imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Supertex inc.

N-Channel Depletion-Mode Vertical DMOS FET

Features

- High input impedance
- Low input capacitance
- Fast switching speeds
- Low on-resistance
- Free from secondary breakdown
- Low input and output leakage

Applications

- Normally-on switches
- Solid state relays
- Converters
- Linear amplifiers
- Constant current sources
- Power supply circuits
- Telecom

Ordering Information

Part Number	Package Options	Packing
SN3545N3-G	TO-92	1000/Bag
SN3545N3-G P002	TO-92	2000/Reel
SN3545N3-G P003	TO-92	2000/Reel
SN3545N3-G P005	TO-92	2000/Reel
SN3545N3-G P013	TO-92	2000/Reel
SN3545N3-G P014	TO-92	2000/Reel
SN3545N8-G	TO-243AA (SOT-89)	2000/Reel

-G denotes a lead (Pb)-free / RoHS compliant package.

Contact factory for Wafer / Die availablity.

Devices in Wafer / Die form are lead (Pb)-free / RoHS compliant.

Refer to 'P0xx' Tape & Reel Specs for P002, P003, P005, P013, and P014 TO-92 Taping Specifications and Winding Styles

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	BV _{DSX}
Drain-to-gate voltage	BV _{DGX}
Gate-to-source voltage	±20V
Operating and storage temperature	-55°C to +150°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

General Description

These depletion-mode (normally-on) transistors utilize an advanced vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Product Summary

$\mathbf{BV}_{\mathrm{DSX}}/\mathbf{BV}_{\mathrm{DGX}}$	R _{DS(ON)} (max)	l _{DSS} (min)	
450V	20Ω	200mA	

Pin Configuration

3545	WW = Week Sealed
YYWW	= "Green" Packaging

Package may or may not include the following marks: Si or 🎲

TO-92

	DN5MW	W = Code for week sealed = "Green" Packaging
Packag	e may or may i	not include the following marks: Si or 💮

TO-243AA (SOT-89)

Typical Thermal Resistance

Package	$\boldsymbol{\theta}_{ja}$
TO-92	132°C/W
TO-243AA (SOT-89)	133°C/W

DN3545

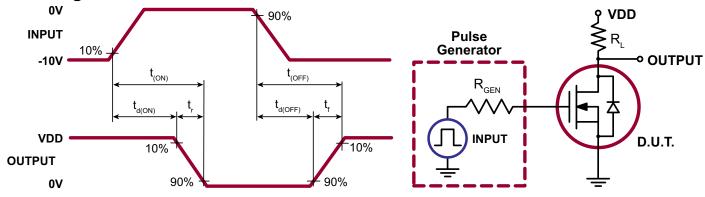
Thermal Characteristics

Package	I _D II (continuous) [†] (pulsed)		Power Dissipation @T _A = 25°C		I _{DRM}
T0-92 (D-PAK)	136mA	1600mA	0.74W	136mA	1600mA
TO-243AA	200mA	300mA	1.6W [‡]	200mA	300mA

Notes:

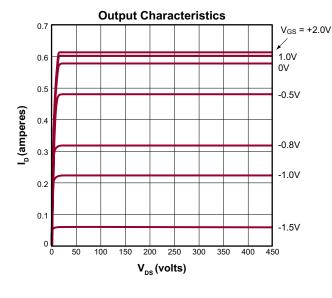
 I_{D} (continuous) is limited by max rated T_{j} . Mounted on FR4 board, 25mm x 25mm x 1.57mm. † ‡

Electrical Characteristics (T_A = 25°C unless otherwise specified)

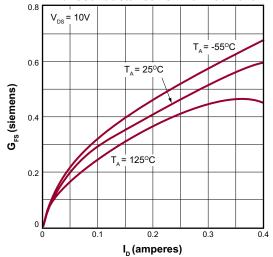

Sym	Parameter	Min	Тур	Max	Units	Conditions			
BV_{DSX}	Drain-to-source breakdown voltage	450	-	-	V	V _{GS} = -5.0V, I _D = 100µA			
$V_{GS(OFF)}$	Gate-to-source off voltage	-1.5	-	-3.5	V	V _{DS} = 25V, Ι _D = 10μΑ			
$\Delta V_{GS(OFF)}$	Change in $V_{GS(OFF)}$ with temperature	-	-	-4.5	mV/ºC	V _{DS} = 25V, Ι _D = 10μΑ			
I _{GSS}	Gate body leakage current	-	-	100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$			
		-	-	1.0	μA	V_{GS} = -5.0V, V_{DS} = Max Rating			
I _{D(OFF)}	drain-to-source leakage current	-	-	1.0	mA	$V_{GS} = -5.0V, V_{DS} = 0.8Max Rating T_{A} = 125^{\circ}C$			
I _{DSS}	Saturated drain-to-source current	200	-	-	mA	V _{GS} = 0V, V _{DS} = 15V			
R _{DS(ON)}	Static drain-to-source on-state resistance	-	-	20	Ω	V _{GS} = 0V, I _D = 150mA			
$\Delta R_{DS(ON)}$	Change in R _{DS(ON)} with temperature	-	-	1.1	%/°C	V _{GS} = 0V, I _D = 150mA			
G _{FS}	Forward transductance	150	-	-	mmho	I _D = 100mA, V _{DS} = 10V			
C _{ISS}	Input capacitance	-	-	360					
C _{oss}	Common source output capacitance	-	-	40	pF	V _{GS} = -5.0V, V _{DS} = 25V, f = 1.0MHz			
$C_{_{RSS}}$	Reverse transfer capacitance	-	-	15		1 1.000112			
t _{d(ON)}	Turn-on delay time	-	-	20					
t _r	Rise time	-	-	30		V _{DD} = 25V, I _D = 150mA,			
t _{d(OFF)}	Turn-off delay time Fall time		-	30	ns	$R_{GEN} = 25\Omega, V_{GS} = 0V \text{ to } -10V$			
t _r			-	40					
V_{SD}	Diode forward voltage drop		-	1.8	V	V _{GS} = -5.0V, I _{SD} = 150mA			
t _{rr}	Reverse recovery time	-	800	-	ns	V _{GS} = -5.0V, I _{SD} = 150mA			

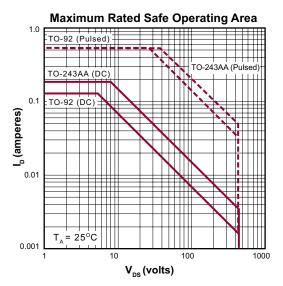
Notes:

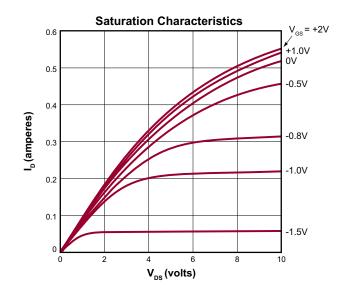
All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300µs pulse, 2% duty cycle.) 1.

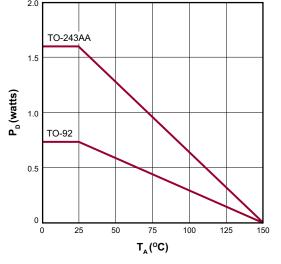

All A.C. parameters sample tested. 2.

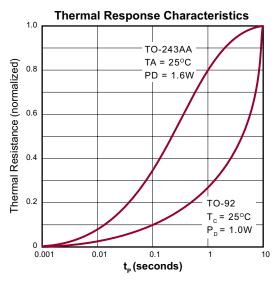
Switching Waveforms and Test Circuit

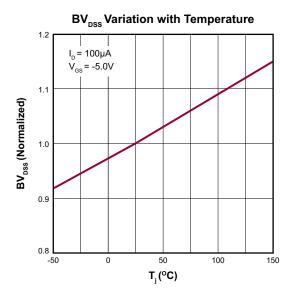


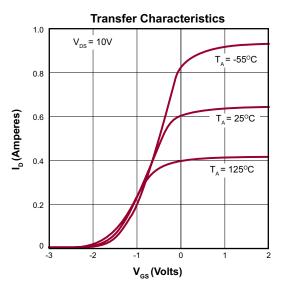

DN3545

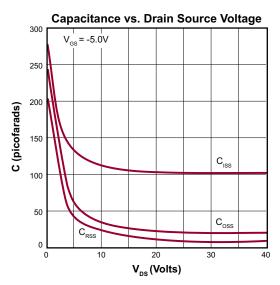

Typical Performance Curves

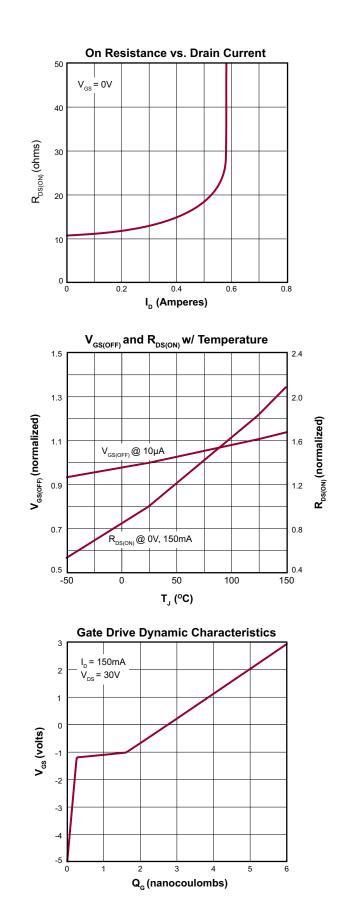

Transconductance vs. Drain Current



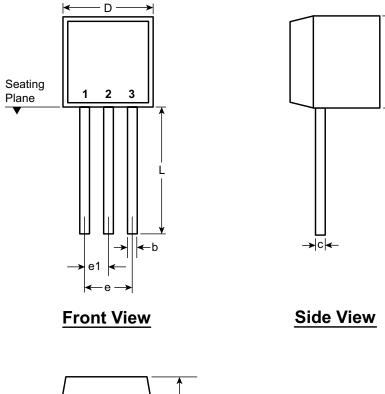

Power Dissipation vs. Ambient Temperature

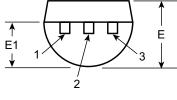





DN3545

Typical Performance Curves (cont.)





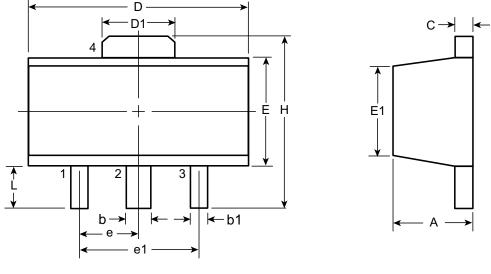
Α

3-Lead TO-92 Package Outline (N3)

Bottom View

Symb	ol	Α	b	С	D	E	E1	е	e1	L
Dimensions (inches)	MIN	.170	.014†	.014†	.175	.125	.080	.095	.045	.500
	NOM	-	-	-	-	-	-	-	-	-
	MAX	.210	.022†	.022†	.205	.165	.105	.105	.055	.610*

JEDEC Registration TO-92.


* This dimension is not specified in the JEDEC drawing.

† This dimension differs from the JEDEC drawing.

Drawings not to scale.

Supertex Doc.#: DSPD-3TO92N3, Version E041009.

3-Lead TO-243AA (SOT-89) Package Outline (N8)

Top View

Side View

Symbo	ol	Α	b	b1	С	D	D1	E	E1	е	e1	Н	L
	MIN	1.40	0.44	0.36	0.35	4.40	1.62	2.29	2.00†			3.94	0.73†
Dimensions (mm)	NOM	-	-	-	-	-	-	-	-		1.50 3.00 BSC BSC	-	-
()	MAX	1.60	0.56	0.48	0.44	4.60	1.83	2.60	2.29			4.25	1.20

JEDEC Registration TO-243, Variation AA, Issue C, July 1986.

† This dimension differs from the JEDEC drawing

Drawings not to scale.

Supertex Doc. #: DSPD-3TO243AAN8, Version F111010.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>http://www.supertex.com/packaging.html</u>.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2013 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.

Supertex inc.