

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

August 1986 Revised March 2000

18 ns

DM74LS244 Octal 3-STATE Buffer/Line Driver/Line Receiver

General Description

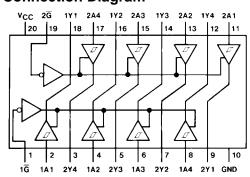
These buffers/line drivers are designed to improve both the performance and PC board density of 3-STATE buffers/drivers employed as memory-address drivers, clock drivers, and bus-oriented transmitters/receivers. Featuring 400 mV of hysteresis at each low current PNP data line input, they provide improved noise rejection and high fanout outputs and can be used to drive terminated lines down to $133\Omega.$

Features

- 3-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at data inputs improves noise margins
- Typical I_{OL} (sink current) 24 mA
- Typical I_{OH} (source current) -15 mA
- Typical propagation delay times

Inverting 10.5 ns

- Noninverting 12 ns
 Typical enable/disable time
- Typical power dissipation (enabled)


Inverting 130 mW
Noninverting 135 mW

Ordering Code:

Order Number	Package Number	Package Description		
DM74LS244WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide		
DM74LS244SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide		
DM74LS244N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide		

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Function Table

Inp	Output		
G	Α	Υ	
L	L	L	
L	Н	Н	
Н	Х	Z	

- L = LOW Logic Level
- H = HIGH Logic Level
- X = Either LOW or HIGH Logic Level
- Z = High Impedance

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range $0^{\circ}\text{C to } +70^{\circ}\text{C}$ Storage Temperature Range $-65^{\circ}\text{C to } +150^{\circ}\text{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

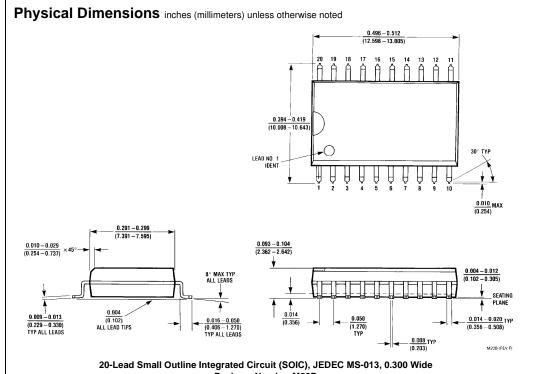
Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
I _{OH}	HIGH Level Output Current			-15	mA
I _{OL}	LOW Level Output Current			24	mA
T _A	Free Air Operating Temperature	0		70	°C

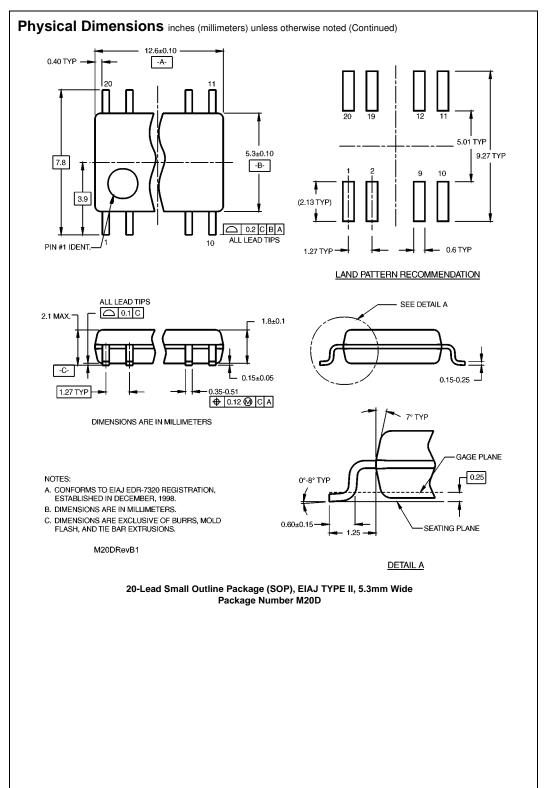
Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Condit	ions	Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
HYS	Hysteresis (V _{T+} – V _{T-})	V _{CC} = Min		0.2	0.4		V
	Data Inputs Only						
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, V_{IH} = Min$		2.7		.4	
		$V_{IL} = Max$, $I_{OH} = -1$ mA		2.7			
		$V_{CC} = Min, V_{IH} = Min$		2.4	3.4		V
		$V_{IL} = Max$, $I_{OH} = -3 \text{ mA}$		2.4			v
		$V_{CC} = Min, V_{IH} = Min$		2			
		$V_{IL} = 0.5V$, $I_{OH} = Max$		_			
V _{OL}	LOW Level Output Voltage	V _{CC} = Min	I _{OL} = 12 mA			0.4	
		$V_{IL} = Max$	I _{OL} = Max			0.5	V
		$V_{IH} = Min$					
I _{OZH}	Off-State Output Current,	V _{CC} = Max	V _O = 2.7V			20	μΑ
	HIGH Level Voltage Applied	$V_{IL} = Max$					
I _{OZL}	Off-State Output Current,	V _{IH} = Min	$V_O = 0.4V$			-20	μΑ
	LOW Level Voltage Applied						
I _I	Input Current at Maximum	V _{CC} = Max	$V_I = 7V$			0.1	mA
	Input Voltage						
I _{IH}	HIGH Level Input Current	V _{CC} = Max	$V_{I} = 2.7V$			20	μА
I _{IL}	LOW Level Input Current	V _{CC} = Max	$V_I = 0.4V$	-0.5		-200	μА
Ios	Short Circuit Output Current	V _{CC} = Max (Note 3)		-40		-225	mA
I _{CC}	Supply Current	$V_{CC} = Max$,	Outputs HIGH		13	23	
		Outputs Open	Outputs LOW		27	46	mA
			Outputs Disabled		32	54	


Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.


Switching Characteristics

at $V_{CC} = 5V$, $T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Max	Units	
t _{PLH}	Propagation Delay Time	C _L = 45 pF	18	no	
	LOW-to-HIGH Level Output	$R_L = 667\Omega$	10	ns	
t _{PHL}	Propagation Delay Time	C _L = 45 pF	18	ns	
	HIGH-to-LOW Level Output	$R_L = 667\Omega$	10		
t _{PZL}	Output Enable Time to	C _L = 45 pF	30	ns	
	LOW Level	$R_L = 667\Omega$	30		
t _{PZH}	Output Enable Time to	C _L = 45 pF	23	ns	
	HIGH Level	$R_L = 667\Omega$	25		
t _{PLZ}	Output Disable Time	$C_L = 5 pF$	25	ns	
	from LOW Level	$R_L = 667\Omega$	25		
t _{PHZ}	Output Disable Time	$C_L = 5 pF$	18	ns	
	from HIGH Level	$R_L = 667\Omega$	10		
t _{PLH}	Propagation Delay Time	C _L = 150 pF	21	ns	
	LOW-to-HIGH Level Output	$R_L = 667\Omega$	21		
t _{PHL}	Propagation Delay Time	C _L = 150 pF	22	ns	
	HIGH-to-LOW Level Output	$R_L = 667\Omega$			
t _{PZL}	Output Enable Time to	to C _L = 150 pF		ns	
	LOW Level	$R_L = 667\Omega$	33	115	
t _{PZH}	Output Enable Time to	C _L = 150 pF	26	ns	
	HIGH Level	$R_L = 667\Omega$	20	5	

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide Package Number M20B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 1.013-1.040 (25.73-26.42) $\textbf{0.092} \times \textbf{0.030}$ (2.337 × 0.762) MAX DP 0.032 ±0.005 20 19 18 17 16 15 14 13 12 11 20 19 (0.813±0.127) RAD 0.260 ±0.005 PIN NO. 1 IDENT PIN NO. 1 IDENT (6.604 ±0.127) 0.280 **DPTION 1** (7.112) MIN 1 2 3 4 5 6 7 8 9 10 0.090 OPTION 2 0.300-0.320 (2.286) (7.620-8.128) D.060 NOM 0.040 OPTION 2 4° (4X) 0.130 0.005 (1.524) TYP (1.016) TYP 0.065 (3.302 0.127) (1.651) 0.145-0.200 (3.683-5.080) 0.009-0.015 (0.229-0.381) TYP 0.060 ±0.005 0.020 0.100 ± 0.010 0.125-0.140 (0.508)(2.540 ± 0.254) (3.175-3.556) 0.325 +0.040 -0.015 (1.524 ± 0.127) (0.457 ± 0.076) (8.255 +1.016) -0.381

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

N20A (REV G