imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

August 1986 Revised March 2000

SEMICONDUCTORTM

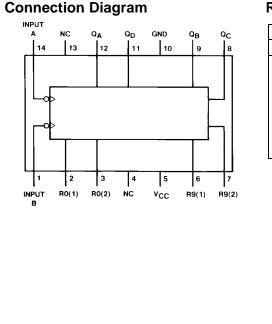
Decade and Binary Counters

General Description

FAIRCHILD

Each of these monolithic counters contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-five for the DM74LS90.

All of these counters have a gated zero reset and the DM74LS90 also has gated set-to-nine inputs for use in BCD nine's complement applications.


To use their maximum count length (decade or four bit binary), the B input is connected to the Q_A output. The input count pulses are applied to input A and the outputs are as described in the appropriate truth table. A symmetrical divide-by-ten count can be obtained from the DM74LS90 counters by connecting the Q_D output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output Q_A .

Features

- Typical power dissipation 45 mW
- Count frequency 42 MHz

Ordering Code:

Order Number	Package Number	Package Description
DM74LS90M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
DM74LS90N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Reset/Count Truth Table

Reset Inputs					Out	put		
R0(1) R0(2) R9(1) R9(2)					QC	Q_B	Q_A	
Н	Н	L	Х	L	L	L	L	
н	н	Х	L	L	L	L	L	
Х	Х	н	н	н	L	L	н	
Х	L	Х	L	COUNT				
L	Х	L	Х	COUNT				
L	Х	Х	L	COUNT				
Х	L	L	Х		COL	JNT		

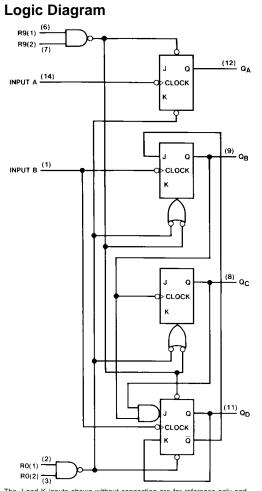
© 2000 Fairchild Semiconductor Corporation DS006381

www.fairchildsemi.com

DM74LS90

F	Function Tables								
	BCD Count Sequence (Note 1)								
ſ	Count		Out	tput					
		QD	Q _C	QB	Q _A				
Ī	0	L	L	L	L				
	1	L	L	L	Н				
	2	L	L	Н	L				
	3	L	L	Н	Н				
	4	L	Н	L	L				
	5	L	Н	L	Н				
	6	L	Н	Н	L				
	7	L	н	н	н				
	8	н	L	L	L				
	9	Н	L	L	Н				

Count	Output					
	Q _A	QD	Q _C	QB		
0	L	L	L	L		
1	L	L	L	н		
2	L	L	Н	L		
3	L	L	н	н		
4	L	н	L	L		
5	н	L	L	L		
6	н	L	L	н		
7	н	L	н	L		
8	н	L	н	н		
9	Н	Н	L	L		


Bi-Quinary (5-2) (Note 2)

H = HIGH LevelL = LOW LevelX = Don't Care

Note 1: Output Q_A is connected to input B for BCD count.

Note 2: Output Q_D is connected to input A for bi-quinary count.

Note 3: Output Q_A is connected to input B.

The J and K inputs shown without connection are for reference only and are functionally at a high level.

www.fairchildsemi.com

Absolute Maximum Ratings(Note 4)

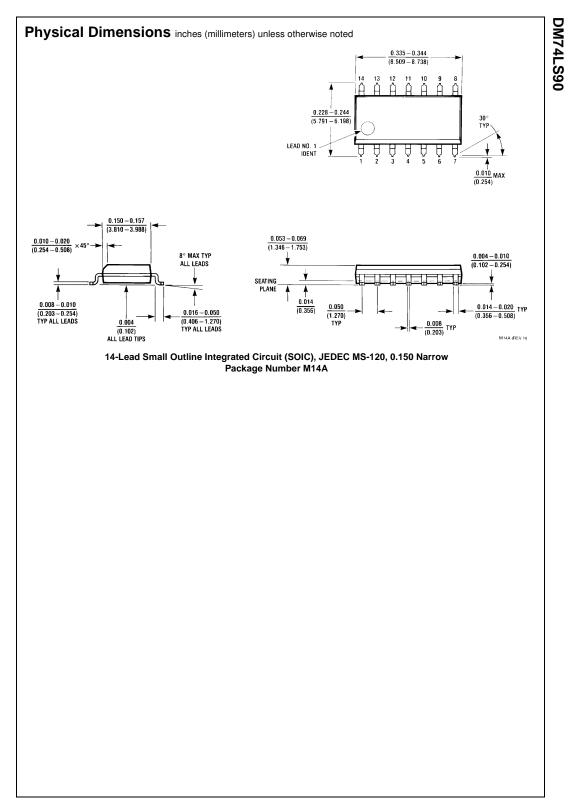
Supply Voltage	7V
Input Voltage (Reset)	7V
Input Voltage (A or B)	5.5V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$

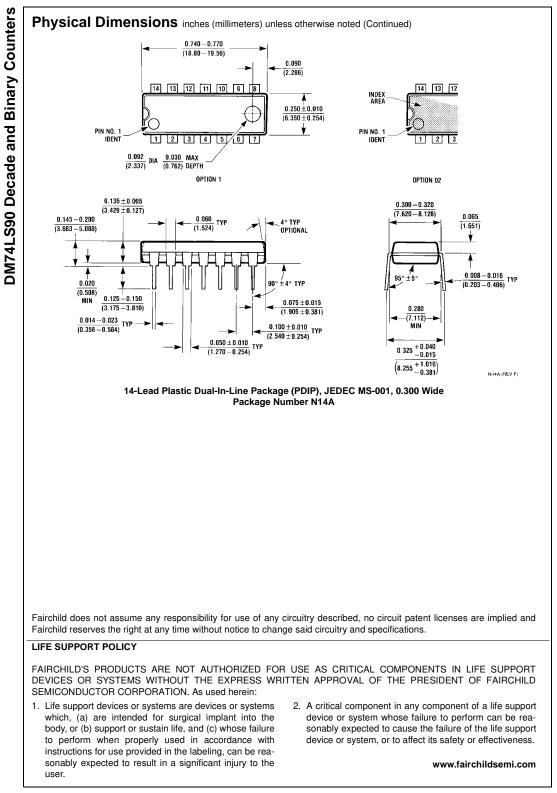
Note 4: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbo	ol P	arameter	Min	Nom	M	ax	Units
V _{CC}	Supply Voltage	Supply Voltage		5	5.	25	V
V _{IH}	HIGH Level Input Volt	HIGH Level Input Voltage					V
VIL	LOW Level Input Volta	LOW Level Input Voltage			0	.8	V
он	HIGH Level Output C	HIGH Level Output Current			-(0.4	mA
I _{OL}	LOW Level Output Cu	LOW Level Output Current				8	mA
fclk	Clock Frequency (Not	Clock Frequency (Note 5) A to Q _A			3	32	MHz
		B to Q _B	0		1	6	
f _{CLK}	Clock Frequency (Not	te 6) A to Q _A	0		2	20	MHz
		B to Q _B	0		1	0	
tw	Pulse Width (Note 5)	A	15				
		В	30				ns
		Reset	15				
w	Pulse Width (Note 6)	A	25				
		В	50				ns
		Reset	25				
REL	Reset Release Time (Note 5)	25	1			ns
t _{REL}	Reset Release Time (,	35				ns
		Free Air Operating Temperature				70	°C
Note 5: CL Note 6: CL Electi	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 50 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 25^{\circ}$	V _{CC} = 5V. V _{CC} = 5V.	0			<u> </u>	
Note 6: CL Election	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and Λ = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and Λ	V _{CC} = 5V. V _{CC} = 5V.	noted)	Min	Тур	Max	Units
Note 5: CL Note 6: CL Elections over recons Symbol	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 50 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 50 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$.	V _{CC} = 5V. V _{CC} = 5V. EICS erature range (unless otherwise Conditions	noted)	Min		Max	
Note 5: C _L Note 6: C _L Electi over recon Symbol	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 50 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 50 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$.	$V_{CC} = 5V.$ $V_{CC} = 5V.$ ECS erature range (unless otherwise Conditions $V_{CC} = Min, I_{I} = -18 mA$	noted)	Min	Тур		Units
Note 5: C _L Note 6: C _L Election over recom Symbol	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist mended operating free air tempore Parameter Input Clamp Voltage HIGH Level	$V_{CC} = 5V.$ $V_{CC} = 5V.$ Example 12 Second 12 Seco	noted)	Min 2.7	Тур	Max	
Note 5: C _L Note 6: C _L Electi over recom Symbol V _I V _{OH}	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 50 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 50 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 PF$, $R_A = 25^{\circ}C$ and $V_A = 100 PF$, $R_A = 100 P$	$\label{eq:loss} \begin{array}{c} V_{CC} = 5V. \\ V_{CC} = 5V. \end{array}$	noted)		Typ (Note 7)	Max	V
Note 5: C _L Note 6: C _L Electi over recom Symbol V ₁ V _{OH}	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 50 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 50 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 PF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 PF$, $R_A = 100 PF$	$\label{eq:loss} \begin{array}{c} \mathcal{V}_{CC} = 5V. \\ \mathcal{V}_{CC} = 5V. \end{array}$	noted)		Typ (Note 7) 3.4	Max -1.5	V V
Note 5: C _L Note 6: C _L Electi over recom Symbol V ₁ V _{OH}	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 50 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 50 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 PF$, $R_A = 25^{\circ}C$ and $V_A = 100 PF$, $R_A = 100 P$	$\label{eq:loss} \begin{array}{c} V_{CC} = 5V. \\ V_{CC} = 5V. \end{array}$	noted) s		Typ (Note 7)	Max	V
Note 5: С _L Note 6: С _L Electi Symbol V ₁ V _{0H}	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 50 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 50 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 PF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 PF$, $R_A = 100 PF$	$\label{eq:loss} \begin{split} & V_{CC} = 5V. \\ & V_{CC} = 5V. \\ & \text{Lics} \\ \hline \\ & \text{erature range (unless otherwise} \\ & & \text{Conditions} \\ & & V_{CC} = \text{Min}, \ I_{I} = -18 \text{ mA} \\ & & V_{CC} = \text{Min}, \ I_{OH} = \text{Max} \\ & & V_{IL} = \text{Max}, \ V_{IH} = \text{Min} \\ & & V_{CC} = \text{Min}, \ I_{OL} = \text{Max} \\ & & V_{IL} = \text{Max}, \ V_{IH} = \text{Min} \\ & & I_{OL} = 4 \text{ mA}, \ V_{CC} = \text{Min} \end{split}$	noted) s		Typ (Note 7) 3.4 0.35	Max -1.5 0.5	V V
Note 5: C _L Note 6: C _L Electi over recom Symbol V ₁ V _{0H}	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 50 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 50 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_A = 100 pF$, $R_L = 2 k\Omega$, $R_A = 100 pF$, $R_A =$	$\label{eq:loss} \begin{array}{c} V_{CC} = 5V. \\ V_{CC} = 5V. \end{array}$	noted) s (Note 8)		Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4	V V
Note 5: CL Note 6: CL Election	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist mended operating free air temper Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level Output Voltage Input Current @ Max		noted) s (Note 8) Reset		Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4 0.1	V V V
Note 5: C _L Note 6: C _L Electi over recom Symbol V ₁ V _{0H}	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist mended operating free air temper Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level Output Voltage Input Current @ Max	$eq:linear_line$	noted) s (Note 8) Reset A		Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4 0.1 0.2	V V V
Note 5: С _L Note 6: С _L Electi over recon Symbol V ₁ V _{OH}	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist mended operating free air tempore Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level Output Voltage Input Current @ Max Input Voltage		noted) s (Note 8) Reset A B Reset A		Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4 0.1 0.2 0.4 20 40	V V V
Note 5: С _L Note 6: С _L Electi Symbol V ₁ V _{0H} V _{0L}	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist mended operating free air temper Parameter Input Clamp Voltage HIGH Level Output Voltage Input Voltage Input Current @ Max Input Voltage HIGH Level Input Current		noted) s (Note 8) Reset A B Reset A B Reset A B B B B B B B B B B B B B B B B B B		Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4 0.1 0.2 0.4 20 40 80	V V V mA
Note 5: С _L Note 6: С _L Electi Symbol V ₁ V _{OH}	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist mended operating free air temper Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level Output Voltage Input Current @ Max Input Voltage HIGH Level Input Current LOW Level		noted) s (Note 8) Reset A B Reset A B Reset A B Reset		Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4 0.1 0.2 0.4 20 40 80 -0.4	V V ν mA μA
Note 5: С _L Note 6: С _L Electi Symbol V ₁ V _{OH} V _{OL}	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist mended operating free air temper Parameter Input Clamp Voltage HIGH Level Output Voltage Input Voltage Input Current @ Max Input Voltage HIGH Level Input Current		noted) s (Note 8) Reset A B Reset A B Reset A B Reset A		Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4 0.1 0.2 0.4 20 40 80 -0.4 -2.4	V V V mA
Note 5: С _L Note 6: С _L Electi Symbol V ₁ V _{OH} V _{OL}	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist mended operating free air temper Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level Output Voltage Input Current @ Max Input Voltage HIGH Level Input Current LOW Level Input Current	$eq:linear_line$	noted) s (Note 8) Reset A B Reset A B Reset A B Reset	2.7	Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4 0.1 0.2 0.4 20 40 80 -0.4 -2.4 -3.2	V V V mA A MA
Note 5: С _L Note 6: С _L Electi Symbol V ₁ V _{OH} V _{OL}	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist mended operating free air temper Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level Output Voltage Input Current @ Max Input Voltage HIGH Level Input Current LOW Level		noted) s (Note 8) Reset A B Reset A B Reset A B Reset A		Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4 0.1 0.2 0.4 20 40 80 -0.4 -2.4	ν ν μΑ

DM74LS90


DM74LS90


 $\label{eq:continued} \begin{array}{l} \textbf{Electrical Characteristics} & (Continued) \\ \textbf{Note 8: } Q_A \mbox{ outputs are tested at } I_{OL} = Max \mbox{ plus the limit value of } I_{IL} \mbox{ for the B input. This permits driving the B input while maintaining full fan-out capability.} \end{array}$ Note 9: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 10: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V and all other inputs grounded.

Switching Characteristics at V_{CC} = 5V and T_{A} = 25°C

		From (Input)	$R_L = 2 k\Omega$				
Symbol	Parameter	To (Output)	C _L = 15 pF C _L = 50			50 pF	Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock	A to Q _A	32		20		MHz
	Frequency	B to Q _B	16		10		MHZ
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	A to Q _A		16		20	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	A to Q _A		18		24	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	A to Q _D		48		52	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	A to Q _D		50		60	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	B to Q _B		16		23	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	B to Q _B		21		30	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	B to Q _C		32		37	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	B to Q _C		35		44	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	B to Q _D		32		36	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	B to Q _D		35		44	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	SET-9 to Q _A , Q _D		30		35	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	SET-9 to Q_B , Q_C		40		48	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	SET-0 to Any Q		40		52	ns

www.fairchildsemi.com