: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Absolute Maximum Ratings（Note 1）

Supply Voltage	7V	
Input Voltage	7 V	
Voltage Applied to Disabled Output	5.5 V	Note 1：The＂Absolute Maximum Rating＂are those values beyond which
Operating Free Air Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	the safety of the device cannot be guaranteed．The device should not be
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	operated at these limits．The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings．
Typical $\theta_{\text {JA }}$		The＂Recommended Operating Conditions＂table will define the conditions
N Package	$56.0^{\circ} \mathrm{C} / \mathrm{W}$	for actual device operation
M Package	$75.0^{\circ} \mathrm{C} / \mathrm{W}$	

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.5	5	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-2.6	mA
I_{OL}	LOW Level Output Current			24	mA
$\mathrm{f}_{\mathrm{CLOCK}}$	Clock Frequency			30	MHz
t_{W}	Width of Clock Pulse	HIGH	16.5		
		16.5		ns	
t_{SU}	Data Setup Time（Note 2）	$15 \uparrow$			ns
t_{H}	Data Hold Time（Note 2）	$0 \uparrow$		ns	
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		ns	

Note 2：The（ \uparrow ）arrow indicates the positive edge of the Clock is used for reference．

Electrical Characteristics

over recommended operating free air temperature range．All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IK}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {I }}=-18 \mathrm{~mA}$				－1．2	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \mathrm{Max} \\ & \hline \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2.4	3.2		V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-2$			V
$\overline{\mathrm{V}} \mathrm{OL}$	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}}=2 \mathrm{~V} \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.35	0.5	V
I	Input Current＠Maximum Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=7 \mathrm{~V}$				0.1	mA
$I_{1 H}$	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}$				－0．2	mA
I_{0}	Output Drive Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.25 \mathrm{~V}$		－30		－112	mA
$\mathrm{I}_{\text {OZH }}$	OFF－State Output Current HIGH Level Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \end{aligned}$				20	$\mu \mathrm{A}$
$\overline{I_{\text {OzL }}}$	OFF－State Output Current LOW Level Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$				－20	$\mu \mathrm{A}$
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ Outputs OPEN	Outputs HIGH		10	18	mA
			Outputs LOW		15	24	mA
			Outputs Disabled		16	30	mA

Switching Characteristics over recommended operating free air temperature range							
Symbol	Parameter	Conditions	From	To	Min	Max	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			30		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output		Clock	Any $\overline{\mathrm{Q}}$	4	14	ns
${ }_{\text {teHL }}$	Propagation Delay Time HIGH-to-LOW Level Output		Clock	Any $\overline{\mathrm{Q}}$	4	14	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to HIGH Level Output		Output Control	Any $\overline{\mathrm{Q}}$	4	18	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to LOW Level Output		Output Control	Any $\overline{\mathrm{Q}}$	4	18	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from HIGH Level Output		Output Control	Any $\overline{\mathrm{Q}}$	2	10	ns
$t_{\text {PLZ }}$	Output Disable Time from LOW Level Output		Output Control	Any $\overline{\mathrm{Q}}$	3	15	ns

