
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Virtual JTAG (altera_virtual_jtag) IP
Core User Guide

Updated for Intel® Quartus® Prime Design Suite: 16.1

Subscribe
Send Feedback

UG-SLDVRTL | 2018.07.19
Latest document on the web: PDF | HTML

Contents

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide..3
Introduction.. 3

Installing and Licensing Intel FPGA IP Cores... 4
On-Chip Debugging Tool Suite.. 4
Applications of the Virtual JTAG IP Core... 5
JTAG Protocol... 6
JTAG Circuitry Architecture...7

System-Level Debugging Infrastructure.. 9
Transaction Model of the SLD Infrastructure..9
SLD Hub Finite State Machine... 11

Virtual JTAG Interface Description...12
Input Ports...14
Output Ports...14
Parameters...16
Design Flow of the Virtual JTAG IP Core..16
Simulation Model.. 17
Run-Time Communication...18
Running a DR Shift Operation Through a Virtual JTAG Chain....................................19

Run-Time Communication..19
Virtual IR/DR Shift Transaction without Returning Captured IR/DR Values................. 21
Virtual IR/DR Shift Transaction that Captures Current VIR/VDR Values......................22
Reset Considerations when Using a Custom JTAG Controller....................................23

Instantiating the Virtual JTAG IP Core... 24
IP Catalog and Parameter Editor..24
Specifying IP Core Parameters and Options...26
Instantiating Directly in HDL...27

Simulation Support...29
Compiling the Design..32

Third-Party Synthesis Support...33
SLD_NODE Discovery and Enumeration... 33

Issuing the HUB_INFO Instruction... 34
HUB IP Configuration Register...35
SLD_NODE Info Register.. 35

Capturing the Virtual IR Instruction Register.. 36
AHDL Function Prototype ..37
VHDL Component Declaration.. 38
VHDL LIBRARY-USE Declaration..38
Design Example: TAP Controller State Machine...39
Design Example: Modifying the DCFIFO Contents at Runtime... 41

Write Logic...41
Read Logic... 42
Runtime Communication.. 43

Design Example: Offloading Hardwired Revision Information.. 44
Configuring the JTAG User Code Setting... 45

Document Revision History for the Virtual JTAG (altera_virtual_jtag) IP Core User Guide......45

Contents

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
2

Altera Virtual JTAG (altera_virtual_jtag) IP Core User
Guide

The Altera Virtual JTAG (altera_virtual_jtag) IP core provides access to the PLD source
through the JTAG interface. This IP core is optimized for Intel® device architectures.
Using IP cores in place of coding your own logic saves valuable design time, and offers
more efficient logic synthesis and device implementation. You can scale the IP core's
size by setting parameters.

Related Information

Introduction to Intel FPGA IP Cores

Introduction

The Virtual JTAG IP core allows you to create your own software solution for
monitoring, updating, and debugging designs through the JTAG port without using I/O
pins on the device, and is one feature in the On-Chip Debugging Tool Suite. The Intel
Quartus® Prime software or JTAG control host identifies each instance of this IP core
by a unique index. Each IP core instance functions in a flow that resembles the JTAG
operation of a device. The logic that uses this interface must maintain the continuity of
the JTAG chain on behalf the PLD device when this instance becomes active.

With the Virtual JTAG IP core you can build your design for efficient, fast, and
productive debugging solutions. Debugging solutions can be part of an evaluation test
where you use other logic analyzers to debug your design, or as part of a production
test where you do not have a host running an embedded logic analyzer. In addition to
debugging features, you can use the Virtual JTAG IP core to provide a single channel
or multiple serial channels through the JTAG port of the device. You can use serial
channels in applications to capture data or to force data to various parts of your logic.

Each feature in the On-Chip Debugging Tool Suite leverages on-chip resources to
achieve real time visibility to the logic under test. During runtime, each tool shares the
JTAG connection to transmit collected test data to the Intel Quartus Prime software for
analysis. The tool set consists of a set of GUIs, IP core intellectual property (IP) cores,
and Tcl application programming interfaces (APIs). The GUIs provide the configuration
of test signals and the visualization of data captured during debugging. The Tcl
scripting interface provides automation during runtime.

The Virtual JTAG IP core provides you direct access to the JTAG control signals routed
to the FPGA core logic, which gives you a fine granularity of control over the JTAG
resource and opens up the JTAG resource as a general-purpose serial communication
interface. A complete Tcl API is available for sending and receiving transactions into
your device during runtime. Because the JTAG pins are readily accessible during
runtime, this IP core enables an easy way to customize a JTAG scan chain internal to
the device, which you can then use to create debugging applications.

UG-SLDVRTL | 2018.07.19

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

Examples of debugging applications include induced trigger conditions evaluated by a
Signal Tap logic analyzer by exercising test signals connected to the analyzer instance,
a replacement for a front panel interface during the prototyping phase of the design,
or inserted test vectors for exercising the design under test.

The infrastructure is an extension of the JTAG protocol for use with Intel-specific
applications and user applications, such as the Signal Tap logic analyzer.

Installing and Licensing Intel FPGA IP Cores

The Intel Quartus Prime software installation includes the Intel FPGA IP library. This
library provides many useful IP cores for your production use without the need for an
additional license. Some Intel FPGA IP cores require purchase of a separate license for
production use. The Intel FPGA IP Evaluation Mode allows you to evaluate these
licensed Intel FPGA IP cores in simulation and hardware, before deciding to purchase a
full production IP core license. You only need to purchase a full production license for
licensed Intel IP cores after you complete hardware testing and are ready to use the
IP in production.

The Intel Quartus Prime software installs IP cores in the following locations by default:

Figure 1. IP Core Installation Path

intelFPGA(_pro)

quartus - Contains the Intel Quartus Prime software

ip - Contains the Intel FPGA IP library and third-party IP cores

altera - Contains the Intel FPGA IP library source code

<IP name> - Contains the Intel FPGA IP source files

Table 1. IP Core Installation Locations

Location Software Platform

<drive>:\intelFPGA_pro\quartus\ip\altera Intel Quartus Prime Pro Edition Windows*

<drive>:\intelFPGA\quartus\ip\altera Intel Quartus Prime Standard
Edition

Windows

<home directory>:/intelFPGA_pro/quartus/ip/altera Intel Quartus Prime Pro Edition Linux*

<home directory>:/intelFPGA/quartus/ip/altera Intel Quartus Prime Standard
Edition

Linux

On-Chip Debugging Tool Suite

The On-Chip Debugging Tool Suite enables real time verification of a design and
includes the following tools:

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
4

Table 2. On-Chip Debugging Tool Suite

Tool Description Typical Circumstances for Use

Signal Tap Logic
Analyzer

Uses FPGA resources to sample tests nodes
and outputs the information to the Intel
Quartus Prime software for display and
analysis.

You have spare on-chip memory and want functional
verification of your design running in hardware.

Signal Probe Incrementally routes internal signals to I/O
pins while preserving the results from your
last place-and-route.

You have spare I/O pins and want to check the
operation of a small set of control pins using either an
external logic analyzer or an oscilloscope.

Logic Analyzer
Interface (LAI)

Multiplexes a larger set of signals to a
smaller number of spare I/O pins. LAI allows
you to select which signals are switched
onto the I/O pins over a JTAG connection.

You have limited on-chip memory and have a large set
of internal data buses that you want to verify using an
external logic analyzer. Logic analyzer vendors, such as
Tektronics and Agilent, provide integration with the tool
to improve usability.

In-System
Memory
Content Editor

Displays and allows you to edit on-chip
memory.

You want to view and edit the contents of either the
instruction cache or data cache of a Nios® II processor
application.

In-System
Sources and
Probes

Provides a way to drive and sample logic
values to and from internal nodes using the
JTAG interface.

You want to prototype a front panel with virtual
buttons for your FPGA design.

Virtual JTAG
Interface

Opens the JTAG interface so that you can
develop your own custom applications.

You want to generate a large set of test vectors and
send them to your device over the JTAG port to
functionally verify your design running in hardware.

Related Information

System Debugging Tools Overview

Applications of the Virtual JTAG IP Core

You can instantiate single or multiple instances of the Virtual JTAG IP core in your HDL
code. During synthesis, the Intel Quartus Prime software assigns unique IDs to each
instance, so that each instance is accessed individually. You can instantiate up to 128
instances of the Virtual JTAG IP core. The figure below shows a typical application in a
design with multiple instances of the IP core.

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
5

Figure 2. Application Example

Logic

Logic

JTAG

sld_virtual_jtag

sld_virtual_jtag

tck

tms

trst

tdi

tdo

The hub automatically arbitrates between multiple applications that share a single
JTAG resource. Therefore, you can use the IP core in tandem with other on-chip
debugging applications, such as the Signal Tap logic analyzer, to increase debugging
visibility. You can also use the IP core to provide simple stimulus patterns to solicit a
response from the design under test during run-time, including the following
applications:

• To diagnose, sample, and update the values of internal parts of your logic. With
this IP core, you can easily sample and update the values of the internal counters
and state machines in your hardware device.

• To build your own custom software debugging IP using the Tcl commands to debug
your hardware. This IP communicates with the instances of the Virtual JTAG IP
core inside your design.

• To construct your design to achieve virtual inputs and outputs.

• If you are building a debugging solution for a system in which a microprocessor
controls the JTAG chain, you cannot use the Signal Tap logic analyzer because the
JTAG control must be with the microprocessor. You can use low-level controls for
the JTAG port from the Tcl commands to direct microprocessors to communicate
with the Virtual JTAG IP core inside the device core.

JTAG Protocol

The original intent of the JTAG protocol (standardized as IEEE 1149.1) was to simplify
PCB interconnectivity testing during the manufacturing stage. As access to integrated
circuit (IC) pins became more limited due to tighter lead spacing and FPGA packages,
testing through traditional probing techniques, such as “bed-of-nails” test fixtures,
became infeasible. The JTAG protocol alleviates the need for physical access to IC pins
via a shift register chain placed near the I/O ring. This set of registers near the I/O
ring, also known as boundary scan cells (BSCs), samples and forces values out onto
the I/O pins. The BSCs from JTAG-compliant ICs are daisy-chained into a serial-shift
chain and driven via a serial interface.

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
6

During boundary scan testing, software shifts out test data over the serial interface to
the BSCs of select ICs. This test data forces a known pattern to the pins connected to
the affected BSCs. If the adjacent IC at the other end of the PCB trace is
JTAG-compliant, the BSC of the adjacent IC samples the test pattern and feeds the
BSCs back to the software for analysis. The figure below illustrates the boundary-scan
testing concept.

Figure 3. IEEE Std. 1149.1 Boundary-Scan Testing

Serial

Data In

JTAG Device 1 JTAG Device 2

Serial

Data Out

Core

Logic

Core

Logic

Boundary-Scan Cell

IC Pin Signal

Interconnection

to be Tested

Because the JTAG interface shifts in any information to the device, leaves a low
footprint, and is available on all Intel devices, it is considered a general purpose
communication interface. In addition to boundary scan applications, Intel devices use
the JTAG port for other applications, such as device configuration and on-chip
debugging features available in the Intel Quartus Prime software.

Related Information

IEEE 1149.1 JTAG Boundary-Scan Testing

JTAG Circuitry Architecture

The basic architecture of the JTAG circuitry consists of the following components:

• A set of Data Registers (DRs)

• An Instruction Register (IR)

• A state machine to arbitrate data (known as the Test Access Port (TAP) controller)

• A four- or five-pin serial interface, consisting of the following pins:

— Test data in (TDI), used to shift data into the IR and DR shift register chains

— Test data out (TDO), used to shift data out of the IR and DR shift register
chains

— Test mode select (TMS), used as an input into the TAP controller

— TCK, used as the clock source for the JTAG circuitry

— TRST resets the TAP controller. This is an optional input pin defined by the
1149.1 standard.

Note: The TRST pin is not present in the Cyclone device family.

The bank of DRs is the primary data path of the JTAG circuitry. It carries the payload
data for all JTAG transactions. Each DR chain is dedicated to serving a specific
function. Boundary scan cells form the primary DR chain. The other DR chains are
used for identification, bypassing the IC during boundary scan tests, or a custom set

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
7

of register chains with functions defined by the IC vendor. Intel uses two of the DR
chains with user-defined IP that requires the JTAG chain as a communication resource,
such as the on-chip debugging applications. The Virtual JTAG IP core, in particular,
allows you to extend the two DR chains to a user-defined custom application.

You use the instruction register to select the bank of Data Registers to which the TDI
and TDO must connect. It functions as an address register for the bank of Data
Registers. Each IR instruction maps to a specific DR chain.

All shift registers that are a part of the JTAG circuitry (IR and DR register chains) are
composed of two kinds of registers: shift registers, which capture new serial shift
input from the TDI pin, and parallel hold registers, which connect to each shift
register to hold the current input in place when shifting. The parallel hold registers
ensure stability in the output when new data is shifted.

The figure below shows a functional model of the JTAG circuitry. The TRST pin is an
optional pin in the 1149.1 standard and not available in Cyclone devices. The TAP
controller is a hard controller; it is not created using programmable resources. The
major function of the TAP controller is to route test data between the IR and DR
register chains.

Figure 4. Functional Model of the JTAG Circuitry

IR Shift Registers

IR Update Registers

DR Shift Register 1

DR Update Register 1

DR Shift Register 2

DR Update Register 2

DR Shift Register n

DR Update Register n

JTAG TAP

Controller

(2)

TDI TDO

Tap

Controller

Output (3)

Tap

Controller

Output (3)

TRST (1)

TCK

TMS

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
8

System-Level Debugging Infrastructure

On-chip debugging tools that require the JTAG resources share two Data Register
chain paths; USER1 and USER0 instructions select the Data Register chain paths. The
datapaths are an extension of the JTAG circuitry for use with the programmable logic
elements in Intel devices.

Because the JTAG resource is shared among multiple on-chip applications, an
arbitration scheme must define how the USER0 and USER1 scan chains are allocated
between the different applications. The system-level debugging (SLD) infrastructure
defines the signaling convention and the arbitration logic for all programmable logic
applications using a JTAG resource. The figure below shows the SLD infrastructure
architecture.

Figure 5. System Level Debugging Infrastructure Functional Model

JTAG Tap

Controller

TC

TM

TD

TD

FPGA

SLD Node

SLD Node

SLD Node

SLD Node

SLD Hub

User’s Design

(Core Logic)

Transaction Model of the SLD Infrastructure

In the presence of an application that requires the JTAG resource, the Intel Quartus
Prime software automatically implements the SLD infrastructure to handle the
arbitration of the JTAG resource. The communication interface between JTAG and any
IP cores is transparent to the designer. All components of the SLD infrastructure,
except for the JTAG TAP controller, are built using programmable logic resources.

The SLD infrastructure mimics the IR/DR paradigm defined by the JTAG protocol. Each
application implements an Instruction Register, and a set of Data Registers that
operate similarly to the Instruction Register and Data Registers in the JTAG standard.
Note that the Instruction Register and the Data Register banks implemented by each

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
9

application are a subset of the USER1 and USER0 Data Register chains. The SLD
infrastructure consists of three subsystems: the JTAG TAP controller, the SLD hub, and
the SLD nodes.

The SLD hub acts as the arbiter that routes the TDI pin connection between each SLD
node, and is a state machine that mirrors the JTAG TAP controller state machine.

The SLD nodes represent the communication channels for the end applications. Each
instance of IP requiring a JTAG communication resource, such as the Signal Tap logic
analyzer, would have its own communication channel in the form of a SLD node
interface to the SLD hub. Each SLD node instance has its own Instruction Register and
bank of DR chains. Up to 255 SLD nodes can be instantiated, depending on resources
available in your device.

Together, the sld_hub and the SLD nodes form a virtual JTAG scan chain within the
JTAG protocol. It is virtual in the sense that both the Instruction Register and DR
transactions for each SLD node instance are encapsulated within a standard DR scan
shift of the JTAG protocol.

The Instruction Register and Data Registers for the SLD nodes are a subset of the
USER1 and USER0 Data Registers. Because the SLD Node IR/DR register set is not
directly part of the IR/DR register set of the JTAG protocol, the SLD node Instruction
Register and Data Register chains are known as Virtual IR (VIR) and Virtual DR (VDR)
chains. The figure below shows the transaction model of the SLD infrastructure.

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
10

Figure 6. Extension of the JTAG Protocol for PLD Applications

IR Shift Registers

IR Update Registers

DR Shift Register 1

DR Update Register 1

USER 0 Data Registers

USER 1 Data Registers

TDI TDO

TAP

Controller

Output

TAP

Controller

Output

Intel PLD JTAG Extension

Intel PLD JTAG Extension

Node 1

Node N

USER0 / USER1 and
SLD_HUB Control Signals

TDI TDO

VIR

VDR 1

VDR N

VIR

VIR 1

VIR N

SLD Hub Finite State Machine

The SLD hub decodes TMS independently from the hard JTAG TAP controller state
machine and implements an equivalent state machine (called the “SLD hub finite state
machine”) for the internal JTAG path. The SLD hub performs a similar function for the
VIR and VDR chains that the TAP controller performs for the JTAG IR and DR chains. It
enables an SLD node as the active path for the TDI pin, selects the TDI data between

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
11

the VIR and VDR registers, controls the start and stop of any shift transactions, and
controls the data flow between the parallel hold registers and the parallel shift
registers of the VIR and VDR.

Because all shifts to VIR and VDR are encapsulated within a DR shift transaction, an
additional control signal is necessary to select between the VIR and VDR data paths.
The SLD hub uses the USER1 command to select the VIR data path and the USER0
command to select the VDR data path.

This state information, including a bank of enable signals, is forwarded to each of the
SLD nodes. The SLD nodes perform the updates to the VIR and VDR according to the
control states provided by the sld_hub. The SLD nodes are responsible for
maintaining continuity between the TDI and TDO pins.

The figure below shows the SLD hub finite state machine. There is no direct state
signal available to use for application design.

Figure 7. sld_hub Finite State Machine

USR0 USR1

JTAG_Test_Logic_Reset

JTAG_Run_Test_Idle Virtual_Select_DR_Scan (1) Virtual_Select_IR_Scan (1)

Virtual_Capture_DR

Virtual_Shift_DR

Virtual_Exit1_DR

Virtual_Pause_DR

Virtual_Exit2_DR

Virtual_Update_DR

Virtual_Capture_IR

Virtual_Shift_IR (1)

Virtual_Exit1_IR (1)

Virtual_Pause_IR (1)

Virtual_Exit2_IR (1)

Virtual_Update_IR

Virtual JTAG Interface Description

The Virtual JTAG Interface implements an SLD node interface, which provides a
communication interface to the JTAG port. The IP core exposes control signals that are
part of the SLD hub; namely, JTAG port signals, all finite state machine controller
states of the TAP controller, and the SLD hub finite state machine. Additionally, each
instance of the Virtual JTAG IP cores contain the virtual Instruction Register for the
SLD node. Instantiation of this IP core automatically infers the SLD infrastructure, and
one SLD node is added for each instantiation.

The Virtual JTAG IP core provides a port interface that mirrors the actual JTAG ports.
The interface contains the JTAG port pins, a one-hot decoded output of all JTAG states,
and a one-hot decoded output of all the virtual JTAG states. Virtual JTAG states are
the states decoded from the SLD hub finite state machine. The ir_in and ir_out
ports are the parallel input and output to and from the VIR. The VIR ports are used to

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
12

select the active VDR datapath. The JTAG states and TMS output ports are provided for
debugging purposes only. Only the virtual JTAG, TDI, TDO, and the IR signals are
functional elements of the IP core. When configuring this IP core using the parameter
editor, you can hide TMS and the decoded JTAG states.

The figure below shows the input and output ports of the virtual JTAG IP core. The
JTAG TAP controller outputs and TMS signals are used for informational purposes only.
These signals can be exposed using the Create primitive JTAG state signal ports
option in the parameter editor.

Figure 8. Input and Output Ports of the Virtual JTAG IP Core

my_vji

tdo

ir_out[1..0]

tck

tdi

ir_in[1..0]

virtual_state_uir

jtag_state_sdrs

jtag_state_sdr

jtag_state_e1dr

jtag_state_pdr

jtag_state_udr

jtag_state_sirs

jtag_state_cir

jtag_state_sir

jtag_state_e1ir

jtag_state_pir

jtag_state_e2ir

jtag_state_uir

tms

jtag_state_e2dr

jtag_state_cdr

jtag_state_rti

jtag_state_tlr

virtual_state_cir

virtual_state_udr

virtual_state_e2dr

virtual_state_pdr

virtual_state_e1dr

virtual_state_sdr

virtual_state_cdr

Inputs

One-Hot Decoded Outputs
from the SLD Hub FSM

One-Hot Decoded Outputs
from the TAP Controller

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
13

Input Ports

Table 3. Input Ports for the Virtual JTAG IP Core

Port name Required Description Comments

tdo Yes Writes to the TDO pin on the device.

ir_out[] No Virtual JTAG instruction register
output. The value is captured
whenever virtual_state_cir is
high.

Input port [SLD_IR_WIDTH-1..0]
wide. Specify the width of this bus with
the SLD_IR_WIDTH parameter.

Output Ports

Table 4. Output Ports for the Virtual JTAG IP Core

Port Name Required Description Comments

tck Yes JTAG test clock. Connected directly to the TCK device
pin. Shared among all virtual JTAG
instances.

tdi Yes TDI input data on the device. Used
when virtual_state_sdr is high.

Shared among all virtual JTAG
instances.

ir_in[] No Virtual JTAG instruction register data.
The value is available and latched
when virtual_state_uir is high.

Output port [SLD_IR_WIDTH-1..0]
wide. Specify the width of this bus with
the SLD_IR_WIDTH parameter.

Table 5. High-Level Virtual JTAG State Signals

Port Name Required Description Comments

virtual_state_cdr No Indicates that virtual JTAG is in
Capture_DR state.

virtual_state_sdr Yes Indicates that virtual JTAG is in
Shift_DR state.

In this state, this instance is
required to establish the JTAG
chain for this device.

virtual_state_e1dr No Indicates that virtual JTAG is in
Exit1_DR state.

virtual_state pdr No Indicates that virtual JTAG is in
Pause_DR state.

The Intel Quartus Prime software
does not cycle through this state
using the Tcl command.

virtual_state_e2dr No Indicates that virtual JTAG is in
Exit2_DR state.

The Intel Quartus Prime software
does not cycle through this state
using the Tcl command.

virtual_state_udr No Indicates that virtual JTAG is in
Update_DR state.

virtual_state_cir No Indicates that virtual JTAG is in
Capture_IR state.

virtual_state_uir No Indicates that virtual JTAG is in
Update_IR state.

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
14

Table 6. Low-Level Virtual JTAG State Signals

Port Name Required Description Comments

jtag_state_tlr No Indicates that the device JTAG
controller is in the
Test_Logic_Reset state.

Shared among all virtual JTAG
instances.

jtag_state_rti No Indicates that the device JTAG
controller is in the Run_Test/Idle
state.

Shared among all virtual JTAG
instances.

jtag_state_sdrs No Indicates that the device JTAG
controller is in the
Select_DR_Scan state.

Shared among all virtual JTAG
instances.

jtag_state_cdr No Indicates that the device JTAG
controller is in the Capture_DR
state.

Shared among all virtual JTAG
instances.

jtag_state_sdr No Indicates that the device JTAG
controller is in the Shift_DR
state.

Shared among all virtual JTAG
instances.

jtag_state_e1dr No Indicates that the device JTAG
controller is in the Exit1_DR
state.

Shared among all virtual JTAG
instances.

jtag_state_pdr No Indicates that the device JTAG
controller is in the Pause_DR
state.

Shared among all virtual JTAG
instances.

jtag_state_e2dr No Indicates that the device JTAG
controller is in the Exit2_DR
state.

Shared among all virtual JTAG
instances.

jtag_state_udr No Indicates that the device JTAG
controller is in the Update_DR
state.

Shared among all virtual JTAG
instances.

jtag_state_sirs No Indicates that the device JTAG
controller is in the
Select_IR_Scan state.

Shared among all virtual JTAG
instances.

jtag_state_cir No Indicates that the device JTAG
controller is in the Capture_IR
state.

Shared among all virtual JTAG
instances.

jtag_state_sir No Indicates that the device JTAG
controller is in the Shift_IR state.

Shared among all virtual JTAG
instances.

jtag_state_e1ir No Indicates that the device JTAG
controller is in the Exit1_IR
state.

Shared among all virtual JTAG
instances.

jtag_state_pir No Indicates that the device JTAG
controller is in the Pause_IR
state.

Shared among all virtual JTAG
instances.

jtag_state_e2ir No Indicates that the device JTAG
controller is in the Exit2_IR
state.

Shared among all virtual JTAG
instances.

jtag_state_uir Indicates that the device JTAG
controller is in the Update_IR
state.

Shared among all virtual JTAG
instances.

tms TMS input pin on the device. Shared among all virtual JTAG
instances.

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
15

Parameters

Table 7. Virtual JTAG Parameters

Parameter Type Required Description

SLD_AUTO_INSTANCE_INDEX String Yes Specifies whether the Compiler automatically assigns
an index to the Virtual JTAG instance. Values are
YES or NO. When you specify NO, you can find the
auto assigned value of INSTANCE_ID in the
quartus_map file. When you specify NO, you must
define INSTANCE_INDEX. If the index specified is
not unique in a design, the Compiler automatically
reassigns an index to the instance. The default value
is YES.

SLD_INSTANCE_INDEX Integer No Specifies a unique identifier for every instance of
alt_virtual_jtag when AUTO_INSTANCE_ID is
specified to YES. Otherwise, this value is ignored.

SLD_IR_WIDTH Integer Yes Specifies the width of the instruction register
ir_in[] of this virtual JTAG between 1 and 24. If
omitted, the default is 1.

Design Flow of the Virtual JTAG IP Core

Designing with the Virtual JTAG IP core includes the following processes:

• Configuring the Virtual JTAG IP core with the desired Instruction Register length
and instantiating the IP core.

• Building the glue logic for interfacing with your application.

• Communicating with the Virtual JTAG instance during runtime.

In addition to the JTAG datapath and control signals, the Virtual JTAG IP core
encompasses the VIR. The Instruction Register size is configured in the parameter
editor. The Instruction Register port on the Virtual JTAG IP core is the parallel output
of the VIR. Any updated VIR information can be read from this port after the
virtual_state_uir signal is asserted.

After instantiating the IP core, you must create the VDR chains that interface with
your application. To do this, you use the virtual instruction output to determine which
VDR chain is the active datapath, and then create the following:

• Decode logic for the VIR

• VDR chains to which each VIR maps

• Interface logic between your VDR chains and your application logic

Your glue logic uses the decoded one-hot outputs from the IP core to determine when
to shift and when to update the VDR. Your application logic interfaces with the VDR
chains during any one of the non-shift virtual JTAG states.

For example, your application logic can parallel read an updated value that was shifted
in from the JTAG port after the virtual_state_uir signal is asserted. If you load a
value to be shifted out of the JTAG port, you would do so when the
virtual_state_cdr signal is asserted. Finally, if you enable the shift register to
clock out information to TDO, you would do so during the assertion of
virtual_state_sdr.

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
16

Maintaining TDI-to-TDO connectivity is important. Ensure that all possible instruction
codes map to an active register chain to maintain connectivity in the TDI-to-TDO
datapath. Intel recommends including a bypass register as the active register for all
unmapped IR values.

Note that TCK (a maximum 10-MHz clock, if using an Intel programming cable)
provides the clock for the entire SLD infrastructure. Be sure to follow best practices for
proper clock domain crossing between the JTAG clock domain and the rest of your
application logic to avoid metastability issues. The decoded virtual JTAG state signals
can help determine a stable output in the VIR and VDR chains.

After compiling and downloading your design into the device, you can perform shift
operations directly to the VIR and VDR chains using the Tcl commands from the
quartus_stp executable and an Intel programming cable (for example, an Intel
FPGA Download Cable, a MasterBlaster™ cable, or an Intel FPGA Parallel Port Cable).
The quartus_stp executable is a command-line executable that contains Tcl
commands for all on-chip debug features available in the Intel Quartus Prime
software.

The figure below shows the components of a design containing one instance of the
Virtual JTAG IP core. The TDI-to-TDO datapath for the virtual JTAG chain, shown in
red, consists of a bank of DR registers. Input to the application logic is the parallel
output of the VDR chains. Decoded state signals are used to signal start and stop of
shift transactions and signals when the VDR output is ready.

The IR_out port, not shown, is an optional input port you can use to parallel load the
VIR from the FPGA core logic.

Figure 9. Block Diagram of a Design with a Single Virtual JTAG Instantiation

Inferred by Instantiation
of Intel FPGA IP Core

Glue Logic between VJI and User Design
(Created by Designer)

Original Design

Application

Logic

SLD
Hub

VJI Intel FPGA
IP Core Instance

IR

JTAG TAP

Controller

TDI

TDO

TMS

TCK

TRST

TMS & Decoded
State Signals

IR_in

TDI

TDO

Input Vector 1

Input Vector 2

Input Vector nVD
R

Ch
ai

n
1

VD
R

Ch
ai

n
2

VD
R

Ch
ai

n
n

Simulation Model

The virtual JTAG IP core contains a functional simulation model that provides stimuli
that mimic VIR and VDR shifts. You can configure the stimuli using the parameter
editor. You can use this simulation model for functional verification only, and the
operation of the SLD hub and the SLD node-to-hub interface is not provided in this
simulation model.

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
17

Run-Time Communication

The Tcl API for the Virtual JTAG IP core consists of a set of commands for accessing
the VIR and VDR of each virtual JTAG instance.

These commands contain the underlying drivers for accessing an Intel programming
cable and for issuing shift transactions to each VIR and VDR. The table below provides
the Tcl commands in the quartus_stp executable that you can use with the Virtual
JTAG IP core, and are intended for designs that use a custom controller to drive the
JTAG chain.

Each instantiation of the Virtual JTAG IP core includes an instance index. All instances
are sequentially numbered and are automatically provided by the Intel Quartus Prime
software. The instance index starts at instance index 0. The VIR and VDR shift
commands described in the table decode the instance index and provide an address to
the SLD hub for each IP core instance. You can override the default index provided by
the Intel Quartus Prime software during configuration of the IP core.

The table below provides the Tcl commands in the quartus_stp executable that you
can use with the Virtual JTAG IP core, and are intended for designs that use a custom
controller to drive the JTAG chain.

Table 8. Virtual JTAG IP Core Tcl Commands

Command Arguments Description

Device virtual ir shift -instance_index <instance_index>
-ir_value <numeric_ir_value>
-no_captured_ir_value(1)

-show_equivalent_device_ir_dr_shift(1)

Perform an IR shift operation to
the virtual JTAG instance specified
by the instance_index. Note
that ir_value takes a numerical
argument.

Device virtual dr shift -instance_index <instance_index>
-dr_value <dr_value>
-length <data_register_length>
-no_captured_dr_value(1)

-show_equivalent_device_ir_dr_shift

-value_in_hex(1)

Perform a DR shift operation to
the virtual JTAG instance.

Get hardware names NONE Queries for all available
programming cables.

Open device -device_name <device_name>
-hardware_name <hardware_name>

Selects the active device on the
JTAG chain.

Close device NONE Ends communication with the
active JTAG device.

Device lock -timeout <timeout> Obtains exclusive communication
to the JTAG chain.

Device unlock NONE Releases device_lock.

Device ir shift -ir_value <ir_value>
-no_captured_ir_value

Performs a IR shift operation.

Device dr shift -dr_value <dr_value>
-length <data register length>

Performs a DR shift operation.

continued...

(1) This argument is optional.

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
18

Command Arguments Description

-no_captured_dr_value

-value_in_hex

Central to Virtual JTAG IP core are the device_virtual_ir_shift and
device_virtual_dr_shift commands. These commands perform the shift
operation to each VIR/VDR and provide the address to the SLD hub for the active JTAG
datapath.

Each device_virtual_ir_shift command issues a USER1 instruction to the JTAG
Instruction Register followed by a DR shift containing the VIR value provided by the
ir_value argument prepended by address bits to target the correct SLD node
instance.

Note: Use the -no_captured_ir_value argument if you do not care about shifting out the
contents of the current VIR value. Enabling this argument increases the speed of the
VIR shift transaction by eliminating a command cycle within the underlying
transaction.

Similarly, each device_virtual_dr_shift command issues a USER0 instruction to
the JTAG Instruction Register followed by a DR shift containing the VDR value provided
by the dr_value argument. These commands return the underlying JTAG
transactions with the show_equivalent_device_ir_dr_shift option set.

Note: The device_virtual_ir_shift takes the ir_value argument as a numeric value.
The device_virtual_dr_shift takes the dr_value argument by either a binary
string or a hexadecimal string. Do not use numeric values for the
device_virtual_dr_shift.

Running a DR Shift Operation Through a Virtual JTAG Chain

A simple DR shift operation through a virtual JTAG chain using an Intel download cable
consists of the following steps:

1. Query for the Intel programming cable and select the active cable.

2. Target the desired device in the JTAG chain.

3. Obtain a device lock for exclusive communication to the device.

4. Perform a VIR shift.

5. Perform a VDR shift.

6. Release exclusive link with the device with the device_unlock command.

7. Close communication with the device with the close_device command.

Run-Time Communication

The Virtual JTAG IP core Tcl API requires an Intel programming cable. Designs that use
a custom controller to drive the JTAG chain directly must issue the correct JTAG IR/DR
transactions to target the Virtual JTAG IP core instances. The address values and
register length information for each Virtual JTAG IP core instance are provided in the
compilation reports.

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
19

The following figure shows the compilation report for a Virtual JTAG IP core Instance.
The following table describes each column in the Virtual JTAG Settings compilation
report.

Figure 10. Compilation Report

Table 9. Virtual JTAG Settings Description

Setting Description

Instance Index Instance index of the virtual JTAG IP core. Assigned at compile time.

Auto Index Details whether the index was auto-assigned.

Index Re-Assigned Details whether the index was user-assigned.

IR Width Length of the Virtual IR register for this IP core instance; defined in the
parameter editor.

Address The address value assigned to the IP core by the compiler.

USER1 DR Length The length of the USER1 DR register. The USER1 DR register encapsulates the
VIR for all SLD nodes.

VIR Capture Instruction Instruction value to capture the VIR of this IP core instance.

The Tcl API provides a way to return the JTAG IR/DR transactions by using the
show_equivalent_device_ir_dr_shift argument with the
device_virtual_ir_shift and device_virtual_dr_shift commands. The
following examples use returned values of a virtual IR/DR shift to illustrate the format
of the underlying transactions.

To use the Tcl API to query for the bit pattern in your design, use the
show_equivalent_device_ir_dr_shift argument with the
device_virtual_ir_shift and device_virtual_dr_shift commands.

Both examples are from the same design, with a single Virtual JTAG instance. The VIR
length for the reference Virtual JTAG instance is configured to 3 bits in length.

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
20

Virtual IR/DR Shift Transaction without Returning Captured IR/DR Values

VIR shifts consist of a USER1 (0x0E) IR shift followed by a DR shift to the virtual
Instruction Register. The DR Scan shift consists of the value passed by the -
dr_value argument. The length and value of the DR shift is dependent on the
number of SLD nodes in your design. This value consists of address bits to the SLD
node instance concatenated with the desired value of the virtual Instruction Register.
The addressing scheme is determined by the Intel Quartus Prime software during
design compilation.

The Tcl command examples below show a VIR/VDR transaction with the
no_captured_value option set. The commands return the underlying JTAG shift
transactions that occur.

Virtual IR Shift with the no_captured_value Option

device_virtual_ir_shift -instance_index 0 -ir_value 1 \

-no_captured_ir_value -show_equivalent_device_ir_dr_shift

Returns:
Info: Equivalent device ir and dr shift commands
Info: device_ir_shift -ir_value 14
Info: device_dr_shift -length 5 -dr_value 11 -value_in_hex

Virtual DR Shift with the no_captured_value Option

device_virtual_dr_shift -instance_index 0 -length 8 -dr_value \

04 -value_in_hex -no_captured_dr_value \

-show_equivalent_device_ir_dr_shift

Returns:
Info: Equivalent device ir and dr shift commands
Info: device_ir_shift -ir_value 12
Info: device_dr_shift -length 8 -dr_value 04 -value_in_hex

The VIR value field in the figure below is four bits long, even though the VIR length is
configured to be three bits long, and shows the bit values and fields associated with
the VIR/VDR scans. The Instruction Register length for all Intel FPGAs and CPLDs is
10-bits long. The USER1 value is 0x0E and USER0 value is 0x0C for all Intel FPGAs
and CPLDs. The Address bits contained in the DR scan shift of a VIR scan are
determined by the Intel Quartus Prime software.

All USER1 DR chains must be of uniform length. The length of the VIR value field
length is determined by length of the longest VIR register for all SLD nodes
instantiated in the design. Because the SLD hub VIR is four bits long, the minimum
length for the VIR value field for all SLD nodes in the design is at least four bits in
length. The Intel Quartus Prime Tcl API automatically sizes the shift transaction to the
correct length. The length of the VIR register is provided in the Virtual JTAG settings
compilation report. If you are driving the JTAG interface with a custom controller, you
must pay attention to size of the USER1 DR chain.

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
21

Figure 11. Equivalent Bit Pattern Shifted into Device by VIR/VDR Shift Commands

Virtual IR Scan

Virtual DR Scan

IR Scan Shift

IR Scan Shift

DR Scan Shift

DR Scan Shift

USER1

USER0

VIR Value

VDR Value

Addr

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 00 0 0

1 1

1 1 0 01

1 1 10

Virtual IR/DR Shift Transaction that Captures Current VIR/VDR Values

The Tcl command examples below show that the no_captured_value option is not
set in the Virtual IR/DR shift commands and the underlying JTAG shift commands
associated with each. In the VIR shift command, the command returns two
device_dr_shift commands.

Virtual IR Shift

device_virtual_ir_shift -instance_index 0 -ir_value 1 \

-no_captured_ir_value -show_equivalent_device_ir_dr_shift

Returns:
Info: Equivalent device ir and dr shift commands
Info: device_ir_shift -ir_value 14
Info: device_dr_shift –length 5 –dr_value 0B –value_in_hex
Info: device_dr_shift -length 5 -dr_value 11 -value_in_hex

Virtual DR Shift

device_virtual_dr_shift -instance_index 0 -length 8 -dr_value \

04 -value_in_hex -show_equivalent_device_ir_dr_shift

Returns:
Info: Equivalent device ir and dr shift commands
Info: device_ir_shift -ir_value 12
Info: device_dr_shift -length 8 -dr_value 04 -value_in_hex

The figure below shows an example of VIR/VDR Shift Commands with captured IR
values. DR Scan Shift 1 is the VIR_CAPTURE command, as shown in the figure below.
It targets the VIR of the sld_hub. This command is an address cycle to select the
active VIR chain to shift after jtag_state_cir is asserted. The HUB_FORCE_IR
capture must be issued whenever you capture the VIR from a target SLD node that is
different than the current active node. DR Scan Shift 1 targets the SLD hub VIR to
force a captured value from Virtual JTAG instance 1 and is shown as the VIR_CAPTURE
command. DR Scan Shift 2 targets the VIR of Virtual JTAG instance.

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
22

Figure 12. Equivalent Bit Pattern Shifted into Device by VIR/VDR Shift Commands with
Captured IR Values

Virtual IR Scan

Virtual DR Scan

IR Scan Shift

IR Scan Shift

DR Scan Shift 1

DR Scan Shift

USER1

USER0

VIR Value

VDR Value

Addr

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 00 0 0

1 1

1 1 0 01

1 0 10

DR Scan Shift 2
VIR ValueAddr

0 0 01 1

Note: If you use an embedded processor as a controller for the JTAG chain and your Virtual
JTAG IP core instances, consider using the JAM Standard Test and Programming
Language (STAPL). JAM STAPL is an industry-standard flow-control-based language
that supports JTAG communication transactions. JAM STAPL is open source, with
software downloads and source code available from the Intel website.

Related Information

• ISP & the Jam STAPL

• Embedded Programming With Jam STAPL

Reset Considerations when Using a Custom JTAG Controller

The SLD hub decodes TMS independently to determine the JTAG controller state.
Under normal operation, the SLD hub mirrors all of the JTAG TAP controller states
accurately. The JTAG pins (TCK, TMS, TDI, and TDO) are accessible to the core
programmable logic; however, the JTAG TAP controller outputs are not visible to the
core programmable logic. In addition, the hard JTAG TAP controller does not use any
reset signals as inputs from the core programmable logic.

This can cause the following two situations in which control states of the SLD hub and
the JTAG TAP controller are not in lock-step:

• An assertion of the device wide global reset signal (DEV_CLRn)

• An assertion of the TRST signal, if available on the device

DEV_CLRn resets the SLD hub but does not reset the hard TAP controller block. The
TAP controller is meant to be decoupled from USER mode device operation to run
boundary scan operations. Asserting the global reset signal does not disrupt
boundary-scan test (BST) operation.

Conversely, the TRST signal, if available, resets the JTAG TAP controller but does not
reset the SLD hub. The TRST signal does not route into the core programmable logic
of the PLD.

To guarantee that the states of the JTAG TAP controller and the SLD hub state
machine are properly synchronized, TMS should be held high for at least five clock
cycles after any intentional reset of either the TAP controller or the system logic. Both
the JTAG TAP controller and the sld_hub controller are guaranteed to be in the Test
Logic Reset state after five clock cycles of TMS held high.

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
23

Instantiating the Virtual JTAG IP Core

To create the Virtual JTAG IP core in an Intel Quartus Prime design requires the
following system and software requirements:

• The Intel Quartus Prime software

• An Intel download cable, such as an Intel FPGA Download Cable cable

The download cable is required to communicate with the Virtual JTAG IP core from a
host running the quartus_stp executable.

IP Catalog and Parameter Editor

The IP Catalog displays the IP cores available for your project, including Intel FPGA IP
and other IP that you add to the IP Catalog search path.. Use the following features of
the IP Catalog to locate and customize an IP core:

• Filter IP Catalog to Show IP for active device family or Show IP for all
device families. If you have no project open, select the Device Family in IP
Catalog.

• Type in the Search field to locate any full or partial IP core name in IP Catalog.

• Right-click an IP core name in IP Catalog to display details about supported
devices, to open the IP core's installation folder, and for links to IP documentation.

• Click Search for Partner IP to access partner IP information on the web.

The parameter editor generates a top-level Quartus IP file (.qip) for an IP variation
in Intel Quartus Prime Standard Edition projects. These files represent the IP variation
in the project, and store parameterization information.

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
24

Figure 13. IP Parameter Editor (Intel Quartus Prime Standard Edition)

The Parameter Editor

The parameter editor helps you to configure IP core ports, parameters, and output file
generation options. The basic parameter editor controls include the following:

• Use the Presets window to apply preset parameter values for specific applications
(for select cores).

• Use the Details window to view port and parameter descriptions, and click links to
documentation.

• Click Generate ➤ Generate Testbench System to generate a testbench system
(for select cores).

• Click Generate ➤ Generate Example Design to generate an example design
(for select cores).

The IP Catalog is also available in Platform Designer (View ➤ IP Catalog). The
Platform Designer IP Catalog includes exclusive system interconnect, video and image
processing, and other system-level IP that are not available in the Intel Quartus Prime
IP Catalog. Refer to Creating a System with Platform Designer or Creating a System
with Platform Designer (Standard) for information on use of IP in Platform Designer
(Standard) and Platform Designer, respectively.

Related Information

• Creating a System with Platform Designer

• Creating a System with Platform Designer (Standard) (Standard)

Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide

UG-SLDVRTL | 2018.07.19

Virtual JTAG (altera_virtual_jtag) IP Core User Guide
25

	Contact us
	Altera Virtual JTAG (altera_virtual_jtag) IP Core User Guide
	Introduction
	Installing and Licensing Intel FPGA IP Cores
	On-Chip Debugging Tool Suite
	Applications of the Virtual JTAG IP Core
	JTAG Protocol
	JTAG Circuitry Architecture

	System-Level Debugging Infrastructure
	Transaction Model of the SLD Infrastructure
	SLD Hub Finite State Machine

	Virtual JTAG Interface Description
	Input Ports
	Output Ports
	Parameters
	Design Flow of the Virtual JTAG IP Core
	Simulation Model
	Run-Time Communication
	Running a DR Shift Operation Through a Virtual JTAG Chain

	Run-Time Communication
	Virtual IR/DR Shift Transaction without Returning Captured IR/DR Values
	Virtual IR/DR Shift Transaction that Captures Current VIR/VDR Values
	Reset Considerations when Using a Custom JTAG Controller

	Instantiating the Virtual JTAG IP Core
	IP Catalog and Parameter Editor

