imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

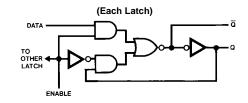
FAIRCHILD

SEMICONDUCTOR

DM74LS75 Quad Latch

General Description

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable is HIGH, and the Q output will follow the data input as long as the enable remains HIGH. When the enable goes LOW, the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the enable is permitted to go HIGH.


These latches feature complementary Q and \overline{Q} outputs from a 4-bit latch, and are available in 16-pin packages.

Ordering Code:

Order Number	Package Number	Package Description
DM74LS75M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS75N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

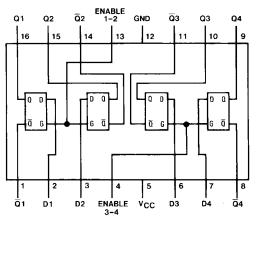
Logic Diagram

Function Table (Each Latch)

In	Inputs		puts	
D	Enable	Q	Q	
L	Н	L	Н	
н	н	н	L	
х	L	Q ₀	\overline{Q}_0	

H = HIGH Level L = LOW Level

L = LOW Level X = Don't Care


 $Q_0 =$ The Level of Q Before the HIGH-to-LOW Transition of ENABLE

August 1986

DM74LS75 Quad Latch

Connection Diagram

© 2000 Fairchild Semiconductor Corporation DS006374

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65°C to +150°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
/ _{IL}	LOW Level Input Voltage			0.8	V
ОН	HIGH Level Output Current			-0.4	mA
OL	LOW Level Output Current			8	mA
W	Enable Pulse Width (Note 5)	20			ns
SU	Setup Time (Note 5)	20			ns
Н	Hold Time (Note 5)	0			ns
Γ _A	Free Air Operating Temperature	0		70	°C

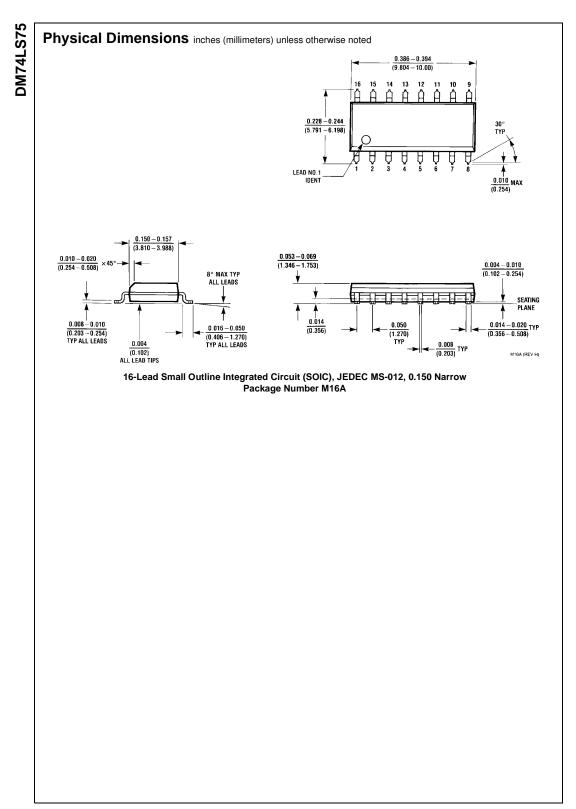
Electrical Characteristics

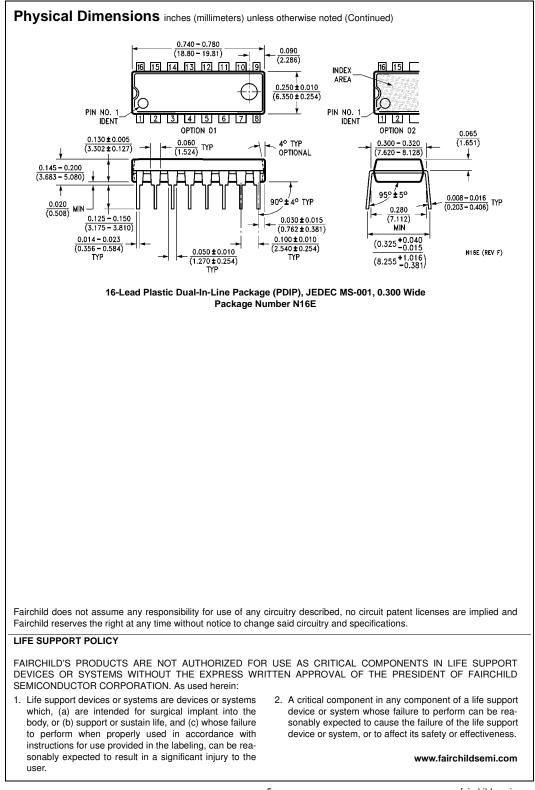
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Condition	IS	Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$		2.7	3.5		V
V _{OL}	LOW Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IL} = Max, V_{IH} = Min$			0.35	0.5	v
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$			0.25	0.4	
l	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	D			0.1	mA
	Input Voltage		Enable			0.4	- IIIA
I _{IH}	HIGH Level Input	$V_{CC} = Max, V_I = 2.7V$	D			20	μA
	Current		Enable			80	μΑ
IIL	LOW Level Input	$V_{CC} = Max, V_I = 0.4V$	D			-0.4	mA
	Current		Enable			-1.6	- IIIA
I _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 2)	•	-20		-100	mA
I _{CC}	Supply Current	V _{CC} = Max (Note 3)			6.3	12	mA

Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.


Note 4: I_{CC} is measured with all outputs open and all inputs grounded.


Note 5: $T_A=25^\circ C$ and $V_{CC}=5V.$

Switching Characteristics

	Parameter	From (Input) To (Output)	$R_L = 2 k\Omega$				
Symbol			C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	D to Q		27		30	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	D to Q		17		25	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	D to \overline{Q}		20		25	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	D to \overline{Q}		15		20	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Q		27		30	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Enable to Q		25		30	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Q		30		30	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Enable to \overline{Q}		15		20	ns

DM74LS75

DM74LS75 Quad Latch

5