 40 A$                              |                           |      |      | 3.15 | V    |
| I <sub>FAV</sub>  | average forward current                           | rectangular d = 0.5                       | $T_{\rm C} = 95^{\circ}C$ |      |      | 20   | Α    |
| V <sub>F0</sub>   | threshold voltage $T_{VJ} = 150 ^{\circ}\text{C}$ |                                           |                           |      |      | 1.29 | V    |
| r <sub>F</sub>    | slope resistance                                  | calculation only                          |                           |      |      | 43   | mΩ   |
| R <sub>thJC</sub> | thermal resistance junction to case               |                                           |                           |      |      | 0.90 | K/W  |
| T <sub>VJ</sub>   | virtual junction temperature                      |                                           |                           | -55  |      | 150  | °C   |
| P <sub>tot</sub>  | total power dissipation                           |                                           | $T_{\rm C}$ = 25°C        |      |      | 140  | W    |
| I <sub>FSM</sub>  | max. forward surge current                        | t = 10 ms (50 Hz), sine                   | T <sub>VJ</sub> = 45°C    |      |      | 150  | Α    |
| I <sub>RM</sub>   | max. reverse recovery current                     |                                           | $T_{VJ} = 25^{\circ}C$    |      | 15   |      | Α    |
|                   |                                                   | $I_F = 20 \text{ A}; V_R = 600 \text{ V}$ | $T_{VJ} = 125$ °C         |      | 20   |      | Α    |
| t <sub>rr</sub>   | reverse recovery time                             | $-di_F/dt = 400 A/\mu s$                  | $T_{VJ} = 25^{\circ}C$    |      | 200  |      | ns   |
|                   |                                                   |                                           | $T_{VJ} = 125$ °C         |      | 350  |      | ns   |
| C¹                | junction capacitance                              | V <sub>R</sub> = 600 V; f = 1 MHz         | T <sub>VJ</sub> = 25°C    |      | 8    |      | pF   |




# DHG 40 C 1200 HB

preliminary

|                  |                                    |                 |      | Ratings |      |      |  |
|------------------|------------------------------------|-----------------|------|---------|------|------|--|
| Symbol           | Definition                         | Conditions      | min. | typ.    | max. | Unit |  |
| I <sub>RMS</sub> | RMS current                        | per terminal 1) |      |         | 70   | Α    |  |
| R thCH           | thermal resistance case to heatsin | k               |      | 0.25    |      | K/W  |  |
| T <sub>stg</sub> | storage temperature                |                 | -55  |         | 150  | °C   |  |
| Weight           |                                    |                 |      | 6       |      | g    |  |
| M <sub>D</sub>   | mounting torque                    |                 | 0.8  |         | 1.2  | Nm   |  |
| F <sub>c</sub>   | mounting force with clip           |                 | 20   |         | 120  | N    |  |

 $<sup>^{1)}</sup>$   $I_{\text{RMS}}$  is typically limited by the pin-to-chip resistance (1); or by the current capability of the chip (2). In case of (1) and a common cathode/anode configuration with a non-isolated backside, the current capability can be increased by connecting the backside.



#### Part number

D = Diode

H = Sonic Fast Recovery Diode

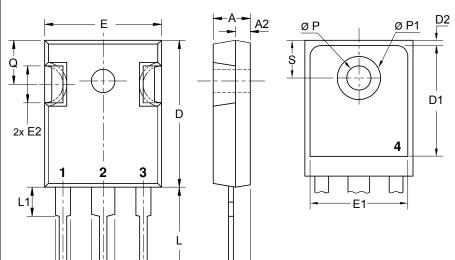
G = extreme fast

40 = Current Rating [A]

C = Common Cathode

1200 = Reverse Voltage [V] HB = TO-247AD (3)

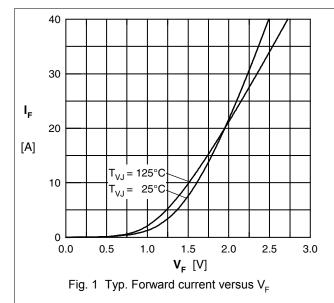
| Standard DHG 40 C 1200 HB DHG40C1200HB Tube 30 |        | Quantity | Delivery Mode | Marking on Product | Ordering Number  | Ordering |
|------------------------------------------------|--------|----------|---------------|--------------------|------------------|----------|
| Standard Brid 40 0 1200 Fib Brid 400 1200 Fib  | 505138 | 30       | Tube          | DHG40C1200HB       | DHG 40 C 1200 HB | Standard |






preliminary

## **Outlines TO-247**


2x b2



−3x b

| Sym. | Inches    |       | Millimeter |       |  |
|------|-----------|-------|------------|-------|--|
|      | min.      | max.  | min.       | max.  |  |
| Α    | 0.185     | 0.209 | 4.70       | 5.30  |  |
| A1   | 0.087     | 0.102 | 2.21       | 2.59  |  |
| A2   | 0.059     | 0.098 | 1.50       | 2.49  |  |
| D    | 0.819     | 0.845 | 20.79      | 21.45 |  |
| E    | 0.610     | 0.640 | 15.48      | 16.24 |  |
| E2   | 0.170     | 0.216 | 4.31       | 5.48  |  |
| е    | 0.215     | BSC   | 5.46 BSC   |       |  |
| L    | 0.780     | 0.800 | 19.80      | 20.30 |  |
| L1   | -         | 0.177 | -          | 4.49  |  |
| ØР   | 0.140     | 0.144 | 3.55       | 3.65  |  |
| Q    | 0.212     | 0.244 | 5.38       | 6.19  |  |
| S    | 0.242 BSC |       | 6.14 BSC   |       |  |
| b    | 0.039     | 0.055 | 0.99       | 1.40  |  |
| b2   | 0.065     | 0.094 | 1.65       | 2.39  |  |
| b4   | 0.102     | 0.135 | 2.59       | 3.43  |  |
| С    | 0.015     | 0.035 | 0.38       | 0.89  |  |
| D1   | 0.515     | -     | 13.07      | -     |  |
| D2   | 0.020     | 0.053 | 0.51       | 1.35  |  |
| E1   | 0.530     | -     | 13.45      | -     |  |
| Ø P1 | -         | 0.29  | -          | 7.39  |  |

preliminary



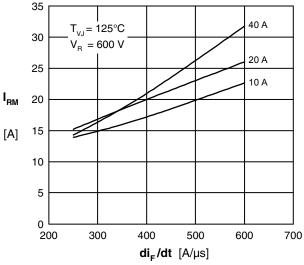



Fig. 3 Typ. peak reverse current I<sub>RM</sub> vs. di/dt

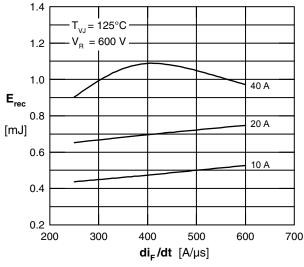



Fig. 5 Typ. recovery energy  $E_{\rm rec}$  versus di/dt

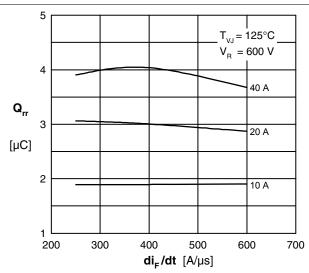



Fig. 2 Typ. reverse recov.charge Q<sub>rr</sub>vs. di/dt

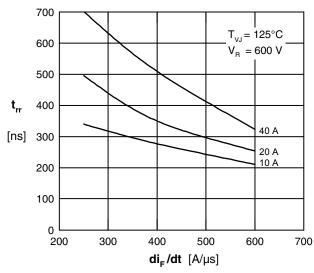



Fig. 4 Typ. recovery time t<sub>rr</sub> versus di/dt

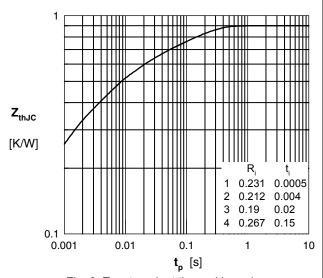



Fig. 6 Typ. transient thermal impedance