: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

www.fairchildsemi.com

DM74LS373 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter	From (Input) To (Output)	$R_{L}=667 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Data to Q		18		26	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	Data to Q		18		27	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Q		30		38	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	Enable to Q		30		36	ns
$\overline{t_{\text {PZH }}}$	Output Enable Time to HIGH Level Output	Output Control to Any Q		28		36	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to LOW Level Output	Output Control to Any Q		36		50	ns
$\overline{t_{\text {PHZ }}}$	Output Disable Time from HIGH Level Output (Note 6)	Output Control to Any Q		20			ns
$t_{\text {PLZ }}$	Output Disable Time from LOW Level Output (Note 6)	Output Control to Any Q		25			ns

DM74LS374 Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
$\mathrm{V}_{\text {CC }}$	Supply Voltage	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	2			V
V_{IL}	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-2.6	mA
l_{OL}	LOW Level Output Current			24	mA
t_{w}	Pulse Width Clock HIGH	15			ns
	(Note 8) Clock LOW	15			
$\mathrm{t}_{\text {SU }}$	Data Setup Time (Note 7) (Note 8)	$20 \uparrow$			ns
t_{H}	Data Hold Time (Note 7) (Note 8)	$1 \uparrow$			ns
T_{A}	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Note 8: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

DM74LS374 Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)						
Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 9) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\text { Max, } \mathrm{V}_{\mathrm{IH}}=\text { Min } \end{aligned}$	2.4	3.1		V
V_{OL}	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		0.35	0.5	V
		$\mathrm{I}_{\mathrm{LL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$			0.1	mA
I_{H}	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IL	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.4	mA
$\mathrm{I}_{\text {OZH }}$	Off-State Output Current with HIGH Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$	Off-State Output Current with LOW Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			-20	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 10)	-50		-225	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{D}_{\mathrm{n}}=\mathrm{GND}, \mathrm{OC}=4.5 \mathrm{~V}$		27	45	mA
Note 9: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 10: Not more than one output should be shorted at a time, and the duration shour DM74LS374 Switching Characteristics $\text { at } \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \text { and } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
Symbol	Parameter		$\mathrm{R}_{\mathrm{L}}=667 \Omega$			Units
			$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
			Max	Min	Max	
$f_{\text {max }}$	Maximum Clock Frequency	35		20		MHz
${ }_{\text {t }}{ }_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output		28		32	ns
${ }_{\text {tPHL }}$	Propagation Delay Time HIGH-to-LOW Level Output		28		38	ns
${ }_{\text {tPZH }}$	Output Enable Time to HIGH Level Output		28		44	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to LOW Level Output		28		44	ns
$\overline{t_{\text {PHZ }}}$	Output Disable Time from HIGH Level Output (Note 11)		20			ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time from LOW Level Output (Note 11)		25			ns
Note 11: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.						

Physical Dimensions inches（millimeters）unless otherwise noted（Continued）

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life suppor device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
