imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

August 1986 Revised July 2001

FAIRCHILD

SEMICONDUCTOR

DM7490A Decade and Binary Counter

General Description

The DM7490A monolithic counter contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-five.

The counter has a gated zero reset and also has gated setto-nine inputs for use in BCD nine's complement applications.

To use the maximum count length (decade or four-bit binary), the B input is connected to the ${\rm Q}_{\rm A}$ output. The input count pulses are applied to input A and the outputs are as described in the appropriate Function Table. A symmetrical divide-by-ten count can be obtained from the counters by connecting the Q_D output to the A input and applying the input count to the B input which gives a divideby-ten square wave at output QA.

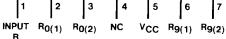
Features

- Typical power dissipation 145 mW
- Count frequency 42 MHz

QB

9

QC

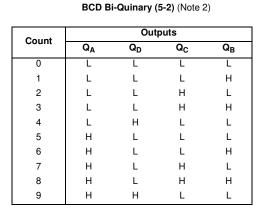

QC

8

Ordering Code:

Order Number	Package Number	Package Description
DM7490AN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagram INPUT NC QA GND Α Q_D 14 13 12 11 10 QA $\mathbf{Q}_{\mathbf{B}}$ Q_D Α Rg(2) В R0(1) R0(2) R9(1) 2 3 4 5 1


www.fairchildsemi.com

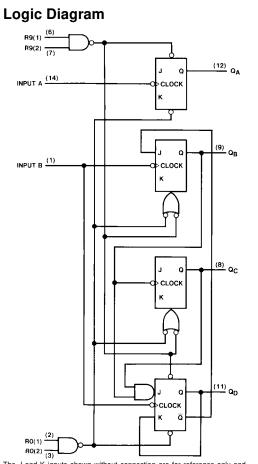
© 2001 Fairchild Semiconductor Corporation DS006533

DM7490A

Function Tables

	BCD Co	ount Seque	ence (Note	1)		
Count	Outputs					
	QD	Q _C	QB	Q _A		
0	L	L	L	L		
1	L	L	L	Н		
2	L	L	Н	L		
3	L	L	н	н		
4	L	н	L	L		
5	L	н	L	н		
6	L	Н	Н	L		
7	L	н	н	н		
8	н	L	L	L		
9	Н	L	L	Н		

Reset/Count Function Table


Reset Inputs					Out	puts	
R0(1)	R0(2)	R9(1)	R9(2)	QD	QC	QB	Q_A
Н	Н	L	Х	L	L	L	L
н	Н	Х	L	L	L	L	L
х	Х	Н	Н	н	L	L	н
х	L	Х	L		COI	JNT	
L	Х	L	Х		COI	JNT	
L	Х	Х	L	COUNT			
х	L	L	х		COI	JNT	

H = HIGH Level L = LOW Level

L = LOW Level X = Don't Care

Note 1: Output QA is connected to input B for BCD count.

Note 2: Output QD is connected to input A for bi-quinary count

The J and K inputs shown without connection are for reference only and are functionally at a HIGH level.

Absolute Maximum Ratings(Note 3)

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DM7490A

Recommended Operating Conditions

Symbol	Parame	eter	Min	Nom	Max	Units	
V _{CC}	Supply Voltage		4.75	5	5.25	V	
V _{IH}	HIGH Level Input Voltag	е	2			V	
V _{IL}	LOW Level Input Voltag	е			0.8	V	
I _{OH}	HIGH Level Output Curr	ent			-0.8	mA	
I _{OL}	LOW Level Output Curre	ent			16	mA	
f _{CLK}	Clock Frequency	A	0		32	MHz	
	(Note 4)	В	0		16		
tw	Pulse Width	A	15			ns	
	(Note 4)	В	30				
		Reset	15				
t _{REL}	Reset Release Time (Note 4)		25			ns	
T _A	Free Air Operating Tem	perature	0		70	°C	

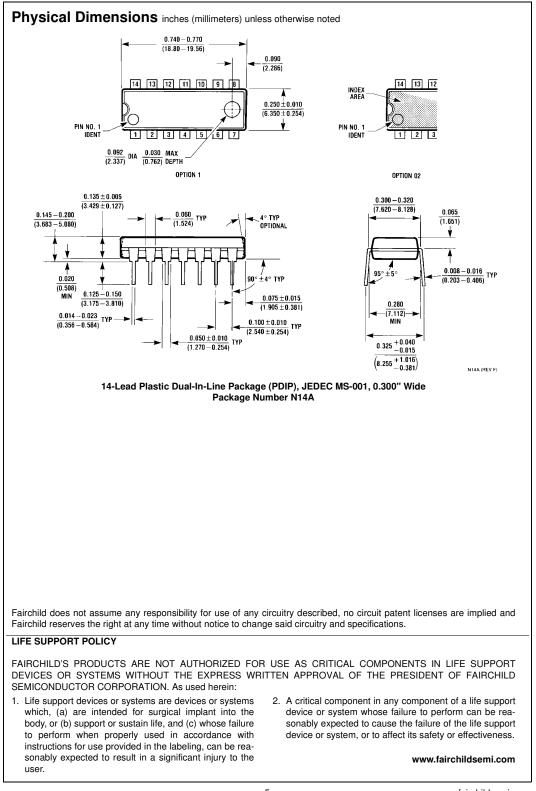
Note 4: $T_A=25^\circ C$ and $V_{CC}=5V.$

DC Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 5)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -12 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$		2.4	3.4		V
V _{OL}	LOW Level Output Voltage	V _{CC} = Min, I _{OL} = Max V _{IH} = Min, V _{IL} = Max (Note 6)			0.2	0.4	V
li	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				1	mA
I _{IH}	HIGH Level	V _{CC} = Max	A			80	
	Input Current	$V_{I} = 2.7V$	Reset			40	μA
			В			120	
I _{IL}	LOW Level	V _{CC} = Max	A			-3.2	
	Input Current	$V_I = 0.4V$	Reset			-1.6	mA
			В			-4.8	
I _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 7)	•	-18		-57	mA
I _{CC}	Supply Current	V _{CC} = Max (Note 8)			29	42	mA

Note 5: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.


Note 6: Q_A outputs are tested at I_{OL} = Max plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability. Note 7: Not more than one output should be shorted at a time.

Note 8: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V, and all other inputs grounded.

◄
0
σ
4
5

AC Switching Characteristics

Symbol	Parameter	From (Input)	R _L = 400Ω	$\mathbf{R}_{\mathbf{L}} = 400\Omega, \mathbf{C}_{\mathbf{L}} = 15 \mathbf{pF}$	
	Falameter	To (Output)	Min	Max	Units
f _{MAX}	Maximum Clock	A to Q _A	32		MHz
	Frequency	B to Q _B	16	16	
t _{PLH}	Propagation Delay Time	A to Q _A		16	ns
	LOW-to-HIGH Level Output	A IO QA		10	
^t PHL	Propagation Delay Time	A to Q _A		18	ns
	HIGH-to-LOW Level Output	A IO QA		10	
^t PLH	Propagation Delay Time	A to Q _D		48	ns
	LOW-to-HIGH Level Output	A to QD		40	
t _{PHL}	Propagation Delay Time	A to Q _D		50	ns
	HIGH-to-LOW Level Output			50	
t _{PLH}	Propagation Delay Time	B to Q _B		16	ns
	LOW-to-HIGH Level Output	BIOQB		10	
t _{PHL}	Propagation Delay Time	B to Q _B		21	20
	HIGH-to-LOW Level Output	B to QB	21		ns
t _{PLH}	Propagation Delay Time	B to Q _C		32	ns
	LOW-to-HIGH Level Output	BIOQC	52		115
t _{PHL}	Propagation Delay Time	B to Q _C		35	nc
	HIGH-to-LOW Level Output	BIOQC	35		ns
t _{PLH}	Propagation Delay Time	B to Q _D		32	20
	LOW-to-HIGH Level Output		32		ns
t _{PHL}	Propagation Delay Time	B to Q _D		35	ns
	HIGH-to-LOW Level Output	D to QD	35		115
t _{PLH}	Propagation Delay Time	SET-9 to Q _A , Q _D		30	ns
	LOW-to-HIGH Level Output				115
t _{PHL}	Propagation Delay Time	SET-9 to Q _B , Q _C		40	ns
	HIGH-to-LOW Level Output		40		115
^t PHL	Propagation Delay Time	SET-0		40	20
	HIGH-to-LOW Level Output	Any Q		40	ns

DM7490A Decade and Binary Counter