

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

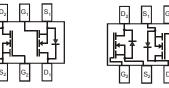
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DUAL N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR

Features

- Dual N-Channel MOSFET
- Low On-Resistance
- Very Low Gate Threshold Voltage
- Low Input Capacitance
- · Fast Switching Speed
- Low Input/Output Leakage
- Ultra-Small Surface Mount Package
- Lead Free By Design/RoHS Compliant (Note 2)
- "Green" Device (Note 3)



TOP VIEW

SOT-563

Mechanical Data

- Case: SOT-563
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminal Connections: See Diagram
- Terminals: Finish Matte Tin annealed over Copper leadframe. Solderable per MIL-STD-202, Method 208
- Marking Information: See Page 3
- Ordering Information: See Page 3
- Weight: 0.006 grams (approximate)

DMN5L06V (KAH Marking Code) (K

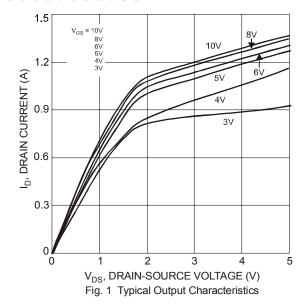
DMN5L06VA (KAG Marking Code)

Maximum Ratings @T_A = 25°C unless otherwise specified

Characterist	ic	Symbol	Value	Units	
Drain-Source Voltage		V_{DSS}	50	V	
Drain-Gate Voltage R _{GS} ≤ 1.0MΩ		V_{DGR}	50	V	
Gate-Source Voltage	Continuous Pulsed	V _{GSS}	±20 ±40	V	
Drain Current (Note 1)	Continuous	I _D	280	mA	
Drain Current (Note 1)	Pulsed	I _{DM}	1.5	A	

Thermal Characteristics @TA = 25°C unless otherwise specified

Characteristic	Symbol	Value	Units
Total Power Dissipation (Note 1)	Pd	150	mW
Thermal Resistance, Junction to Ambient (Note 1)	$R_{ heta JA}$	833	°C/W
Operating and Storage Temperature Range	T _j , T _{STG}	-55 to +150	°C


Electrical Characteristics @TA = 25°C unless otherwise specified

Characteristic		Symbol	Min	qvT	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 4)							
Drain-Source Breakdown Voltage		BV _{DSS}	50	_	_	V	$V_{GS} = 0V, I_D = 10\mu A$
Zero Gate Voltage Drain Current	@ T _C = 25°C @ T _C = 125°C	I _{DSS}	_	_	0.1 500	μA	V _{DS} = 50V, V _{GS} = 0V
Gate-Body Leakage		I _{GSS}	_	_	±20	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage		$V_{GS(th)}$	0.49		1.2	>	$V_{DS} = V_{GS}, I_D = 250 \mu A$
Static Drain-Source On-Resistance		R _{DS} (ON)		1.6 2.2	3 4	Ω	$V_{GS} = 2.7V$, $I_D = 0.2A$, $V_{GS} = 1.8V$, $I_D = 50mA$
On-State Drain Current		I _{D(ON)}	0.5	1.0	_	Α	V _{GS} = 10V, V _{DS} = 7.5V
Forward Transconductance		Y _{fs}	200	_	_	mS	V _{DS} =10V, I _D = 0.2A
Source-Drain Diode Forward Voltage		V_{SD}	0.5	_	1.4	V	V _{GS} = 0V _, I _S = 115mA
DYNAMIC CHARACTERISTICS							
Input Capacitance		C _{iss}	_		50	рF	
Output Capacitance		Coss	_	_	25	pF	$V_{DS} = 25V, V_{GS} = 0V, f = 1.0MHz$
Reverse Transfer Capacitance		C _{rss}	_	_	5.0	pF	

Notes:

- 1. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
- 2. No purposefully added lead.
- 3. Diodes Inc's "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
- 4. Short duration pulse test used to minimize self-heating effect.

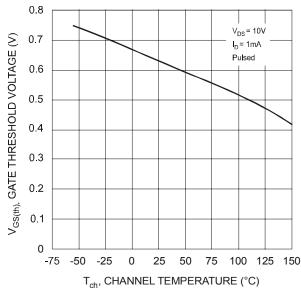
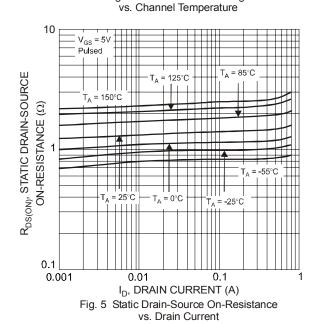



Fig. 3 Gate Threshold Voltage

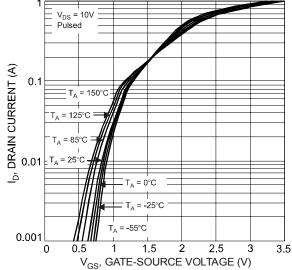


Fig. 2 Typical Transfer Characteristics

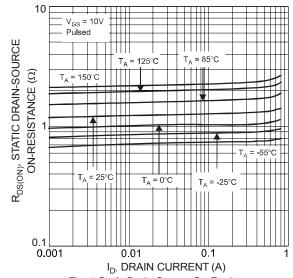


Fig. 4 Static Drain-Source On-Resistance vs. Drain Current

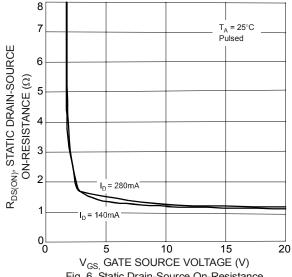


Fig. 6 Static Drain-Source On-Resistance vs. Gate-Source Voltage

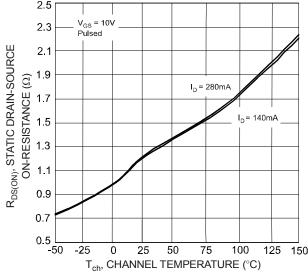
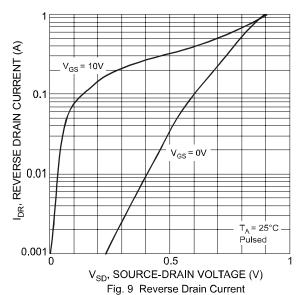
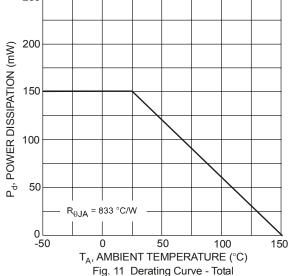




Fig. 7 Static Drain-Source On-State Resistance vs. Channel Temperature

250 200

vs. Source-Drain Voltage

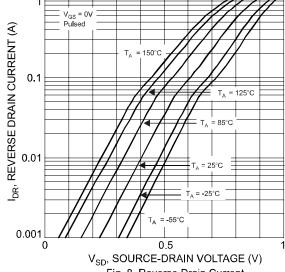


Fig. 8 Reverse Drain Current vs. Source-Drain Voltage

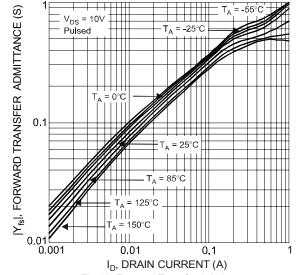
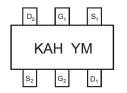


Fig. 10 Forward Transfer Admittance vs. Drain Current



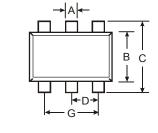
Ordering Information (Note 5)

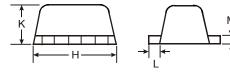
Part Number	Case	Packaging
DMN5L06V-7	SOT-563	3000/Tape & Reel
DMN5L06VA-7	SOT-563	3000/Tape & Reel

Notes: 5. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information (Note 6)

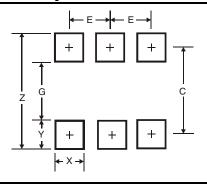
KAH = DMN5L06V Product Type Marking Code (See Note 6) YM = Date Code Marking Y = Year ex: S = 2005 M = Month ex: 9 = September


KAG = DMN5L06VA Product Type Marking Code(See Note 6) YM = Date Code Marking Y = Year ex: S = 2005 M = Month ex: 9 = September


Notes: 6. Package is non-polarized. Parts may be on reel in orientation illustrated, 180° rotated, or mixed (both ways).

Date Code Kev

Year	2005		2006	2007		2008	2009)	2010	2011		2012
Code	S		T	U		V	W		Χ	Υ		Z
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	4	_	•	4	-	6	7	0	0	^	N.I.	7


Package Outline Dimensions

SOT-563						
Dim	Min Max Typ					
Α	0.15	0.30	0.20			
В	1.10	1.25	1.20			
С	1.55 1.70 1.60					
D	0.50					
G	0.90 1.10 1.00					
Н	1.50	1.70	1.60			
K	0.55	0.60	0.60			
١	0.10	0.30	0.20			
М	0.10	0.18	0.11			
All Dimensions in mm						

Suggested Pad Layout

Dimensions	Value (in mm)
Z	2.2
G	1.2
X	0.375
Υ	0.5
С	1.7
E	0.5

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.