

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

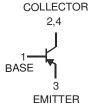
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

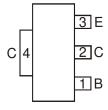
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DJT4030P

LOW V_{CE(SAT)} PNP SURFACE MOUNT TRANSISTOR

Features


- Ideally Suited for Automated Assembly Processes
- Complementary NPN Type Available (DJT4031N)
- Low Collector-Emitter Saturation Voltage
- Ideal for Medium Power Switching or Amplification Applications
- Lead Free By Design/RoHS Compliant (Note 1)
- "Green" Device (Note 2)


Mechanical Data

- Case: SOT-223
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020D
- Terminals: Finish Matte Tin annealed over Copper leadframe (Lead Free Plating). Solderable per MIL-STD-202, Method 208
- Marking Information: See Page 4
- Ordering Information: See Page 4
- Weight: 0.115 grams (approximate)

Top View

Device Schematic

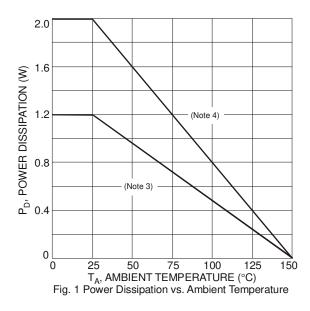
Pin Out Configuration

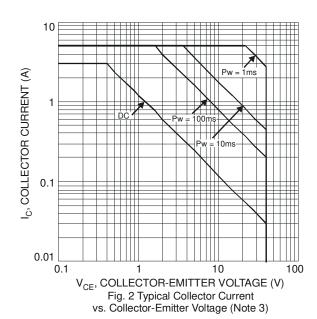
Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	-40	V
Collector-Emitter Voltage	V _{CEO}	-40	V
Emitter-Base Voltage	V _{EBO}	-6	V
Peak Pulse Current	I _{CM}	-5	Α
Continuous Collector Current	I _C	-3	A
Base Current	I _B	-1	Α

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 3) @ T _A = 25°C	P _D	1.2	W
Thermal Resistance, Junction to Ambient Air (Note 3) @ T _A = 25°C	$R_{ hetaJA}$	104	°C/W
Power Dissipation (Note 4) @ T _A = 25°C	P _D	2	W
Thermal Resistance, Junction to Ambient Air (Note 4) @ T _A = 25°C	$R_{ hetaJA}$	62.5	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C

Notes:


- 1. No purposefully added lead.
- 2. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
- 3. Device mounted on FR-4 PCB with minimum recommended pad layout.
- 4. Device mounted on FR-4 PCB with 1 inch2 copper pad layout.



Electrical Characteristics @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Conditions	
OFF CHARACTERISTICS (Note 5)							
Collector-Base Breakdown Voltage	V _{(BR)CBO}	-40	_	_	V	$I_C = -100 \mu A$	
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	-40	_		V	$I_C = -10 \text{mA}$	
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	-6	_	_	V	$I_E = -50\mu A$	
Collector-Base Cutoff Current	1		_	-100	nA	$V_{CB} = -40V, I_{E} = 0$	
Collector-base Cutoff Current	Ісво		_	-50	μΑ	$V_{CB} = -40V$, $I_E = 0$, $T_A = 150$ °C	
Emitter-Base Cutoff Current	I _{EBO}	_	_	-100	nA	$V_{EB} = -6V, I_{C} = 0$	
ON CHARACTERISTICS (Note 5)							
		220		_		$V_{CE} = -1V, I_{C} = -0.5A$	
DC Current Gain	h _{FE}	200	_	400	_	$V_{CE} = -1V, I_{C} = -1A$	
		100	_	_		$V_{CE} = -1V, I_{C} = -3A$	
		_	_	-150		$I_C = -0.5A, I_B = -5mA$	
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	_	_	-200	mV	$I_C = -1A$, $I_B = -10mA$	
		_	_	-500		$I_C = -3A$, $I_B = -0.3A$	
Equivalent On-Resistance	R _{CE(SAT)}		_	167	mΩ	$I_E = -3A$, $I_B = -0.3A$	
Base-Emitter Saturation Voltage	V _{BE(SAT)}	_	_	-1.0	V	$I_C = -1A$, $I_B = -0.1A$	
Base-Emitter Turn-on Voltage	V _{BE(ON)}		_	-1.0	V	$V_{CE} = -2V$, $I_C = -1A$	
SMALL SIGNAL CHARACTERISTICS							
Transition Frequency	f _T		150		MHz	$V_{CE} = -10V, I_{C} = -100mA,$ f = 100MHz	
Output Capacitance	C_{obo}	1	35		pF	$V_{CB} = -10V$, $f = 1MHz$	
Input Capacitance	C _{ibo}		150		рF	$V_{CB} = -5V$, $f = 1MHz$	
SWITCHING CHARACTERISTICS							
Turn-On Time	t _{on}	_	53	_	ns	V _{CC} = -10V, I _C = -2A, I _{B1} = -200mA	
Delay Time	t _d	_	12	_	ns		
Rise Time	t _r	_	41	_	ns		
Turn-Off Time	t _{off}	_	180	_	ns	101/ 1 04	
Storage Time	ts		146		ns	$V_{CC} = -10V$, $I_{C} = -2A$, $I_{B1} = I_{B2} = -200mA$	
Fall Time	t _f	_	34	_	ns	181 - 185 = -500111V	

Notes: 5. Measured under pulsed conditions. Pulse width = 300μ s. Duty cycle $\leq 2\%$.

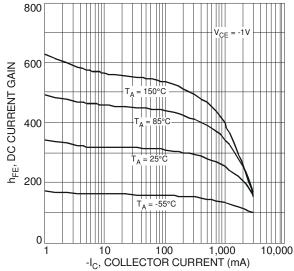
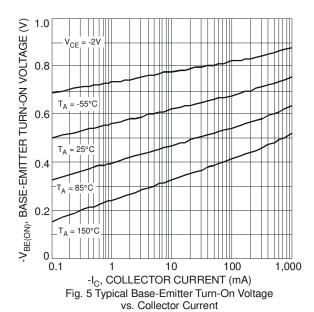
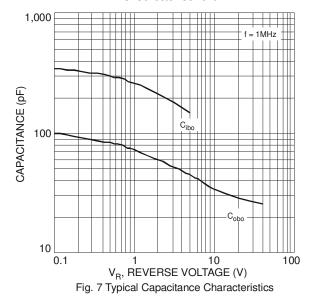




Fig. 3 Typical DC Current Gain vs. Collector Current

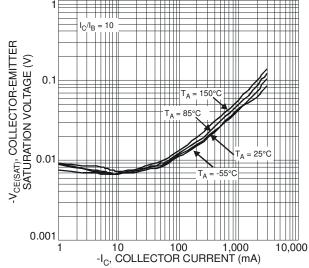


Fig. 4 Typical Collector-Emitter Saturation Voltage vs. Collector Current

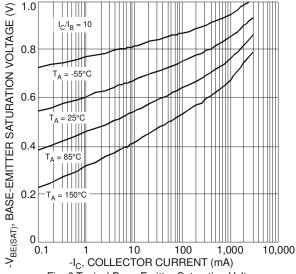
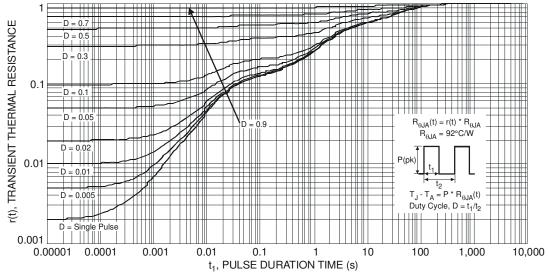
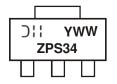


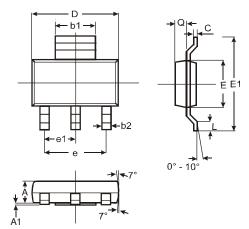
Fig. 6 Typical Base-Emitter Saturation Voltage vs. Collector Current




Fig. 8 Transient Thermal Response (Note 3)

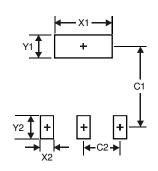
Ordering Information (Note 6)

Part Number	Case	Packaging
DJT4030P-13	SOT-223	2500/Tape & Reel


Notes: 6. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

ZPS34 = Product Type Marking Code YWW = Date Code Marking Y = Last digit of year (ex: 8 = 2008) WW = Week code 01 - 52


Package Outline Dimensions

SO1-223				
Dim	Min	Max	Тур	
Α	1.55	1.65	1.60	
A1	0.010	0.15	0.05	
b1	2.90	3.10	3.00	
b2	0.60	0.80	0.70	
С	0.20	0.30	0.25	
D	6.45	6.55	6.50	
Е	3.45	3.55	3.50	
E1	6.90	7.10	7.00	
е	_	_	4.60	
e1	_	_	2.30	
L	0.85	1.05	0.95	
Q	0.84	0.94	0.89	
All Dimensions in mm				

Suggested Pad Layout

Dimensions	Value (in mm)
X1	3.3
X2	1.2
Y1	1.6
Y2	1.6
C1	6.4
C2	2.3

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.