: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

DIL Series Reed Relays

> Features Compatible with 14 pin DIL socket, High resistance coil up to 11 kOhm available
> Available with Dielectric Strength 4.25kVDC, Diode, Magnetic Shield \& Others
> Markets: General purposes, Telecommunications, Test and Measurement \& Others

Customer Options	Switch Model			Unit	
Contact Data	66	75	88		W
Rated Power (max.) Any DC combination of V\&A not to exceed their individual max.'s	10	10	50	10	V
Switching Voltage (max.) DC or peak AC	200	500	500	175	A
Switching Current (max.) DC or peak AC	0.5	0.5	2	0.5	A
Carry Current (max.) DC or peak AC	1.0	1.0	2	1.0	A
Contact Resistance (max.) @ 0.5V \& 50mA	150	200	80	150	mOhm
Breakdown Voltage (min.) According to EN60255-5	0.225	1.5	1.5	0.2	kVDC
Operating Time (max.) Incl. Bounce; Measured with w/ Nominal Voltage	0.5	0.5	1.2	0.7	ms
Release Time (max.) Measured with no Coil Excitation	0.1	0.1	1.0	1.5	ms
Insulation Resistance (typ.) Rh<45\%, 100V Test Voltage	10^{10}	10^{10}	10^{11}	10^{9}	GOhm
Capacitance (typ.) @ 10kHz across open Switch	0.2	0.4	0.3	1.0	pF

Coil Data		Coil Voltage (nom.)	Coil Resistance (typ.)	Pull-In Voltage (max.)	Drop-Out Voltage (min.)	Nominal Coil Power (typ.)
Contact Form	Switch Model					
Unit		VDC	Ohm	VDC	VDC	mW
1A	$\begin{aligned} & 66,72, \\ & 75,88 \end{aligned}$	05	450	3.5	0.75	55
		12	1,800	8.4	1.8	80
		24	4,500	16.8	3.6	130
2A	$\begin{aligned} & 66,72, \\ & 75,88 \end{aligned}$	05	200	3.5	0.75	125
		12	680	8.4	1.8	210
		24	2,000	16.8	3.6	290
4A	66	05	140	3.5	0.75	179
		12	400	8.4	1.8	360
		24	1,900	16.8	3.6	303
1C	90	05	200	3.5	0.75	125
		12	1,000	8.4	1.8	145
		24	3,000	16.8	3.6	190
2C	90	05	150	3.5	0.75	165
		12	680	8.4	1.8	210
		24	2,000	16.8	3.6	290
The Pull-In / Drop-Out Voltage and Coil Resistance will change at Rate of 0.4% per ${ }^{\circ} \mathrm{C}$						

Environmental Data		Unit
Shock Resistance (max.) 1/2 sine wave duration 11ms	50	g
Vibration Resistance (max.)	20	g
Operating Temperature	-20 to 70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-25 to 85	${ }^{\circ} \mathrm{C}$
Soldering Temperature (max.) 5 sec. max.	260	${ }^{\circ} \mathrm{C}$

Handling \& Assembly Instructions

> Switching inductive and/or capacitive loads create voltage and/or current peaks, which may damage the relay.
Protective circuits need to be used.
> External magnetic fields needs to be taken into consideration, including a too high packing density. This may influence the relays' electrical characteristics.
> Mechanical shock impacts e.g. dropping the relays may cause immediate or post-installation failure.
$>$ Wave soldering: maximum $260^{\circ} / 5$ seconds.
> Reflow soldering: Recommendations given by the soldering paste manufacturer need to be considered as well as the temperature limits of other components/processes.

Life Test Data

USA:	+1.866 .782 .6339
Europe:	+49.7731 .8399 .0
Asia:	+86.21 .37820625

A Global Leader in the Design, Development, and Manufacture of Sensor and Magnetic Components

Options

Top View
2.54 mm [0.10"] pitch grid

E (R)

F (S)

Please Note: Any option can affect the coil resistance, the breakdown voltage or other electronical data. Please contact us.
Special performance: The following special options are available on request:
> Other pinning layout
> Other coil resistance values
> Other switches available

