

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

October 1986 Revised April 2000

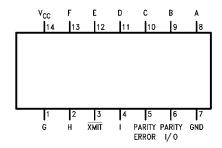
DM74AS286 9-Bit Parity Generator/Checker with Bus-Driver Parity I/O Port

General Description

These universal, 9-bit parity generators/checkers utilize advanced Schottky high performance circuitry and feature odd/even outputs to facilitate operation of either odd or even parity applications. The word length capability is easily expanded by cascading.

The DM74AS286 can be used to upgrade the performance of most systems utilizing the DM74AS280 parity generator/ checker. Although the DM74AS286 is implemented without expander inputs, the corresponding function is provided by the availability of an input pin XMIT. XMIT is a control line which makes parity error output active and parity an input port when HIGH; when LOW, parity error output is inactive and parity becomes an output port. In addition, parity I/O control circuitry contains a feature to keep the I/O port in the 3-STATE during power UP or DOWN to prevent bus ditches.

Features


- PNP inputs to reduce bus loading
- Generates either odd or even parity for nine data lines
- Inputs are buffered to lower the drive requirements
- Can be used to upgrade existing systems using MSI parity circuits
- Cascadable for n-bits
- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and V_{CC} range
- A parity I/O portable to drive bus

Ordering Code:

Order Number	Package Number	Package Description
DM74AS286M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
DM74AS286N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Function Table

Number of Inputs (A thru I)	Pari	ity I/O	XMIT	Parity Error	Mode of
that are HIGH	Input	Output	XIVII I		Operation
0, 2, 4, 6, 8	N/A	Н	L	Н	Parity
1, 3, 5, 7, 9	N/A	L	L	Н	Generator
0, 2, 4, 6, 8	Н	N/A	Н	Н	Parity
0, 2, 4, 6, 8	L	N/A	Н	L	Checker
1, 3, 5, 7, 9	Н	N/A	Н	L	Parity
1, 3, 5, 7, 9	L	N/A	Н	Н	Checker

L = LOW Logic Level H = HIGH Logic Level N/A = Not Applicable

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V
Input Voltage 7V

Operating Free Air Temperature Range 0° C to +70 $^{\circ}$ C Storage Temperature Range -65° C to +150 $^{\circ}$ C

Typical θ_{JA}

 N Package
 77.0°C/W

 M Package
 108.0°C/W

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

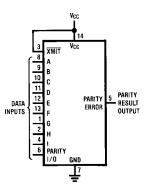
Recommended Operating Conditions

Symbol	Parameter		Min	Тур	Max	Units
V _{CC}	Supply Voltage		4.5	5	5.5	V
V _{IH}	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage				0.8	V
I _{OH}	HIGH Level Output Current	Parity I/O			-15	mA
		Parity Error			-2	mA
I _{OL}	LOW Level Output Current	Parity I/O			48	mA
		Parity Error			20	mA
T _A	Operating Free-Air Temperature	•	0		70	°C

Electrical Characteristics

over recommended free-air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

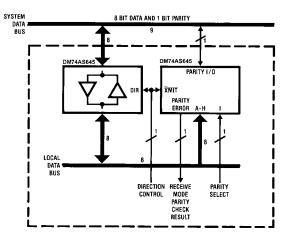
Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V$, $I_{IN} = -18$ mA				-1.2	V
V _{OH}	HIGH Level	$I_{OH} = Max, V_{CC} = 4.5V$		2.4	3.2		V
	Output Voltage	$V_{CC} = 4.5V$ to 5.5V, $I_{OH} = -2$ mA		V _{CC} - 2			V
V _{OL}	LOW Level Output Voltage	$V_{CC} = 4.5V$, $I_{OL} = Max$			0.35	0.5	V
I _I	Input Current at Maximum Input Voltage	$V_{CC} = 5.5V, V_{IH} = 7V$ (V _I = 5.5V for Parity I/O)				0.1	mA
I _{IH}	HIGH Level Input Current	V _{CC} = 5.5V	Others			20	
		V _{IH} = 2.7V (Note 2)	Parity I/O			50	μΑ
I _{IL}	LOW Level Input Current	V _{CC} = 5.5V, V _{IL} = 0.4V (Note 2)	V _{CC} = 5.5V, V _{IL} = 0.4V (Note 2)			-0.5	mA
Io	Output Drive Current	$V_{CC} = 5.5V, V_{OUT} = 2.25V$	V _{CC} = 5.5V, V _{OUT} = 2.25V			-112	mA
I _{CC}	Supply Current	V _{CC} = 5.5V, Transmit Mode XMIT = LOW				43	mA
		Receive Mode XMIT = HIGH				50	mA


Note 2: For I/O ports, the parameters I_{IH} and I_{IL} include the OFF-state current, I_{OZH} and I_{OZL}.

Switching Characteristics

over recommended supply and temperature range

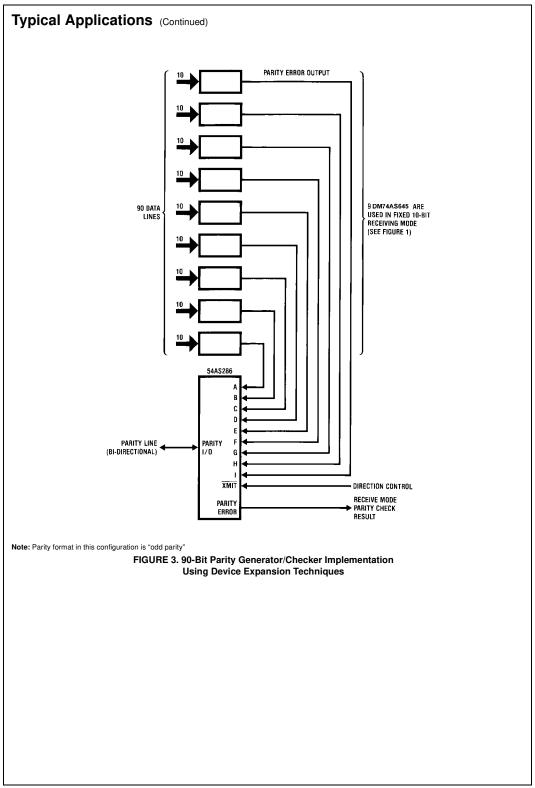
Symbol	Parameter	From	То	Min	Max	Units	
t _{PLH}	Propagation Delay Time	Any Data Input	Parity I/O	3	15	ns	
	from LOW-to-HIGH Level Output	7 any Data input					
t _{PHL}	Propagation Delay Time	Any Data Input	Parity I/O	3	14	ns	
	from HIGH-to-LOW Level Output	Any Data input					
t _{PLH}	Propagation Delay Time	Any Data Input	Parity Error	3	16.5	ns	
	from LOW-to-HIGH Level Output	Any Data input	r anty Life	3	10.5	115	
t _{PHL}	Propagation Delay Time	Any Data Input	Parity Error	3	16.5	ns	
	from HIGH-to-LOW Level Output	Any Data input	r anty Life		10.5	113	
t _{PLH}	Propagation Delay Time	Parity I/O	I/O Parity Error	3	9	ns	
	from LOW-to-HIGH Level Output	1 anty 1/O					
t _{PHL}	Propagation Delay Time	Parity I/O	Parity Error	3	9	ns	
	from HIGH-to-LOW Level Output	ranty //O	r anty Life			115	
t _{PZL}	Output Enable Time to LOW Level	XMIT	Parity I/O	3	16	ns	
t _{PLZ}	Output Disable Time from LOW Level	XMIT	Parity I/O	3	10	ns	
t _{PZH}	Output Disable Time from HIGH Level	XMIT	Parity I/O	3	13	ns	
t _{PHZ}	Output Enable Time to HIGH Level	XMIT	Parity I/O	3	11.5	ns	


Typical Applications

Number of	Parity		
Inputs that	Result		
are Logic "1"	Output		
0, 2, 4, 6, 8, 10	L		
1, 3, 5, 7, 9	Odd	Н	

FIGURE 1. Dedicated 10-Bit Parity Sensing Configuration

Typical Applications (Continued)



Direction	I/O	Parity Che	eck Result			
Control	Direction	(Parity Error)				
(XMIT) (Parity I/O)		Level	∑ Result			
Н	Input	Н	True			
	(Receive)	L	False			
L	Output	Н	N/A			
	(Transmit)					

Parity Select				
(Input I)				
Level Format				
Н	Even			
L Odd				

L = LOW Logic Level H = HIGH Logic Level N/A = Not Applicable

FIGURE 2. Bus I/O Parity Implementation

Physical Dimensions inches (millimeters) unless otherwise noted $\frac{0.335 - 0.344}{(8.509 - 8.738)}$ LEAD NO. 1 IDENT 0.010 MAX (0.254) $\frac{0.150 - 0.157}{(3.810 - 3.988)}$ $\frac{0.053 - 0.069}{(1.346 - 1.753)}$ $\frac{0.010 - 0.020}{(0.254 - 0.508)}$ 8° MAX TYP ALL LEADS $\frac{0.004 - 0.010}{(0.102 - 0.254)}$ SEATING PLANE 0.014 0.008 - 0.010 (0.203 - 0.254) TYP ALL LEADS 0.050 (1.270) TYP $\frac{0.014 - 0.020}{(0.356 - 0.508)} \text{ TYP}$ 0.016 - 0.050 (0.406 - 1.270) TYP ALL LEADS 0.004 (0.102) ALL LEAD TIPS 0.008 (0.203) TYP

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow Package Number M14A

M14A (REV h)

N144 (REV.E)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.770(18.80 - 19.56)0.090 (2.286) 14 13 12 11 10 9 8 14 13 12 0.250 ± 0.010 PIN NO. 1 IDENT PIN NO. 1 IDENT 1 2 3 4 5 6 7 1 2 3 $\frac{0.092}{(2.337)}$ DIA 0.030 MAX (0.762) DEPTH OPTION 1 OPTION 02 $\frac{0.135 \pm 0.005}{(3.429 \pm 0.127)}$ 0.300 - 0.320 $\overline{(7.620 - 8.128)}$ 0.065 $\frac{0.145 - 0.200}{(3.683 - 5.080)}$ 0.060 4° TYP Optional (1.524) (1.651)0.008-0.016 TYP 0.020 (0.203 - 0.406)(0.508) 0.125 - 0.150 0.075 ± 0.015 $\overline{(3.175 - 3.810)}$ 0.280 (1.905 ± 0.381) (7.112) MIN 0.014 - 0.023 $\frac{0.100 \pm 0.010}{(2.540 \pm 0.254)} \text{ TYP}$ TYP (0.356 - 0.584) $\frac{0.050 \pm 0.010}{(1.270 - 0.254)}$ TYP 0.325 ^{+0.040} -0.015

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

 $8.255 + 1.016 \\ -0.381$

www.fairchildsemi.com