

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

August 1986 Revised May 2000

DM74S373 • DM74S374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

General Description

These 8-bit registers feature totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

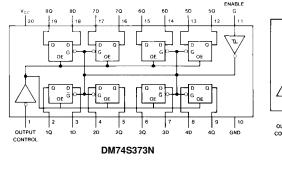
The eight latches of the DM74S373 are transparent D-type latches meaning that while the enable (G) is HIGH the Q outputs will follow the data (D) inputs. When the enable is taken LOW the output will be latched at the level of the data that was set up.

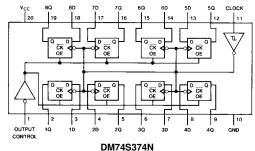
The eight flip-flops of the DM74S374 are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.

Schmitt-trigger buffered inputs at the enable/clock lines simplify system design as ac and dc noise rejection is improved by typically 400 mV due to the input hysteresis. A buffered output control input can be used to place the eight outputs in either a normal logic state (HIGH or LOW logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.

The output control does not affect the internal operation of the latches or flip-flops. That is, the old data can be retained or new data can be entered even while the outputs are OFF.

Features


- Choice of 8 latches or 8 D-type flip-flops in a single package
- 3-STATE bus-driving outputs
- Full parallel-access for loading
- Buffered control inputs
- P-N-P input reduce D-C loading on data lines


Ordering Code:

Order Number	Package Number	Package Description
DM74S373WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
DM74S373N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
DM74S374WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
DM74S374N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams

Truth Tables

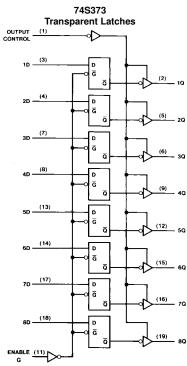
DM74S373

Output	Enable	D	Output
Control	G		
L	Н	Н	Н
L	Н	L	L
L	L	Χ	Q_0
Н	Х	Χ	Z

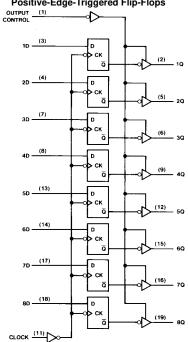
DM/453/4	١
----------	---

Output	Clock	D	Output
Control			
L	1	Н	Н
L	1	L	L
L	L	Χ	Q_0
Н	X	Χ	Z

- H = HIGH Level (Steady State) L = LOW Level (Steady State) X = Don't Care


- X = Boint Gare

 Z = High Impedance State


 ↑ = Transition from LOW-to-HIGH level,

 Q₀ = The level of the output before steady-state input conditions were established.

Logic Diagrams

74S374 Positive-Edge-Triggered Flip-Flops

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V Input Voltage 5.5V Operating Free Air Temperature Range $0^{\circ}\text{C to } +70^{\circ}\text{C}$ Storage Temperature Range $-65^{\circ}\text{C to } +150^{\circ}\text{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DM74S373 Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units	
V _{CC}	Supply Voltage		4.75	5	5.25	V	
V _{IH}	HIGH Level Input Voltage	HIGH Level Input Voltage				V	
V _{IL}	LOW Level Input Voltage	LOW Level Input Voltage			0.8	V	
I _{OH}	HIGH Level Output Current	HIGH Level Output Current			-6.5	mA	
I _{OL}	LOW Level Output Current				20	mA	
t _W	Pulse Width (Note 2)	Enable HIGH	6				
		Enable LOW	7.3			ns	
t _W	Pulse Width (Note 3)	Enable HIGH	15			ns	
		Enable LOW	15			ns	
t _{SU}	Data Setup Time (Note 4)(Note 5)		0↓			ns	
t _H	Data Hold Time (Note 4)(Note 5)		10↓			ns	
T _A	Free Air Operating Temperature		0		70	°C	

Note 2: $C_L = 15$ pF, $R_L = 280\Omega$, $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Note 3: $C_L = 50$ pF and $R_L = 280\Omega$, $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Note 4: The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference.

Note 5: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

DM74S373 Electrical Characteristics

over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter		Conditions	Min	Typ (Note 6)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I =$	−18 mA			-1.2	V
V _{OH}	HIGH Level	$V_{CC} = Min, I_{OH}$	= Max	2.4	3.2		V
	Output Voltage	$V_{IL} = Max, \ V_{IH}$	= Min	2.4	3.2		V
V _{OL}	LOW Level	$V_{CC} = Min, I_{OL}$	= Max			0.5	V
	Output Voltage	$V_{IH} = Min, V_{IL} =$	= Max			0.5	V
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I$	V _{CC} = Max, V _I = 5.5V			1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I$	$V_{CC} = Max, V_I = 2.7V$			50	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I$	$V_{CC} = Max, V_I = 0.5V$			-250	μΑ
l _{OZH}	Off-State Output Current with	$V_{CC} = Max, V_{C}$) = 2.4V			50	^
	HIGH Level Output Voltage Applied	$V_{IH} = Min, V_{IL} =$	= Max			50	μА
l _{OZL}	Off-State Output Current with	$V_{CC} = Max, V_{C}$) = 0.5V				^
	LOW Level Output Voltage Applied	$V_{IH} = Min, V_{IL} = Max$				-50	μА
los	Short Circuit Output Current	V _{CC} = Max (Note 7)		-40		-100	mA
Icc	Supply Current	V _{CC} = Max	Outputs HIGH or LOW		105	160	m 1
			Outputs Disabled	İ		190	mA

Note 6: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 7: Not more than one output should be shorted at a time, and the duration should not exceed one second.

DM74S373 Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

				Units			
Symbol			C _L = 15 pF		C _L = 50 pF		
		To (Output)	Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	Data to Any O		12		14	ns
	LOW-to-HIGH Level Output	Data to Any Q Data to Any Q Enable to Any Q					110
t _{PHL}	Propagation Delay Time	Data to Any O		12		16	ns
	HIGH-to-LOW Level Output	Data to Any Q		12		10	113
t _{PLH}	Propagation Delay Time	Enable to Any O		14		14	ns
	LOW-to-HIGH Level Output	Enable to Any Q		14		1-7	115
t _{PHL}	Propagation Delay Time	Enable to Any Q		18		21	ns
	HIGH-to-LOW Level Output			10			113
t _{PZH}	Enable Time to	Output Control to Any Q		15		17	ns
	HIGH Level Output	Output Control to Arry Q		10		.,	110
t _{PZL}	Output Enable Time to	Output Control to Any Q		18		23	ns
	LOW Level Output	Culput Control to 7 th y		10		20	110
t _{PHZ}	Output Disable Time to	Output Control to Any Q		9			ns
	HIGH Level Output (Note 8)	Culput Control to 7 th y		Ů			110
t _{PLZ}	Output Disable Time to	Output Control to Any Q		12			ns
	LOW Level Output (Note 8)	Sulput Somilor to Arry Q		12			113

Note 8: C_L = 5 pF

DM74S374 Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units	
V _{CC}	Supply Voltage		4.75	5	5.25	V	
V _{IH}	HIGH Level Input Vo	oltage				V	
V _{IL}	LOW Level Input Vo	Itage			0.8	V	
I _{OH}	HIGH Level Output	HIGH Level Output Current			-6.5	mA	
I _{OL}	LOW Level Output Current				20	mA	
f _{CLK}	Clock Frequency (Note 9)		0		75	MHz	
f _{CLK}	Clock Frequency (Note 10)		0		75	MHz	
t _W	Pulse Width	Clock HIGH	6				
	(Note 9)	Clock LOW	7.3				
	Pulse Width	Clock HIGH	15			ns	
		(Note 10) Clock LOW		15			
t _{SU}	Data Setup Time (N	ote 11)(Note 12)	5↑			ns	
t _H	Data Hold Time (No	te 11)(Note 12)	2↑			ns	
T _A	Free Air Operating	emperature	0		70	°C	

Note 9: $C_L = 15$ pF, $R_L = 280\Omega$, $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Note 10: C_L = 50 pF, R_L = 280 $\!\Omega,\, T_A$ = 25 $^{\circ}C$ and V_{CC} = 5V.

Note 11: The symbol $(\hat{\ })$ indicates the rising edge of the clock pulse is used for reference.

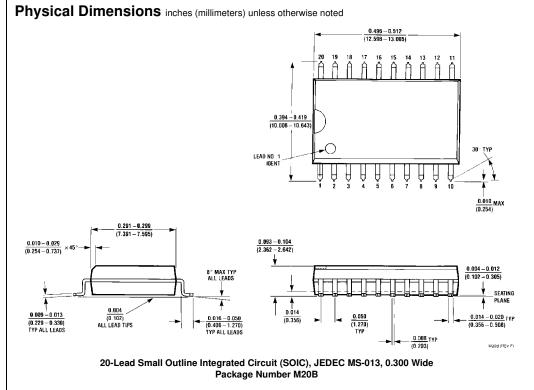
Note 12: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

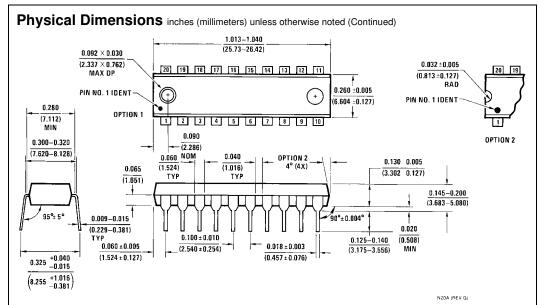
DM74S374 Electrical Characteristics

over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Condi	itions	Min	Typ (Note 13)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 r$	mA			-1.2	V
V _{OH}	HIGH Level	V _{CC} = Min, I _{OH} = Ma	ax	2.4	3.2		V
	Output Voltage	$V_{IL} = Max, V_{IH} = Mir$	ı	2.4	0.2		•
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Ma	ıx			0.5	V
	Output Voltage	$V_{IH} = Min, V_{IL} = Max$	<			0.5	•
I _I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5$	V			1	mA
I _H	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7$	V			50	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.5$	V			-250	μΑ
I _{OZH}	Off-State Output Current with	$V_{CC} = Max, V_O = 2.4$	4V			50	μΑ
	HIGH Level Output Voltage Applied	$V_{IH} = Min, V_{IL} = Max$	<				
I _{OZL}	Off-State Output Current with	$V_{CC} = Max, V_O = 0.5$	5V			-50	μА
	LOW Level Output Voltage Applied	$V_{IH} = Min, V_{IL} = Max$	<			-30	μΛ
Ios	Short Circuit Output Current	V _{CC} = Max (Note 14	·)	-40		-100	mA
I _{CC}	Supply Current	V _{CC} = Max	Outputs HIGH			110	
			Outputs LOW		90	140	mA
			Outputs Disabled			160	

Note 13: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.


Note 14: Not more than one output should be shorted at a time, and the duration should not exceed one second.


DM74S374 Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

	Parameter						
Symbol		From (Input)	C _L = 15 pF		C _L = 50 pF		Units
		To (Output)	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency			75		75	MHz
t _{PLH}	Propagation Delay Time	Clock to Any Q		15		15	ns
	LOW-to-HIGH Level Output	Clock to Ally Q	15	13		13	115
t _{PHL}	Propagation Delay Time	Clock to Any Q		17		20	ns
	HIGH-to-LOW Level Output	Clock to Arry Q	''		20		115
t _{PZH}	Output Enable Time to	Output Control to Any Q		15		17	ns
	HIGH Level Output	Output Control to Arry Q		10		17	115
t _{PZL}	Output Enable Time to	Output Control to Any Q		18		23	ns
	LOW Level Output	Output Control to Arry Q		10			115
t _{PHZ}	Output Disable Time from	Output Control to Any Q		9			ns
	HIGH Level Output (Note 15)	Output Control to Arry Q		9			115
t _{PLZ}	Output Disable Time from	Output Control to Any Q		12			ns
	LOW Level Output (Note 15)	Output Control to Arry Q		12			115

Note 15: C_L = 5 pF

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com