imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

October 1986 Revised February 2000

FAIRCHILD

SEMICONDUCTOR

DM74ALS576A **Octal D-Type Edge-Triggered Flip-Flop** with 3-STATE Outputs

General Description

These 8-bit registers feature totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the DM74ALS576A are edge-triggered inverting D-type flip-flops. On the positive transition of the clock, the \overline{Q} outputs will be set to the complement of the logic states that were set up at the D inputs.

A buffered output control input can be used to place the eight outputs in either a normal logic state (HIGH or LOW logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.

The output control does not affect the internal operation of the flip-flops. That is, the old data can be retained or new data can be entered even while the outputs are OFF.

Features

- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- 3-STATE buffer-type outputs drive bus lines directly

DM74ALS576A Octal D-Type Edge-Triggered Flip-Flop with 3-STATE Outputs

Ordering Code:

Order Number	Package Number	Package Description		
DM74ALS576AWM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide		
DM74ALS576AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide		
Devices also available in	IALS576AN N20A 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide es also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Section 1000 Code			

Connection Diagram

DM74ALS576A

Function Table Output Clock D Output OUTPUT _____ Control Q L Î Н L \uparrow L Н 10 _2 L Х $\overline{\mathsf{Q}}_0$ L L н х Ζ Х $\begin{array}{l} L = LOW \mbox{ State } \\ H = HIGH \mbox{ State } \\ X = Don't \mbox{ Care } \\ \uparrow = \mbox{ Positive Edge Transition } \\ Z = High \mbox{ Impedance State } \\ \overline{Q}_0 = \mbox{ Previous Condition of } \overline{Q} \end{array}$ 2D <u>3</u> 3D ____ 40 -5D <u>6</u> 60 7D -- 9 8D сеоск -11

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	7V
Voltage Applied to Disabled Output	5.5V
Operating Free Air Temperature Range	0°C to +70°C
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Typical θ _{JA}	
N Package	56.0°C/W
M Package	75.0°C/W

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.5	5	5.5	V
V _{IH}	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage				0.8	V
он	HIGH Level Output Current				-2.6	mA
l _{oL}	LOW Level Output Current				24	mA
f _{CLOCK}	Clock Frequency		0		30	MHz
tw	Width of Clock Pulse	HIGH	16.5			ns
		LOW	16.5			ns
su	Data Setup Time (Note 2)		15↑			ns
t _H	Data Hold Time (Note 2)		0↑			ns
T _A	Free Air Operating Temperature		0		70	°C

Electrical Characteristics

Symbol	Parameter	$\label{eq:Conditions} \hline V_{CC} = 4.5 \text{V}, \ \text{I}_{\text{I}} = -18 \ \text{mA}$		Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage					-1.2	V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = 4.5V$ $V_{IL} = V_{IL}$ Max	I _{OH} = Max	2.4	3.2		v
		$V_{CC} = 4.5V$ to 5.5V	I _{OH} = -400 μA	V _{CC} – 2			V
V _{OL}	LOW Level Output Voltage	$V_{CC} = 4.5V$ $V_{IH} = 2V$	I _{OL} = 24 mA		0.35	0.5	v
l _l	Input Current @ Maximum Input Voltage	$V_{CC} = 5.5V, V_{IH} = 7V$	·			0.1	mA
Ін	HIGH Level Input Current	$V_{CC} = 5.5V, V_{IH} = 2.7V$				20	μA
I _{IL}	LOW Level Input Current	$V_{CC} = 5.5V, V_{IL} = 0.4V$				-0.2	mA
l ₀	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$		-30		-112	mA
оzн	OFF-State Output Current HIGH Level Voltage Applied	$V_{CC} = 5.5V, V_{IH} = 2V$ $V_{O} = 2.7V$				20	μΑ
OZL	OFF-State Output Current LOW Level Voltage Applied	$V_{CC} = 5.5V, V_{IH} = 2V$ $V_O = 0.4V$				-20	μA
I _{CC}	Supply Current	$V_{CC} = 5.5V$	Outputs HIGH		10	18	mA
		Outputs OPEN	Outputs LOW		15	24	mA
			Outputs Disabled		16	30	mA

DM74ALS576A

www.fairchildsemi.com

◄
Ö
Ň
ŝ
Ő
◄
4
Ň
5

Switching Characteristics

Symbol	Parameter	Conditions	From	То	Min	Max	Units
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 4.5V$ to 5.5V			30		MHz
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	$R_L = 500\Omega$ $C_L = 50 pF$	Clock	Any Q	4	14	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output		Clock	Any Q	4	14	ns
t _{PZH}	Output Enable Time to HIGH Level Output		Output Control	Any Q	4	18	ns
t _{PZL}	Output Enable Time to LOW Level Output		Output Control	Any Q	4	18	ns
t _{PHZ}	Output Disable Time from HIGH Level Output		Output Control	Any Q	2	10	ns
t _{PLZ}	Output Disable Time from LOW Level Output		Output Control	Any Q	3	15	ns

www.fairchildsemi.com