

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









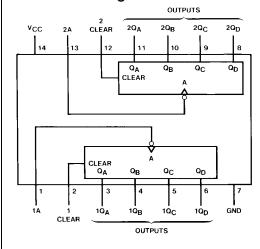
August 1986 Revised March 2002

# DM74LS393 Dual 4-Bit Binary Counter

### **General Description**

Each of these monolithic circuits contains eight master-slave flip-flops and additional gating to implement two individual four-bit counters in a single package. The DM74LS393 comprises two independent four-bit binary counters each having a clear and a clock input. N-bit binary counters can be implemented with each package providing the capability of divide-by-256. The DM74LS393 has parallel outputs from each counter stage so that any submultiple of the input count frequency is available for system-timing signals.

### **Features**


- Dual version of the popular DM74LS93
- DM74LS393 dual 4-bit binary counter with individual clocks
- Direct clear for each 4-bit counter
- Dual 4-bit versions can significantly improve system densities by reducing counter package count by 50%
- Typical maximum count frequency 35 MHz
- Buffered outputs reduce possibility of collector commutation

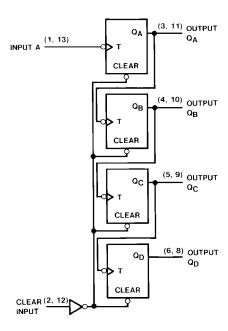
### **Ordering Code:**

| Order Number | Package Number | Package Description                                                          |  |  |  |  |  |
|--------------|----------------|------------------------------------------------------------------------------|--|--|--|--|--|
| DM74LS393M   | M14A           | 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow |  |  |  |  |  |
| DM74LS393N   | N14A           | 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide       |  |  |  |  |  |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

## **Connection Diagram**




### **Function Table**

### **Counter Sequence (Each Counter)**

| Count | Outputs |                |                |       |  |  |  |
|-------|---------|----------------|----------------|-------|--|--|--|
| Count | $Q_D$   | Q <sub>C</sub> | Q <sub>B</sub> | $Q_A$ |  |  |  |
| 0     | L       | L              | L              | L     |  |  |  |
| 1     | L       | L              | L              | Н     |  |  |  |
| 2     | L       | L              | Н              | L     |  |  |  |
| 3     | L       | L              | Н              | Н     |  |  |  |
| 4     | L       | Н              | L              | L     |  |  |  |
| 5     | L       | Н              | L              | Н     |  |  |  |
| 6     | L       | Н              | Н              | L     |  |  |  |
| 7     | L       | Н              | Н              | Н     |  |  |  |
| 8     | Н       | L              | L              | L     |  |  |  |
| 9     | Н       | L              | L              | Н     |  |  |  |
| 10    | Н       | L              | Н              | L     |  |  |  |
| 11    | Н       | L              | Н              | Н     |  |  |  |
| 12    | Н       | Н              | L              | L     |  |  |  |
| 13    | Н       | Н              | L              | Н     |  |  |  |
| 14    | Н       | Н              | Н              | L     |  |  |  |
| 15    | Н       | Н              | Н              | Н     |  |  |  |

H = HIGH Logic Level L = LOW Logic Level

# Logic Diagram



## **Absolute Maximum Ratings**(Note 1)

 Supply Voltage
 7V

 Input Voltage
 7V

 Clear
 7V

 A
 5.5V

 Operating Free Air Temperature Range
 0°C to +70°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

# **Recommended Operating Conditions**

| Symbol           | Parameter                       |                                     | Min | Nom | Max  | Units |
|------------------|---------------------------------|-------------------------------------|-----|-----|------|-------|
| V <sub>CC</sub>  | Supply Voltage                  | Supply Voltage                      |     | 5   | 5.25 | ٧     |
| V <sub>IH</sub>  | HIGH Level Input Voltage        |                                     | 2   |     |      | ٧     |
| V <sub>IL</sub>  | LOW Level Input Voltage         |                                     |     |     | 0.8  | ٧     |
| I <sub>OH</sub>  | HIGH Level Output Current       |                                     |     |     | -0.4 | mA    |
| I <sub>OL</sub>  | LOW Level Output Current        | LOW Level Output Current            |     |     | 8    | mA    |
| f <sub>CLK</sub> | Clock Frequency (Note 2)        |                                     | 0   |     | 25   | MHz   |
| f <sub>CLK</sub> | Clock Frequency (Note 3)        | Clock Frequency (Note 3)            |     |     | 20   | MHz   |
| t <sub>W</sub>   | Pulse Width (Note 5)            | ١                                   | 20  |     |      | 20    |
|                  |                                 | Clear HIGH                          | 20  |     |      | ns    |
| t <sub>REL</sub> | Clear Release Time (Note 4)(Not | Clear Release Time (Note 4)(Note 5) |     |     |      | ns    |
| T <sub>A</sub>   | Free Air Operating Temperature  |                                     | 0   |     | 70   | °C    |

-65°C to +150°C

**Note 2:**  $C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega, T_A = 25^{\circ}\text{C} \text{ and } V_{CC} = 5\text{V}.$ 

Note 3:  $C_L = 50$  pF,  $R_L = 2$  k $\Omega$ ,  $T_A = 25^{\circ}C$  and  $V_{CC} = 5V$ .

Note 4: The symbol  $(\downarrow)$  indicates that the falling edge of the clear pulse is used for reference.

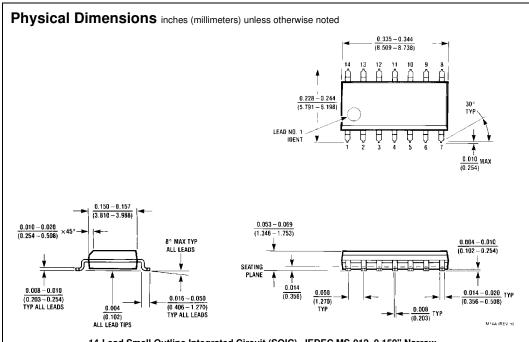
Note 5:  $T_A = 25^{\circ}C$ , and  $V_{CC} = 5V$ .

Storage Temperature Range

#### **Electrical Characteristics**

over recommended operating free air temperature range (unless otherwise noted)

| Symbol          | Parameter                                   | Condition                                    | Min   | Typ<br>(Note 6) | Max  | Units |      |
|-----------------|---------------------------------------------|----------------------------------------------|-------|-----------------|------|-------|------|
| VI              | Input Clamp Voltage                         | $V_{CC} = Min, I_I = -18 \text{ mA}$         |       |                 |      | -1.5  | V    |
| V <sub>OH</sub> | HIGH Level                                  | V <sub>CC</sub> = Min, I <sub>OH</sub> = Max |       | 2.7             | 3.4  |       | V    |
|                 | Output Voltage                              | $V_{IL} = Max, V_{IH} = Min$                 |       | 2.7             |      |       |      |
| V <sub>OL</sub> | LOW Level                                   | V <sub>CC</sub> = Min, I <sub>OL</sub> = Max |       |                 | 0.35 | 0.5   |      |
|                 | Output Voltage $V_{IL} = Max, V_{IH} = Min$ |                                              | 0.35  | 0.5             | V    |       |      |
|                 |                                             | $I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$ |       |                 | 0.25 | 0.4   |      |
| T <sub>I</sub>  | Input Current @ Max                         | $V_{CC} = Max, V_I = 7V$                     | Clear |                 |      | 0.1   | mΛ   |
|                 | Input Voltage                               | $V_{CC} = Max, V_I = 5.5V$                   | Α     |                 |      | 0.2   | mA   |
| I <sub>IH</sub> | HIGH Level                                  | $V_{CC} = Max, V_I = 2.7V$                   | Clear |                 |      | 20    |      |
|                 | Input Current                               |                                              | Α     |                 |      | 40    | μА   |
| I <sub>IL</sub> | LOW Level                                   | $V_{CC} = Max, V_I = 0.4V$                   | Clear |                 |      | -0.4  | mA   |
|                 | Input Current                               |                                              | Α     |                 |      | -1.6  | IIIA |
| Ios             | Short Circuit Output Current                | V <sub>CC</sub> = Max (Note 7)               | •     | -20             |      | -100  | mA   |
| I <sub>CC</sub> | Supply Current                              | V <sub>CC</sub> = Max (Note 8)               |       |                 | 15   | 26    | mA   |


Note 6: All typicals are at  $V_{CC} = 5V$ ,  $T_A = 25$ °C.

Note 7: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 8: log is measured with all outputs open, both CLEAR inputs grounded following momentary connection to 4.5V, and all other inputs grounded.

# Switching Characteristics at $V_{CC} = 5 V$ and $T_A = 25 ^{\circ} \text{C}$

| Symbol           | Parameter                                          |                             | $R_L = 2 k\Omega$      |     |                        |     |       |
|------------------|----------------------------------------------------|-----------------------------|------------------------|-----|------------------------|-----|-------|
|                  |                                                    | From (Input)<br>To (Output) | C <sub>L</sub> = 15 pF |     | C <sub>L</sub> = 50 pF |     | Units |
|                  |                                                    |                             | Min                    | Max | Min                    | Max | 1     |
| f <sub>MAX</sub> | Maximum Clock Frequency                            | A to Q <sub>A</sub>         | 25                     |     | 20                     |     | MHz   |
| t <sub>PLH</sub> | Propagation Delay Time<br>LOW-to-HIGH Level Output | A to Q <sub>A</sub>         |                        | 20  |                        | 24  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time<br>HIGH-to-LOW Level Output | A to Q <sub>A</sub>         |                        | 20  |                        | 30  | ns    |
| t <sub>PLH</sub> | Propagation Delay Time<br>LOW-to-HIGH Level Output | A to Q <sub>D</sub>         |                        | 60  |                        | 87  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time<br>HIGH-to-LOW Level Output | A to Q <sub>D</sub>         |                        | 60  |                        | 87  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time<br>HIGH-to-LOW Level Output | Clear to Any Q              |                        | 39  |                        | 45  | ns    |



14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A

#### Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.770 (18.80 - 19.56)0.090 (2.286) 14 13 12 14 13 12 11 10 9 8 INDEX AREA 0.250 ± 0.010 (6.350 ± 0.254) PIN NO. 1 PIN NO. 1 IDENT 1 2 3 4 5 6 7 1 2 3 $\frac{0.092}{(2.337)}$ DIA $\frac{0.030}{(0.762)}$ MAX OPTION 1 OPTION 02 $\frac{0.135 \pm 0.005}{(3.429 \pm 0.127)}$ 0.300 - 0.320 $\frac{0.620 - 8.128}{(7.620 - 8.128)}$ 0.060 0.145 - 0.2004° TYP Optional (1.651) (3.683 - 5.080) $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 0.020 (0.508) 0.125 - 0.150 $0.075 \pm 0.015$ $\overline{(3.175 - 3.810)}$ $(1.905 \pm 0.381)$ (7.112) MIN 0.014 - 0.0230.100 ± 0.010 (2.540 ± 0.254) (0.356 - 0.584)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

 $\frac{0.050 \pm 0.010}{(1.270 - 0.254)}$  TYP

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

0.325 <sup>+0.040</sup> -0.015 8.255 + 1.016

N144 (REV.F)

www.fairchildsemi.com