Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! ## Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China April 1984 Revised February 2000 # DM74ALS257 • DM74ALS258 3-STATE Quad 1-of-2-Line Data Selector/Multiplexer #### **General Description** These data selectors/multiplexers contain inverters and drivers to supply full on-chip data selection to the four 3-STATE outputs that can interface directly with data lines of bus-organized systems. A 4-bit word selected from one of two sources is routed to the four outputs. The DM74ALS257 presents true data whereas the DM74ALS258 presents inverted data to minimize propagation delay time. This 3-STATE output feature means that n-bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system. #### **Features** - Switching specifications at 50 pF - \blacksquare Switching specifications guaranteed over full temperature and V_{CC} range - Advanced oxide-isolated, ion-implanted Schottky TTL process - Functionally and pin for pin compatible with Schottky and low power Schottky TTL counterpart - Improved AC performance over Schottky and low power Schottky counterparts - 3-STATE buffer-type outputs drive bus lines directly - Expand any data input point - Multiplex dual data buses - General four functions of two variables (one variable is common) - Source programmable counters #### **Ordering Code:** | Order Number | Package Number | Package Description | |--------------|----------------|---| | DM74ALS257M | M16A | 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow | | DM74ALS257SJ | M16D | 16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide | | DM74ALS257N | N16E | 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide | | DM74ALS258M | M16A | 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow | | DM74ALS258N | N16E | 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide | Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code #### **Connection Diagram** #### **Function Table** | | Input | s | | Outp | out Y | |-------------------|--------|---|---|------------|------------| | Output
Control | Select | Α | В | DM74ALS257 | DM74ALS258 | | Н | Х | Χ | Χ | Z | Z | | L | L | L | Χ | L | Н | | L | L | Н | Χ | Н | L | | L | Н | Χ | L | L | Н | | L | Н | Χ | Н | Н | L | - H = HIGH Level L = LOW Level - X = Don't Care - Z = High Impedance (OFF) ### **Absolute Maximum Ratings**(Note 1) Supply Voltage 7V Input Voltage 7V Voltage Applied to Disabled Output 5.5V Operating Free Air Temperature Range $0^{\circ}\text{C to } + 70^{\circ}\text{C}$ Storage Temperature Range -65°C to +150°C Typical θ_{JA} N Package 73.0°C/W M Package 102.0°C/W Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation. ### **Recommended Operating Conditions** | Symbol | Parameter | Min | Nom | Max | Units | |-----------------|--------------------------------|-----|-----|------|-------| | V _{CC} | Supply Voltage | 4.5 | 5 | 5.5 | V | | V _{IH} | HIGH Level Input Voltage | 2 | | | V | | V _{IL} | LOW Level Input Voltage | | | 0.8 | V | | Гон | HIGH Level Output Current | | | -2.6 | mA | | I _{OL} | LOW Level Output Current | | | 24 | mA | | T _A | Free Air Operating Temperature | 0 | | 70 | °C | #### **Electrical Characteristics** over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. | Symbol | Pa | rameter | Cor | Min | Тур | Max | Units | | |------------------|--|------------|--|----------------------------|---------------------|------|-------|----| | V _{IK} | Input Clamp Voltage | ge | $V_{CC} = 4.5V, I_I = -18$ | | | -1.5 | V | | | V _{OH} | HIGH Level | | $V_{CC} = 4.5V$ | $I_{OH} = -2.6 \text{ mA}$ | 2.4 | 3.3 | | V | | | Output Voltage | | $I_{OH} = -0.4 \text{ mA}$ | | V _{CC} - 2 | | | V | | V _{OL} | LOW Level | | V _{CC} = 4.5V | | | 0.25 | 0.4 | V | | | Output Voltage | | | $I_{OL} = 24 \text{ mA}$ | | 0.35 | 0.5 | V | | I _I | Input Current at Maximum Input Voltage | | V _{CC} = 5.5V, V _{IH} = 7V | | | | 0.1 | mA | | I _{IH} | HIGH Level Input | , , | | 7V | | | 20 | μА | | I _{IL} | LOW Level Input Current | | V _{CC} = 5.5V, V _{IL} = 0.4V | | | | -0.1 | mA | | Io | Output Drive Current | | $V_{CC} = 5.5V, V_{O} = 2.25V$ | | -30 | | -112 | mA | | I _{OZH} | OFF-State Output | Current | $V_{CC} = 5.5V,$ | | | | 20 | μА | | | HIGH Level Voltag | ge Applied | $V_0 = 2.7V$ | | | | 20 | μΛ | | I _{OZL} | OFF-State Output Current, | | V _{CC} = 5.5V, | | | | -20 | μА | | | LOW Level Voltage Applied | | $V_O = 0.4V$ | | | | -20 | μΛ | | I _{CCH} | Supply | DM74ALS257 | $V_{CC} = 5.5V$ | Outputs HIGH | | 3 | 6 | mA | | | Current | DM74ALS258 | Outputs OPEN | | | 2.5 | 4 | mA | | I _{CCL} | Supply | DM74ALS257 | | Outputs LOW | | 8 | 12 | mA | | | Current | DM74ALS258 | 1 | | | 7 | 11 | mA | | I _{CCZ} | Supply | DM74ALS257 | 1 | Outputs Disabled | | 9 | 14 | mA | | | Current | DM74ALS258 | | | | 8 | 13 | mA | #### **Switching Characteristics DM74ALS257** over recommended operating free air temperature range Symbol Parameter Conditions From То Min Units Propagation Delay Time $V_{CC} = 4.5V \text{ to } 5.5V$ t_{PLH} 2 10 Data Any Y ns LOW-to-HIGH Level Output $C_L = 50 \text{ pF}$ $R_L=500\Omega\,$ Propagation Delay Time 2 Data Any Y 12 ns HIGH-to-LOW Level Output t_{PLH} Propagation Delay Time Select Any Y ns LOW-to-HIGH Level Output Propagation Delay Time 5 Select Any Y ns HIGH-to-LOW Level Output Output Enable Time Output Any Y 16 ns to HIGH Level Control t_{ZL} Output Enable Time Output 5 Any Y 18 ns to LOW Level Control Output Disable Time Output t_{HZ} 2 10 Any Y ns from HIGH Level Control t_{LZ} Output Disable Time Output Any Y ns #### **Switching Characteristics DM74ALS258** over recommended operating free air temperature range from LOW Level | Symbol | Parameter | Conditions | From | То | Min | Max | Units | |------------------|--------------------------|--------------------------------|---------------|--------|-----|-----|-------| | t _{PLH} | Propagation Delay Time | V _{CC} = 4.5V to 5.5V | Data | Any Y | 2 | 8 | ns | | | LOW-to-HIGH Level Output | C _L = 50 pF | Dala | Ally I | 2 | 0 | 115 | | t _{PHL} | Propagation Delay Time | $R_L = 500\Omega$ | Data | Any Y | 2 | 7 | ns | | | HIGH-to-LOW Level Output | | Dala | Ally 1 | 2 | , | 115 | | t _{PLH} | Propagation Delay Time | | Select | Any Y | 3 | 20 | ns | | | LOW-to-HIGH Level Output | Select | Select Ally f | 3 | 20 | 115 | | | t _{PHL} | Propagation Delay Time | | Select | Any Y | 5 | 25 | ns | | | HIGH-to-LOW Level Output | | Select | Ally I | 3 | 23 | 115 | | t _{ZH} | Output Enable Time | | Output | Any Y | 5 | 18 | ns | | | to HIGH Level | | Control | Ally I | 3 | 10 | 115 | | t _{ZL} | Output Enable Time | | Output | Any Y | 5 | 18 | ns | | | to LOW Level | | Control | Ally I | 3 | 10 | 115 | | t _{HZ} | Output Disable Time | | Output | Any Y | 2 | 10 | ns | | | from HIGH Level | | Control | Any I | _ | 10 | 115 | | t_{LZ} | Output Disable Time | | Output | Any Y | 3 | 18 | ns | | | from LOW Level | | Control | Any I | 3 | 10 | 115 | Control 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow Package Number M16A 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com