imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

December 1986 Revised July 2003

FAIRCHILD

SEMICONDUCTOR

DM74AS873 Dual 4-Bit D-Type Transparent Latches with 3-STATE Outputs

General Description

These dual 4-bit registers feature totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches of the DM74AS873 are transparent D-type latches meaning that while the enable (G) is HIGH the Q outputs will follow the data (D) inputs. When the enable is taken LOW the output will be latched at the level of the data that was set up.

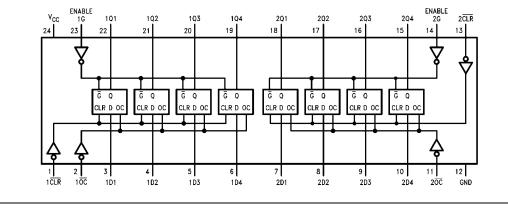
A buffered output control input can be used to place the eight outputs in either a normal logic state (HIGH or LOW logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.

The output control does not affect the internal operation of the latches. That is, the old data can be retained or new data can be entered even while the outputs are OFF.

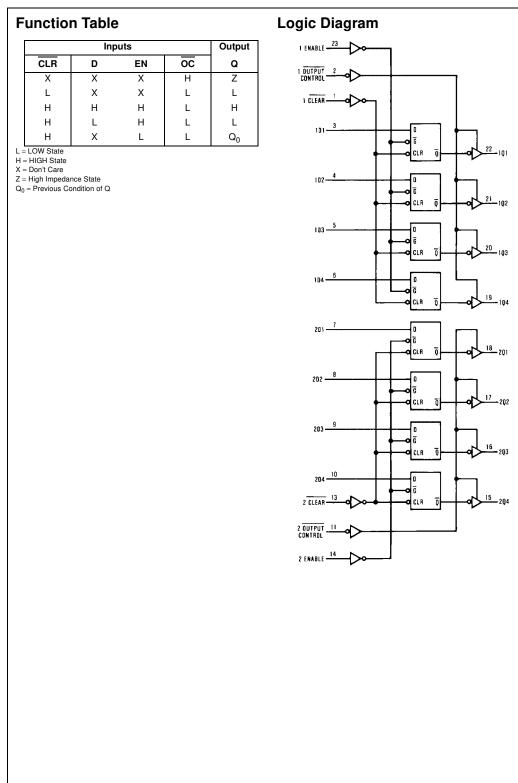
The pinout is arranged to ease printed circuit board layout. All data inputs are on one side of the package while all outputs are on the other side.

Features

- Switching specifications at 50 pF
- \blacksquare Switching specifications guaranteed over full temperature and V_{CC} range
- \blacksquare Advanced oxide-isolated, ion-implanted Schottky TTL
- process


 3-STATE buffer-type outputs drive bus lines directly
- Space Saving 300 Mil Wide Package
- Bus structured pinout

DM74AS873 Dual 4-Bit D-Type Transparent Latches with 3-STATE Outputs


Ordering Code:

Order Number	Package Number	Package Description			
DM74AS873NT	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.					

Connection Diagram

DM74AS873

Absolute Maximum Ratings(Note 1)

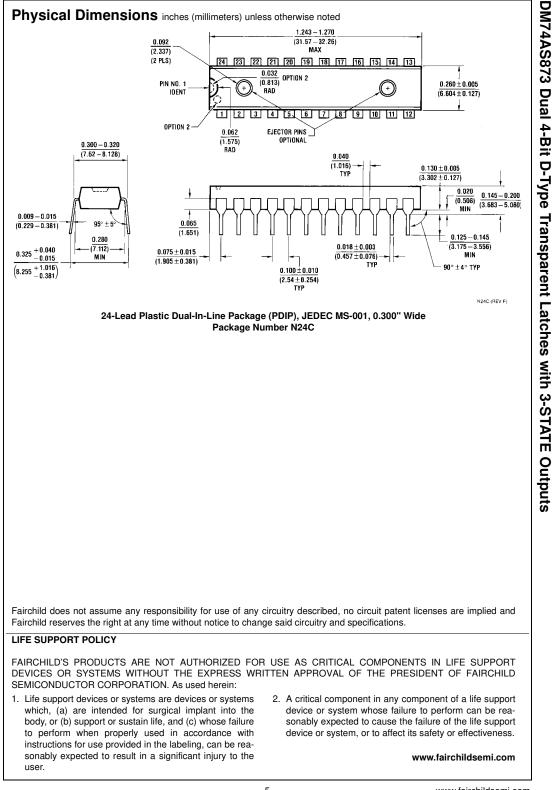
Supply Voltage	7V
Input Voltage	7V
Voltage Applied to Disabled Output	5.5V
Operating Free Air Temperature Range	0°C to +70°C
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Typical θ _{JA}	
N Package	47.0°C/W

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual during expertise. for actual device operation.

Recommended Operating Conditions

Symbol	Parameter Supply Voltage		Min	Nom 5	Max	Units	
V _{CC}			4.5		5.5	V	
/ _{IH}	HIGH Level Input Voltage		2			V	
V _{IL}	LOW Level Input Voltage				0.8	V	
он	HIGH Level Output Current				-15	mA	
OL	LOW Level Output Current				48	mA	
t _W	Pulse Width	Enable HIGH	5.5				
		Clear LOW	3.5			ns	
t _{su}	Data Setup Time (Note 2)		2↓			ns	
t _H	Data Hold Time (Note 2)		3↓			ns	
T _A	Free Air Operating Temperature		0		70	°C	

Note 2: The (\downarrow) arrow indicates the negative edge of the enable is used for reference.


Electrical Characteristics

over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_{A} = 25^{\circ}C$.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_1 = -18 \text{ mA}$				-1.2	V
V _{он}	HIGH Level	$V_{CC} = 4.5V, V_{IL} = Max$					v
	Output Voltage	I _{OH} = Max		2.4	3.3		v
	I_{OH} = –2 mA, V_{CC} = 4.5V to 5.5V		V _{CC} –2			V	
V _{OL}	LOW Level $V_{CC} = 4.5V, V_{IH} = 2V$		0.0	0.05	0.5	v	
	Output Voltage	I _{OL} = Max			0.35	0.5	v
1	Input Current at Max	$V_{CC} = 5.5V, V_{IH} = 7V$				0.1	mA
	Input Voltage					0.1	
IH	HIGH Level Input Current	$V_{CC} = 5.5V, V_{IH} = 2.7V$	$V_{CC} = 5.5V, V_{IH} = 2.7V$			20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = 5.5V, V_{IL} = 0.4V$				-0.5	mA
O (Note 3)	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$		-30		-112	mA
lоzн	ZH OFF-State Output Current,	$V_{CC} = 5.5V, V_{IH} = 2V$				50	μA
	HIGH Level Voltage Applied	$V_{O} = 2.7V$				50	μΑ
OZL OFF-State Output Current,	$V_{CC} = 5.5V, V_{IH} = 2V$				-50	μA	
	LOW Level Voltage Applied	$V_{O} = 0.4V$				-30	μΑ
сс	CC Supply Current	$V_{CC} = 5.5V$	Outputs HIGH		68	110	mA
		Outputs Open	Outputs LOW		67	109	mA
			Outputs Disabled		80	129	mA

Note 3: The output conditions have been chosen to produce a current that closely approximates one half of the true short circuit current, IOS.

Symbol	Parameter	Conditions	From	То	Min	Max	Units
t _{PLH}	Propagation Delay Time	$V_{CC} = 4.5V$ to 5.5V $R_I = 500\Omega$	Data	Any Q	3	6.5	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	$C_L = 50 \text{ pF}$	Data	Any Q	3	6	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output		Enable	Any Q	6	11.5	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output		Enable	Any Q	4	7.5	ns
t _{PZH}	Output Enable Time to HIGH Level Output		Output Control	Any Q	2	6.5	ns
t _{PZL}	Output Enable Time to LOW Level Output		Output Control	Any Q	4	9.5	ns
t _{PHZ}	Output Disable Time from HIGH Level Output		Output Control	Any Q	2	6.5	ns
t _{PLZ}	Output Disable Time from LOW Level Output		Output Control	Any Q	2	7.5	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output		Clear	Any Q	3	8.5	ns

5