imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MODEL DLCD – DUAL LOOP CONTROLLER w/ DH-485

GENERAL DESCRIPTION

The Model DLCD, Dual Loop Controller with DH-485, has a similar feature set and specifications as the standard Dual Loop Controller. The DLCD provides a connection into an Allen Bradley DH-485 network allowing a fully featured dual loop PID controller to be controlled and monitored by an Allen Bradley PLC (SLC 500 controller, or similar), over a DH-485 network.

The DLCD communications port may be configured for DH-485, or as a programming port allowing complete programming by our Windows[®] based RLCPro configuration software.

USING THIS DOCUMENT

This document is an addendum to the bulletin describing the standard DLC and describes the use of the DH-485 connection of the DLCD. This document should be read in conjunction with the DLC Bulletin.

ORDERING INFORMATION

MODEL NO.	DESCRIPTION	PART NUMBER
	Dual Loop Controller w/ DH-485	DLCD0001
DLCD	Dual Loop Controller w/ 2 Analog Outputs w/ DH-485	DLCD1001
CBJ	SLC 500 (RJ45) to RJ11 Cable	CBJ11C07
DRRJ11	RJ11 Connector to Terminal Adapter	DRRJ11T6

1.0 Using the DLCD on a DH-485 Network

Overview

The DLCD rapidly exchanges blocks of control and status information for each PID loop with an Integer File that has been allocated in the PLC. Each DLCD is assigned an Integer File by setting the appropriate DIP Switches on the DLCD. By accessing this Integer File, the PLC is able to control and monitor the operation of each PID loop within each DLCD. Most applications will only require information contained in these Control and Status blocks. The ability has been included to upload and download Parameter and Configuration blocks on demand for each PID loop.

Integer File Structure

The Integer File for each DLCD is structured to include Control, Status, Parameter and Configuration blocks for each PID Loop. Control and Status blocks contain data that is transferred automatically by the DLCD on alternate communication scans. Parameter Blocks contain DLCD operating parameters and may be occasionally changed. Configuration Blocks contain system configuration parameters and are rarely changed.

Table 1 gives the overall structure of the Integer File giving the location of the various blocks for each PID loop or channel. The tables in the following sections show the structure of each block and provide a cross-reference from the Allen Bradley Integer File register to the equivalent MODBUS Holding Register in the DLCD.

When using the Integer File tables in the following sections, refer to the Register Table in the DLC Bulletin for register details such as factory setting, limits and description.

Note: Modbus registers provided for reference only.

Nx:	Block	Reference
03	Control Block – Channel A	Table 2
47	Control Block – Channel B	Table 2
811	Status Block – Channel A	Table 5
1215	Status Block – Channel B	Table 5
1623	Parameter Block – Channel A	Table 8
2431	Parameter Block – Channel B	Table 9
3263	Configuration Block – Channel A	Table 10
6495	Configuration Block – Channel B	Table 13

Table 1 - Overview of Integer File Structure

Control Block

The Control block contains control values and commands, such as Set Point and Control Mode. The DLCD continually reads the Control Blocks for each PID loop from the PLC providing a means whereby the PLC program can control the DLCD.

	BI	Г РС	SIT	ION													REFERENCE/			
Nx:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	MODBUS REGISTER			
0	Se	tpo	int (Cha	nne	el A											40002			
1	Οι	Output Power Channel A 40															40005			
2	15	14	13						7 65 1 0								Table 3			
3													3	2	1	0	Table 4			
4	Se	tpo	int (Cha	nne	el B											40018			
5	Οι	ıtpu	t Po	owe	r Cl	nan	nel	В									40021			
6	15	14	13						7	6.	.5				1	0	Table 3			
7													3	2	1	0	Table 4			

Table 2 - Control Block - Channel A and B

RITS		MODBUS	REGISTER
BIIS		CH. A	CH. B
15	Control Mode	40041	40049
14	Disable Integral Action	40044	40052
13	Disable Setpoint Ramping	40042	40050
12	Not Used	-	-
11	Not Used	-	-
10	Not Used	-	-
9	Not Used	-	-
8	Not Used	-	-
7	Auto-tune Request (See Note 2)	-	-
65	Auto-tune Code	40013	40029
4	Not Used	-	-
3	Not Used	-	-
2	Not Used	-	-
1	Alarm Output AL2 (See Note 1)	40016	40032
0	Alarm Output AL1 (See Note 1)	40015	40031

Table 3 - Control Block for Nx:2 and Nx:6 Flags

BITS		MODBUS	REGISTER
ытэ		CH. A	CH. B
15	Not Used	-	-
14	Not Used	-	-
13	Not Used	-	-
12	Not Used	-	-
11	Not Used	-	-
10	Not Used	-	-
9	Not Used	-	-
8	Not Used	-	-
7	Not Used	-	-
6	Not Used	-	-
5	Not Used	-	-
4	Not Used	-	-
3	Parameter Read Strobe (See Note 3)	-	-
2	Configuration Read Strobe (See Note 3)	-	-
1	Parameter Write Strobe (See Note 3)	-	-
0	Configuration Write Strobe (See Note 3)	-	-

Table 4 - Control Block for Nx:3 and Nx:7 Flags

Status Block

The Status block contains current operating values and status such as Process Value and Input Status. The DLCD continually writes the Status Block for each PID channel providing a means whereby the PLC can monitor the operating status of the DLCD.

	BIT	PO	SIT	ION													REFERENCE/			
Nx:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	MODBUS REGISTER			
8	Pro	oce	ss \	/alu	e C	har	nel	А									40001			
9	Οι	Output Power Channel A															40005			
10				15	8					75		4	3	2	1	0	Table 6			
11	15								7	6			3	2	1	0	Table 7			
12	Pro	oce	ss \	/alu	e C	har	nel	В									40017			
13	Οι	tpu	t Po	owe	r Cł	nan	nel	В									40021			
14				15	8				75			4	3	2	1	0	Table 6			
15	15								7	6			3	2	1	0	Table 7			

Table 5 - Status Block - Channel A and B

DITC		MODBUS REGISTER							
ытэ	REGISTER NAME	CH. A	CH. B						
158	Input Error Status Register	40504	40504						
75	Auto-Tune Phase	40012	40028						
4	Control Output OP2	40016	40032						
3	Control Output OP1	40014	40030						
2	Set Point Ramping In Progress	40043	40051						
1	Alarm Output AL2	40016	40032						
0	Alarm Output AL1	40015	40031						

Table 6 - Status Block for Nx:10 and Nx:14 Flags

DITC		MODBUS REGISTER						
ытэ		CH. A	CH. B					
15	Bus Active (See Note 5)	-	-					
14	Not Used	-	-					
13	Not Used	-	-					
12	Not Used	-	-					
11	Not Used	-	-					
10	Not Used	-	-					
9	Not Used	-	-					
8	Not Used	-	-					
7	Auto-Tune In Progress (See Note 4)	-	-					
6	Auto-Tune Done (See Note 4)	-	-					
5	Not Used	-	-					
4	Not Used	-	-					
3	Parameter Block Read Acknowledge (See Note 6)	-	-					
2	Configuration Block Read Acknowledge (See Note 6)	-	-					
1	Parameter Block Write Acknowledge (See Note 6)	-	-					
0	Configuration Block Write Acknowledge (See Note 6)	-	-					

Table 7 - Status Block for Nx:11 and Nx:15 Flags

Notes:

1. Alarm Output Control

The Control flags Alarm Output AL1 and AL2 must set TRUE (1) for correct Alarm operation when Control Mode is Automatic (0). Set to 0 to reset an Alarm.

2. Auto-tune Request

Setting the Auto-tune Request flag forces the DLCD to start the auto-tune process. Refer to section Auto-tune Request for more detail on how the PLC program may auto-tune a PID loop in the DLCD.

3. Read/Write Strobes

Setting the Read/Write Strobe flags forces the DLCD to upload or download the appropriate Parameter or Configuration block. Refer to section Transferring Parameter and Configuration Data for more detail on how to transfer these blocks between the PLC and the DLCD.

4. Auto-tune Status

Monitoring the Auto-Tune Done and Auto-Tune In Progress flags allows the PLC program to detect the completion of the Auto-tune process in the DLCD. Refer to section Auto-tune Request for more detail on how the PLC program may auto-tune a PID loop in the DLCD.

5. Bus Active

Each DLCD toggles the Bus Active flag on each communication scan.

- 6. Read/Write Acknowledge
- The DLCD sets the appropriate acknowledge flag once the requested upload or download of the Parameter or Configuration block is complete. Refer to section Transferring Parameter and Configuration Data for more detail on how to transfer these blocks between the PLC and the DLCD.
- 7. Data flow is described with respect to the DLCD in exchanges with the PLC. Thus, Read data is data transferred from the PLC to the DLCD and Write data is data transferred from the DLCD to the PLC.

Parameter Block

The Parameter blocks contain values that may need to be changed while the DLCD is operating, such as PID parameters. Each Parameter Block may be uploaded to or downloaded from the PLC on demand by setting the appropriate request bit in the Control Block. Refer to section Transferring Parameter and Configuration Data to see how this is done.

	вп	BIT POSITION															REFERENCE/					
Nx:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	MODBUS REGISTER					
16	Proportional Band 40007																					
17	Integral Time 40008																					
18	Derivative Time 40009																					
19	Су	cle	Tim	e (Coo	ling)		F	Rela	tive	Ga	uin (Cod	olinę	g)	40141 40142					
20	De	adl	cano	d (C	ool	ing)											40143					
21	Ala	arm	1 V	alu	е												40003					
22	Ala	arm	2 ۷	alu	e												40004					
23	Not Used -																					

Table 8 - Parameter Block – Channel A

	BIT																REFERENCE/					
Nx:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	MODBUS REGISTER					
24	Proportional Band															40023	40023					
25	Integral Time 40024																					
26	Derivative Time 40025																					
27	Су	cle	Tim	e (0	Coo	ling)		F	Rela	tive	Ga	uin (Cod	olinę	g)	40241 40242					
28	De	adb	and	d (C	ool	ing)											40243					
29	Ala	ırm	1 V	alu	е												40019					
30	Ala	ırm	2 V	alu	е												40020					
31	No	t Us	sed														-					

Table 9 - Parameter Block – Channel B

Configuration Block

The Configuration blocks contain values that describe the DLCD setup such as Input configuration and as such will not need to be changed during normal operation. These blocks may be uploaded to and downloaded from the PLC on demand by setting the appropriate request bit in the Control Block. Refer to section Transferring Parameter and Configuration Data to see how this is done.

	BIT POSITION															REFERENCE/ MODBUS			
Nx:	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	REGIST	ER		
32	Offset	Pow	er													40010			
33	Span	Corre	ecti	on												40106			
34	Offset	Cori	rect	ion												40107			
35	Low L	imit (Se	tpoi	nt)											40108			
36	High I	imit	(Se	tpo	int)											40109			
37	Ramp	Rate	e (S	Setp	oint)										40110			
38	Process Low (Scaling Points)														40111				
39	Process High (Scaling Points)													40112					
40	Input	Low	(Sc	alin	g Po	oint	s)									40113			
41	Input	High	(So	alin	ıg P	oint	s)									40114			
42	Cycle	Time	e (C)P1))											40116			
43	On De	elay (AL	1)												40135			
44	On De	elay (AL	2)												40140			
45	Scaling Value Low (Analog Output)												40303						
46	Scalin	g Va	lue	Hig	h (/	Ana	og	Outp	out)							40304			
47	Direct	Entr	уV	alue	e (A	nalo	og C	Jutp	ut)							40307			
48	Ramp	ing S	Setp	oin	t Va	lue										40045			
49	15		1	48	3											Table 1	1		
50	Senso	or Fai	ilure	e Po	we	r Pr	ese	t (O	P1)							40120			
51	Powe	r Low	/ Lii	mit	(OP	1)										40118			
52	Powe	r Hig	h Li	mit	(OF	•1)										40119			
53	Damp	eninę	g Ti	me	(OF	? 1)		On	/Off	Con	trol I	Hyst	eresi	is (C)P1)	40121	40122		
54	Hyste	resis	(Al	_1)				Hy	stere	esis	(AL2	2)				40134	40139		
55	Deadband (Analog Output) Upda								date	Tim	ie (A	nalo	og Oi	utpu	t)	40305	40306		
56	15 14 13 12 118 7								6	5			Table 1	2					
57	7 1514 1311 100												Table 1	4					
58	3 15 140															Table 1	5		
59	Action (AL1) Action (AL2)												40131	40136					
60	Not U	sed														-			
61	Not U	sed														-			
62	Not U	sed														-			
63	Not Used -																		

BITS		MODBUS REGISTER			
ытэ		CH. A	CH. B		
15	Remote/Local Setpoint Select	40046	-		
15	Channel B Assignment (Input)	-	40198		
148	Rounding (Input)	40104	40204		

Table 11 - Configuration Block for Nx:49 and Nx:81 Flags

DITE		MODBUS REGISTER			
ытэ		Ch. A	Ch. B		
15	Reset (AL2)	40137	40237		
14	Reset (AL1)	40132	40232		
13	Enable Standby (AL2)	40138	40238		
12	Enable Standby (AL1)	40133	40233		
118	Digital Input Filter (Input)	40105	40205		
7	Temperature Scale (Input)	40102	40202		
6	Control Action (OP1)	40117	40217		
5	Filter (Analog Output)	40308	40316		
40	Process Decimal Point (Scaling Points)	40115	40215		

Table 12 - Configuration Block for Nx:56 and Nx:88 Flags

	BIT POSITION							REFERENCE/ MODBUS				
Nx:	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 REGISTER						ER					
64	4 Offset Power							40026				
65	5 Span Correction / Remote Setpoint Ratio Multiplier								40206			
66	Offset Correction / Rem	ote S	Setp	oint	Bias	s Off	set				40207	
67	Low Limit (Setpoint)								40208			
68	High Limit (Setpoint)										40209	
69	Ramp Rate (Setpoint)										40210	
70	Process Low (Scaling P	oints)								40211	
71	Process High (Scaling F	Points	5)								40212	
72	Input Low (Scaling Poin	ts)									40213	
73	Input High (Scaling Poir	nts)									40214	
74	Cycle Time (OP1)										40216	
75	On Delay (AL1)										40235	
76	On Delay (AL2)										40240	
77	Scaling Value Low (Ana	log (Dutp	ut)							40311	
78	Scaling Value High (Ana	alog (Outp	out)							40312	
79	Direct Entry Value (Anal	og C)utpi	ut)							40315	
80	Ramping Setpoint Value	;									40053	
81	15 148										Table 11	
82	Sensor Failure Power P	rese	t (Ol	P1)							40220	
83	Power Low Limit (OP1)										40218	
84	Power High Limit (OP1)										40219	
85	Dampening Time (OP1)		On/	Off	Con	trol I	lyst	eresi	s (C)P1)	40221	40222
86	Hysteresis (AL1)		Hys	stere	esis	(AL2	2)				40234	40239
87	Deadband (Analog Outp	out)	Upo	date	Tim	ne (A	nalc	g Oı	utpu	t)	40313	40314
88	8 15 14 13 12 118 7 6 5 40						Table 1	2				
89	1514 1311 100							Table 1	4			
90	0 15 140						Table 1	5				
91	Action (AL1)		Act	ion ((AL2	2)					40231	40236
92	Not Used										-	
93	Not Used										-	
94	Not Used										-	
95	5 Not Used						-					

Table 13 - Configuration Block – Channel B

BITS	DECISTED NAME	MODBUS REGISTER			
ытэ		CH. A	CH. B		
1514	Local/Remote Set Point Transfer Mode (Input)	-	40199		
1311	Mode (Analog Output)	40302	40310		
100	Assignment (Analog Output)	40301	40309		

Table 14 - Configuration Block for Nx:57 and Nx:89 Flags

DITC		MODBUS REGISTER			
ытэ		CH. A	CH. B		
15	Resolution (Input)	40103	40203		
140	Input Type (Input)	40101	40201		

Table 15 - Configuration Block for Nx:58 and Nx:90 Flags

Overview

The DIP Switches and the Default Serial Terminal set the DLCD serial communication operating mode to either DH-485 mode or MODBUS mode. DH-485 mode allows the DLCD to be connected to a DH-485 network. MODBUS mode allows programming of the DLCD using RLCPro.

DH-485 Mode

Integer File

Each DLCD is assigned a unique Integer File in the PLC that the DLCD uses to transfer data. Switch A (SWA) sets the target Integer file in the range N7..N70.

INTEGER		S	итсн і	POSITIC	N		COMMENT
FILE	1	2	3	4	5	6	COMMENT
N7	DN	DN	DN	DN	DN	DN	Valid File Number
N8	DN	DN	DN	DN	DN	UP	Invalid File Number
N9	DN	DN	DN	DN	UP	DN	Invalid File Number
N10	DN	DN	DN	DN	UP	UP	Valid File Number
N11	DN	DN	DN	UP	DN	DN	Valid File Number
							Valid File Number
N70	UP	UP	UP	UP	UP	UP	Valid File Number

Note N8 and N9 are invalid Integer File numbers and therefore cannot be used.

Table 16 - Integer File settings using DIP Switch A

DLCD Address

Each device on a DH-485 network must have a unique address. Switch B (SWB) allows the DLCD address to be set in the range 0..31.

DLCD	Switch Position							
Address	1	2	3	4	5			
0	DN	DN	DN	DN	DN			
1	DN	DN	DN	DN	UP			
2	DN	DN	DN	UP	DN			
3	DN	DN	DN	UP	UP			
31	UP	UP	UP	UP	UP			

Table 17 - Selections for DLCD Address using DIP Switch B

MODBUS Mode

In MODBUS mode, the DLCD responds to MODBUS RTU frames and therefore allows programming using RLCPro (refer to DLC Bulletin for detailed information on using RLCPro with the DLCD). To configure the DLCD for MODBUS without changing the DIP switches, use the Default Serial Setting Terminal.

DEFAULT SERIAL SETTING CONNECTIONS

If using software selectable serial settings and the serial settings are unknown or forgotten, they can be temporarily reset to the defaults by connecting the "Default Serial Setting" terminal 7 to "Output Common" terminal 4 with a jumper.

Serial Communication Defaults:

Protocol:	RTU	Data Bits: 8	
Address:	247	Parity:	none
Baud Rate	:9600		

PLC Address

The DLCD transfers data with a target PLC. Switch B (SWB) allows the address of the target PLC on the DH-485 network to be set in the range 0..7.

PLC	SWITCH POSITION				
ADDRESS	6	7	8		
0	DN	DN	DN		
1	DN	DN	UP		
2	DN	UP	DN		
7	UP	UP	UP		

Table 18 - Selections for PLC Address using DIP Switch B

Example 1

This example shows the DIP Switch settings for a DLCD operating in DH-485 mode with the following configuration.

Communication Settings

The DLCD has a fixed baud rate of 19200 when used in DH-485 mode.

Alternatively, set all DIP switches Down as shown in Example 2. The DLCD leaves the factory in this state, and is therefore ready to be programmed using RLCPro.

Example 2

This example shows the DIP Switch settings for a DLCD operating in MODBUS mode with the default serial settings.

EXAMPLE APPLICATIONS

Transferring Parameter and Configuration Data

Parameter and Configuration blocks can be uploaded to and downloaded from the PLC Integer File by setting the appropriate read/write strobe in the relevant Control block. On completion of the data transfer the DLCD sets the corresponding acknowledge bit in the Status block.

Figure 1 shows a fragment of a Program File, captured from Rockwell's RSLogix 500 that shows how the strobe and acknowledge flags may be used to download a configuration block to the DLCD.

Figure 1 - Configuration Block Download

Figure 2 shows a fragment of a program file, captured from RSLogix 500 that shows how the strobe and acknowledge flags may be used to upload a configuration block from the DLCD.

Figure 2 - Configuration Block Upload

Auto-tune Request

The Auto-tune Request flag allows the PLC program to start the auto-tune process in the DLCD. While auto-tuning, the DLCD sets the Auto-tune In Progress bit and when complete, sets the Auto-tune Done bit. By monitoring this bit, the PLC program is able to detect when the auto-tune process is complete.

Figure 3 shows a fragment of a program file, captured from RSLogix 500 that shows how the request flag and done flag may be used to start the auto-tune process in the DLCD.

Figure 3 - Auto-tune Request

LIMITED WARRANTY

The Company warrants the products it manufactures against defects in materials and workmanship for a period limited to one year from the date of shipment, provided the products have been stored, handled, installed, and used under proper conditions. The Company's liability under this limited warranty shall extend only to the repair or replacement of a defective product, at The Company's option. The Company disclaims all liability for any affirmation, promise or representation with respect to the products.

The customer agrees to hold Red Lion Controls harmless from, defend, and indemnify RLC against damages, claims, and expenses arising out of subsequent sales of RLC products or products containing components manufactured by RLC and based upon personal injuries, deaths, property damage, lost profits, and other matters which Buyer, its employees, or sub-contractors are or may be to any extent liable, including without limitation penalties imposed by the Consumer Product Safety Act (PL. 92-573) and liability imposed upon any person pursuant to the Magnuson-Moss Warranty Act (PL. 93-637), as now in effect or as amended hereafter.

No warranties expressed or implied are created with respect to The Company's products except those expressly contained herein. The Customer acknowledges the disclaimers and limitations contained herein and relies on no other warranties or affirmations.

Red Lion Controls 20 Willow Springs Circle York PA 17402 Tel +1 (717) 767-6511 Fax +1 (717) 764-0839 Red Lion Controls France 56 Boulevard du Courcerin, Batiment 21, ZI Pariest F-77183 Croissy Beaubourg Tel +33 (64) 80 12 12 Fax +33 (64) 80 12 13 Red Lion Controls BV Databankweg 6C NL - 3821 AL Amersfoort Tel +31 (33) 472 32 25 Fax +31 (33) 489 37 93