

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

April 1984 Revised February 2000

DM74ALS109A **Dual J-K Positive-Edge-Triggered Flip-Flop** with Preset and Clear

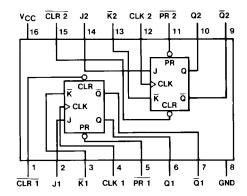
General Description

The DM74ALS109A is a dual edge-triggered flip-flop. Each flip-flop has individual J, \overline{K} , clock, clear and preset inputs, and also complementary Q and \overline{Q} outputs.

Information at input J or \overline{K} is transferred to the Q output on the positive going edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive going pulse. When the clock input is at either the HIGH or LOW level, the J, \overline{K} input signal has no effect.

Asynchronous preset and clear inputs will set or clear Q output respectively upon the application of low level signal. The J-K design allows operation as a D flip-flop by tying the J and K inputs together.

Features

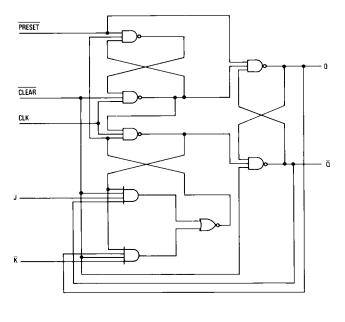

- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and $V_{\mbox{\footnotesize CC}}$ range
- Advanced oxide-isolated, ion-implanted Schottky TTL
- Functionally and pin for pin compatible with Schottky and LS TTL counterpart
- Improved AC performance over LS109 at approximately half the power

Ordering Code:

Order Number	Package Number	Package Description
DM74ALS109AM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74ALS109AN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram


Function Table

	ļ	Inputs	Out	puts		
PR	CLR	СК	J	K	Q	Q
L	Н	Χ	Χ	Χ	Н	L
Н	L	Χ	Χ	Χ	L	Н
L	L	Χ	Χ	Χ	H (Note 1)	H (Note 1)
Н	Н	1	L	L	L	Н
Н	Н	\uparrow	Н	L	TOG	GLE
Н	Н	\uparrow	L	Н	Q_0	\overline{Q}_0
Н	Н	1	Н	Н	Н	L
Н	Н	L	Χ	Χ	Q_0	\overline{Q}_0

- L = LOW State
- H = HIGH State
- X = Don't Care
- ↑ = Positive Edge Transition.
- Q₀ = Previous Condition of Q

Note 1: This condition is nonstable; it will not persist when present and clear inputs return to their inactive (HIGH) level. The output levels in this condition are not guaranteed to meet the $\rm V_{OH}$ specification.

Logic Diagram

Absolute Maximum Ratings(Note 2)

Supply Voltage 7V
Input Voltage 7V

Operating Free Air Temperature Range 0°C to +70°C Storage Temperature Range -65°C to +150°C

Typical θ_{JA}

 N Package
 82.5°C/W

 M Package
 111.5°C/W

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

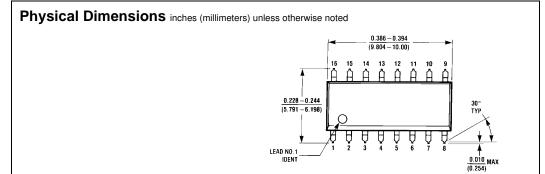
Symbol	Para	Min	Nom	Max	Units	
V _{CC}	Supply Voltage	4.5	5	5.5	V	
V _{IH}	HIGH Level Input Vol	tage	2			V
V _{IL}	LOW Level Input Volt	age			0.8	V
Гон	HIGH Level Output C	urrent			-0.4	mA
I _{OL}	LOW Level Output Current				8	mA
f _{CLK}	Clock Frequency		0		34	MHz
t _{W(CLK)}	Pulse Width	Clock HIGH	14.5			ns
		Clock LOW	14.5			ns
t _W	Pulse Width (Note 3)	Preset and Clear	15			ns
t _{SU}	Data Setup Time	J or \overline{K}	15↑			ns
	(Note 3)	PRE or CLR inactive	10↑			
t _H	Data Hold Time		0↑			ns
T _A	Free Air Operating Te	emperature	0		70	°C

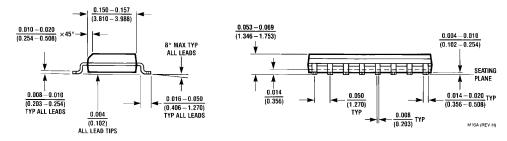
Note 3: The (1) arrow indicates the positive edge of the Clock is used for reference.

Electrical Characteristics

over recommended operating free-air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

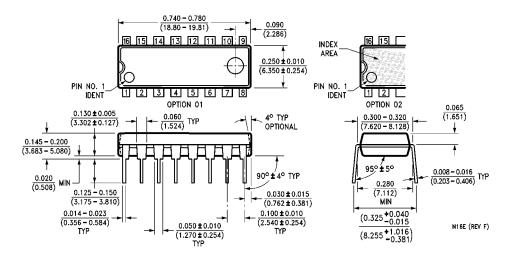
Symbol	Parameter	Conditions		Min	Тур	Max	Units	
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_I = -18 \text{ mA}$				-1.5	V	
V _{OH}	HIGH Level	$I_{OH} = -400 \ \mu A$		V 2			V	
	Output Voltage	V _{CC} = 4.5V to 5.5V		V _{CC} – 2			V	
V _{OL}	LOW Level Output Voltage	$V_{CC} = 4.5V$ $V_{IH} = 2V$	I _{OL} = 4 mA		0.25	0.4	٧	
	output voltage	- III	I _{OL} = 8 mA		0.35	0.5	V	
I _I	Input Current at Max	V _{CC} = 5.5V,	Clock, J, K			0.1	mA	
	Input Voltage	$V_{IH} = 7V$	Preset, Clear			0.2	IIIA	
I _{IH}	High Level	V _{CC} = 5.5V,	Clock, J, K			20	T A	
	Input Current	V _{IH} = 2.7V	Preset, Clear			40	μА	
I _{IL}	Low Level	V _{CC} = 5.5V,	Clock, J, K			-0.2	mA	
	Input Current	$V_{IL} = 0.4V$	Preset, Clear			-0.4	IIIA	
I _O (Note 4)	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$		-30		-112	mA	
I _{CC}	Supply Current	V _{CC} = 5.5V (Note 5)			2.4	4	mA	


Note 4: The output conditions have been chosen to produce a current that closely approximates one half of the true short circuit output current, I_{OS}.


 $\textbf{Note 5: } I_{CC} \text{ is measured with J, } \overline{K}, \text{CLK and } \overline{\text{PRESET}} \text{ grounded, then with J, } \overline{K}, \text{CLK and } \overline{\text{CLEAR}} \text{ grounded.}$

Switching Characteristics

over recommended operating free air temperature range


Symbol	Parameter	Conditions	From	То	Min	Max	Units
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 4.5V \text{ to } 5.5V$			34		MHz
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	$R_L = 500\Omega$ $C_L = 50 \text{ pF}$	Preset or Clear	Q or Q	3	13	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output		Preset or Clear	Q or Q	5	15	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output		Clock	Q or Q	5	16	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output		Clock	Q or Q	5	18	ns

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com