

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

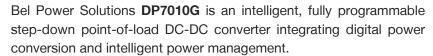
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



DP7010G10A DC-DC Intelligent dPOL

It works with the DM7300 Series Digital Power Managers (DPM) which provides for synchronizing all system Power-On-Load regulators, for an elegant, flexible, low noise power system solution.

All key parameters, sequencing, tracking, fault protection, and compensation parameters of the DP7010G are programmable via Bel Power Solutions I²C based GUI. All settings can be changed by a user at any time during product development and service. Once programmed, the DPM remembers all settings and configures the DP7010G through a self-clocking single wire communication bus.

FLASH memory in the DPM allows changes to be made without the need to solder or rewire the regulator.

Key Features & Benefits

- Input voltage range: 8 V 14 V
- Output voltage range: 0.7 5.5 V at 0 10 A
- Programmable dynamic output voltage positioning for better load transient response
- Choice of 500 KHz switching for highest efficiency or 1 MHz for lowest ripple noise
- Flexible fault response features
- Multiple turn-on/off slew rates and delays
- Digital filter compensation
- Synchronous operation with other supplies
- Real time performance monitoring
- Small footprint SMT package: 32 x 16 x 7.05 mm
- GUI based configuration for short development time
- Approved to the latest edition and amendment of ITE Safety standards, UL/CSA 60950-1 and IEC60950-1

1. ABSOLUTE MAXIMUM RATINGS

Stresses in excess of the absolute maximum ratings may cause performance degradation, adversely affect long term reliability, and cause permanent damage to the converter.

PARAMETER	CONDITIONS / DESCRIPTION	MIN	MAX	UNITS
Inductor or Printed Circuit Board (PCB) Temperature	Input Voltage applied	-40	125	°C
Input Voltage	250 ms Transient		15	VDC
Output Current	(See Output Current De-rating Curves)	-8	10	ADC

2. ELECTRICAL SPECIFICATIONS

Specifications apply at the input voltage from 8 V to 14 V, output load from 0 to 10 A, ambient temperature from -40°C to 85°C. Test conditions include an output filter with 2 x 330 μ F 20 m Ω solid electrolytic, plus 1 x 22 μ F X7R ceramic output capacitors, unless otherwise noted.

2.1 INPUT SPECIFICATIONS

PARAMETER	CONDITIONS / DESCRIPTION	MIN	NOM	MAX	UNITS
Input voltage (V _{IN})		8		14	VDC
Input Current (at no load)	V_{IN} = 14.0 V, V_{OUT} = 3.3 V		50		mADC
Undervoltage Lockout	Ramping Up			7.5	VDC
Olider voltage Lockout	Ramping Down	5			VDC
VLDO Input Current	Current drawn from the external low voltage supply at VLDO = 8 V		50		mADC

2.2 OUTPUT SPECIFICATIONS

PARAMETER	CONDITIONS / DESCRIPTION	MIN	NOM	MAX	UNITS
Output Voltage Range (Vout)		0.7		5.5	VDC
Output Voltage Set point Resolution			2.5 m	V (1 LSB)	
Output Voltage Setpoint Accuracy	2 nd Vo Loop Enabled		±(0.69	% + 5 mV)	
Output Current (Iouт)	VIN MIN TO VIN MAX	-5.5 ¹		7	ADC
Line Regulation	VIN MIN TO VIN MAX		±0.3		%V _{OUT}
Load Regulation	0 to I _{OUT MAX}		±0.2		%V _{OUT}
Dynamic Regulation	Slew rate 1A/μs, 50 -75% load step		50		mV
Peak Deviation Settling Time	F _{SW} = 500 kHz to 10% of peak deviation See Output Load Transient Section		60		μS
•	$V_{IN} = 8.0 \text{ V}, V_{OUT} = 0.7 \text{ V}$		10		mV
Output Voltage Peak-to-Peak Ripple and	$V_{IN} = 8.0 \text{ V}, V_{OUT} = 2.5 \text{ V}$		20		mV
Noise	$V_{IN} = 8.0 \text{ V}, V_{OUT} = 5.5 \text{ V}$		40		mV
Scope BW = 20 MHz	$V_{IN} = 14 \text{ V}, V_{OUT} = 0.7 \text{ V}$		18		mV
Full Load	$V_{IN} = 14 \text{ V}, V_{OUT} = 2.5 \text{ V}$		35		mV
	$V_{IN} = 14 \text{ V}, V_{OUT} = 5.5 \text{ V}$		50		mV
Temperature Coefficient	$V_{IN} = 12 \text{ V}, I_{OUT} = 0.5 \times I_{OUT \text{ MAX}}$		20		ppm/°C
Switching Frequency	Default		500		kHz
Switching Frequency	Programmable to		500 / 1000	0	KΠZ
Duty Cycle Limit	Default		90.5		%
Duty Cycle Limit	Programmable, 1.56% steps	3.125		100	%

¹ At negative (sink) output current (bus terminator mode) the efficiency of the DP7010G degrades resulting in increased internal power dissipation and switching noise. Therefore maximum allowable negative current under specific conditions is lower than the current determined from the de-rating curves shown in paragraph.

2.3 PROTECTION SPECIFICATIONS

PARAMETER	CONDITIONS / DESCRIPTION	MIN N	OM MAX	UNITS
Output Overcurrent Protection	D (1)	N	400	
Туре	Default Programmable		ng, 130ms period	
	Default	•	/Non-Latching 32	%юит
Threshold	Programmable in 11 steps	36	132	%юит
Threshold Accuracy	3	-20	+20	%I _{OCP.SET}
Output Overvoltage Protection				
_	Default	Non-Latchi	ng, 130ms period	
Туре	Programmable	Latching	/Non-Latching	
T	Default	1	30	%iout
Threshold	Programmable in 10% steps	110	130	%юит
Threshold Accuracy	Measured at V _{O.SET} = 2.5 V	-2	2	%I _{OCP.SET}
Delay	From instant when threshold is exceeded until the turn-off command is generated		6	μS
Turn Off Behavior ²	Default	Eme	rgency Off	
Turr On Benavior	Programmable to	Critical Off	/ Emergency Off	
Output Undervoltage Protection				
Туре	Default	Non-Latchi	ng, 130ms period	
Турс	Programmable	Latching	/Non-Latching	
Threshold	Default	-	75	%Vo.set
micanola	Programmable in 5% steps	75	90	%Vo.set
Threshold Accuracy	Measured at Vo.set = 2.5 V	-2	2	%V _{UVP.SET}
Delay	From instant when threshold is exceeded until the turn-off command is generated		6	μs
Turn Off BehaviorError! Bookmark not	Default	Sequ	uenced Off	
defined.	Programmable to	Sequence	ed / Critical Off	
Overtemperature Protection				
Туре	Default	Non-Latchi	ng, 130ms period	
.,,,-	Programmable	Latching	/Non-Latching	
Turn Off Threshold	Temperature is increasing	1	20	°C
Turn On Threshold	Temperature is decreasing after the module was shut down by OTP ³	1	10	°C
Threshold Accuracy		-5	5	°C
Delay	From instant when threshold is exceeded until the turn-off command is generated		6	μS
Turn Off BehaviorError! Bookmark not	Default	Sequ	uenced Off	
defined.	Programmable to	Sequenc	ed / Critical Off	
Tracking Protection (when Enabled)				
Туре	Default	D	isabled	
. , , , ,	Programmable	Latching/Nor	n-Latching, 130ms	
Threshold	Enabled during output voltage ramping up		±250	mVDC
Threshold Accuracy		-50	50	mVDC

² Sequenced Off: The turn-off follows the turn-off delay and slew-rate settings; Critical Off: At turn-off both low and high switches are immediately disabled; Catastrophic Off: At turn-off the high side switch is disabled and the low side switch is enabled.

³ OTP clears when Overtemp Warning (Status Register TW bit) turns off.

Asia-Pacific +86 755 298 85888 **Europe, Middle East** +353 61 225 977

North America +1 408 785 5200

Delay	From instant when threshold is exceeded until the turn-off command is generated		μs	
Overtemperature Warning				
Threshold	Always enabled, reported in Status register (TW bit) ⁴	1	10	°C
Threshold Accuracy	From Nominal Set Point	-5	+5	°C
Hysteresis		1	.7	°C
Power Good Signal (PG pin)				
Logio	V _{OUT} is inside the PG window		High	
Logic	V_{OUT} is outside the PG window		Low	
Lower Threshold	Default	9	90	$%V_{O.SET}$
Lower Infestiold	Programmable in 5% steps	90	95	$%V_{O.SET}$
I le nou Thuach ald	Default	1	10	$%V_{O.SET}$
Upper Threshold	Programmable in 5% steps	105	110	$%V_{\text{O.SET}}$
Threshold Accuracy	Measured at V _{O.SET} = 2.5 V	-2	2	$%V_{O.SET}$
DO On Delay 5	Default		0	
PG On Delay⁵	Programmable at	0, 10	0, 50, 150	ms
	Default	PG disable	ed when V _{OUT} ≤ V _{UV} t	hreshold
PG Off Delay	Programmable same as PG On Delay	PG disabled at turn-off command (Reset function)		

 $^{^{\}rm 4}$ Temp Warning error same sign and proportional with OTP error. $^{\rm 5}$ From instant when threshold is exceeded until status of PG signal changes high

2.4 FEATURE SPECIFICATIONS

PARAMETER	CONDITIONS / DESCRIPTION	MIN	NOM	MAX	UNITS
Current Share					
Туре			Active, S	ingle Line	
Maximum Number of Modules Connected in Parallel	lout ≥ 20% lout nom			4	
Current Share Accuracy	Іоит≥ 20% Іоит ном			±20	%Іоит
Interleave					
Interleave (Phase Shift)	Default		0		Degree
Intelleave (Friase Shirt)	Programmable in 22.5° steps	0		337.5	Degree
Sequencing ⁶					
Turn ON Delay	Default		0		ms
Turri ON Delay	Programmable in 1 ms steps	0		255	ms
Turn OFF Dolov	Default		0		ms
Turn OFF Delay	Programmable in 1 ms steps	0		63	ms
Tracking					
Turn ON Slew Rate	Default		0.05		V/ms
Turn ON Siew hate	Programmable in 8 steps	0.05		2.0^{7}	V/ms
Turn OFF Slew Rate	Default		-0.05		V/ms
Turri OFF Siew Hate	Programmable in 8 steps	-0.05		-2.0 ⁷	V/ms
Optimal Voltage Positioning					
Load Regulation	Default		0		mV/A
Load negulation	Programmable in 7 steps	0		2.45	mV/A
Feedback Loop Compensation					
Proportional (Kr)	Programmable	0.01		2	
Integral (Ti)	Programmable	1		100	μs
Differential (Td)	Programmable	1		100	μs
Differential Roll-Off (Tv)	Programmable	1		100	μs
Monitoring					
Voltage Monitoring Accuracy	12 Bit Resolution over 0.55.5 V	-0.5		0.5	%
Current Monitoring Accuracy	20% IOUT NOM < IOUT < IOUT NOM	-20		+20	%Іоит
Temperature Monitoring Accuracy	Junction temperature of dPOL controller	-5		+5	°C
Remote Voltage Sense (+VS and –VS	pins) ⁸				
Voltage Drop Compensation	Between +VS and VOUT			300	mV
Voltage Drop Compensation	Between -VS and PGND			100	mV

 $^{^8}$ For remote sense, it is recommended to place a 0.01-0.1 μ F ceramic capacitor between +VS and –VS pins as close to the dPOL converter as possible.

Asia-Pacific +86 755 298 85888 **Europe, Middle East** +353 61 225 977

North America +1 408 785 5200

⁶ Timing based on SD clock and subject to tolerances of SD.

Achieving fast slew rates under specific line and load conditions may require feedback loop adjustment. See Rising and Falling Slew Rates

2.5 SIGNAL SPECIFICATIONS

VDD Internal supply voltage 3.15 3.3 3.45 V Logic In Max Pull Up Logic max safe input VDD+.4 V SYWC/DATA Line (SD pin) VIL, ad LOW level input voltage -0.5 3.3 x VDD V VIL, ad LOW level sink current 20.5 V 14 60 mAx VIN, ad LOW level sink current 20.5 V 14 60 mAx VIN, add Maximum allowed rise time 10/90% VDD 1 60 .45 x VDD v VIN, added node capacitance 5 10 mAx .60 mAx Conde, ad Added node capacitance 4 60 mAx Freq. ad Clock frequency of external SD line 475 525 IND mAx Freq. ad Do lata=0 pulse duration 22 28 3 color 6 color 6 color Injust: ADDRA. ADDRA. EN, IN V V V V V V V Vill, x HilGH level input voltage 0.1 x VDD 0.3 x VDD	PARAMETER	CONDITIONS / DESCRIPTION	MIN	NOM	MAX	UNITS
SYNC/DATA Line (SD pin) ViL_sd LOW level input voltage -0.5 0.3 x VDD V ViIL_sd HIGH level input voltage 0.75 x VDD VDD + 0.5 V ViNyst_sd Hysteresis of input Schmitt trigger 0.25 x VDD 0.45 x VDD V Vol. LOW level sink current © 0.5 V 14 60 mA Tr_sd Maximum allowed rise time 10/90% VDD 300 ns Cnode_sd Added node capacitance 5 10 pF Ipu_sd Pull-up current source at Vsd = 0 V 0.3 1.0 mA Freq_sd Clock frequency of external SD line 475 525 kHz Tsynq Sync pulse duration 22 28 % of clock cycle cycle Tsynq Data=0 pulse duration 72 78 % of clock cycle cycle Vil_xx LOW level input voltage -0.5 0.3 x VDD V Vil_xx HIGH level input voltage -0.5 0.3 x VDD V Vilyst_x Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD	VDD	Internal supply voltage	3.15	3.3	3.45	V
Vil_sd LOW level input voltage -0.5 0.3 x VDD V Vil_sd HIGH level input voltage 0.75 x VDD VDD + 0.5 V Vhyst_sd Hysteresis of input Schmitt trigger 0.25 x VDD 0.45 x VDD V Vol. LOW level sink current @ 0.5 V 14 60 mA Tr_sd Maximum allowed rise time 10/90% VDD 300 ns Cnode_sd Added node capacitance 5 10 pF Ipu_sd Pull-up current source at Vsd = 0 V 0.3 1.0 mA Freq_sd Clock frequency of external SD line 475 525 kHz Tsynq Sync pulse duration 22 28 % of clock cycle for cycle cyc	Logic In Max	Pull Up Logic max safe input			VDD+.4	V
VH_sd HIGH level input voltage 0.75 x VDD VDD + 0.5 V Vhyst_sd Hysteresis of input Schmitt trigger 0.25 x VDD 0.45 x VDD V Vol. LOW level sink current ⊕ 0.5 V 14 60 mA Tr_sd Maximum allowed rise time 10/90% VDD 300 ns Cnode_sd Added node capacitance 5 10 pF Ipu_sd Pull-up current source at Vsd = 0 V 0.3 1.0 mA Ipu_sd Pull-up current source at Vsd = 0 V 0.3 1.0 mA Ipu_sd Clock frequency of external SD line 475 525 kHz Tsynq Sync pulse duration 22 28 % of clock cycle To Data=0 pulse duration 72 78 % of clock cycle Tsynq Sync pulse duration 72 78 % of clock cycle Tsynq Data=0 pulse duration 72 78 % of clock cycle Tsynq Succession 0.1 2 3 3 10 ND VD<	SYNC/DATA Line (SD pin)					
Vhyst_sd Hysteresis of input Schmitt trigger 0.25 x VDD 0.45 x VDD V Vol. LOW level sink current @ 0.5 V 14 60 mA Tr_sd Maximum allowed rise time 10/90% VDD 300 ns Cnode_sd Added node capacitance 5 10 pF Ipu_sd Pull-up current source at Vsd = 0 V 0.3 1.0 mA Freq_sd Clock frequency of external SD line 475 525 kHz Tsynq Sync pulse duration 22 28 % of clock cycle	ViL_sd	LOW level input voltage	-0.5		0.3 x VDD	V
Vol. LOW level sink current @ 0.5 V 14 60 mA Tr_sd Maximum allowed rise time 10/90% VDD 300 ns Cnode_sd Added node capacitance 5 10 pF Ipu_sd Pull-up current source at Vsd = 0 V 0.3 1.0 mA Freq_sd Clock frequency of external SD line 475 525 kHz Tsynq Sync pulse duration 22 28 % of clock cycle cycle Tg Data=0 pulse duration 72 78 % of clock cycle Tg Data=0 pulse duration 72 78 % of clock cycle Tg Data=0 pulse duration 72 78 % of clock cycle Tg Data=0 pulse duration 72 78 % of clock cycle Tg Data=0 pulse duration 72 78 % of clock cycle Tg Data=0 pulse duration 72 78 % of clock cycle Tg Data=0 pulse duration 72 78 0 20 0 VIL_x LOW level input volta	ViH_sd	HIGH level input voltage	0.75 x VDD		VDD + 0.5	V
Tr_sd Maximum allowed rise time 10/90% VDD 300 ns Cnode_sd Added node capacitance 5 10 pF Ipu_sd Pull-up current source at Vsd = 0 V 0.3 1.0 mA Freq_sd Clock frequency of external SD line 475 525 kHz Tsynq Sync pulse duration 22 28 % of clock cycle cycle cycle cycle cycle cycle cycle cycle york T0 Data=0 pulse duration 72 78 % of clock cycle cycle cycle york T0 Data=0 pulse duration 72 78 % of clock cycle york VID W LOW level input voltage -0.5 0.3 x VDD V VIL_x LOW level input voltage 0.7 x VDD VDD+0.5 V Vhyst_x Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V Rower Good and OK Inputs/Outputs External pull down resistance ADDRX for ceed low 10 μA μ Iup_PG Pull-up current source input forced low PG 25 110 μA Iup_PG Pull-up current source input forced low	Vhyst_sd	Hysteresis of input Schmitt trigger	0.25 x VDD		0.45 x VDD	V
Cnode_sd Added node capacitance 5 10 pF Ipu_sd Pull-up current source at Vsd = 0 V 0.3 1.0 mA Freq_sd Clock frequency of external SD line 475 525 kHz Tsynq Sync pulse duration 22 28 % of clock cycle T0 Data=0 pulse duration 72 78 % of clock cycle Inputs: ADDROADDRA, EN, IM VIL_X LOW level input voltage -0.5 0.3 x VDD V VIL_X LOW level input voltage -0.5 0.3 x VDD V Vhyst_X Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V Roll-LADDR External pull down resistance ADDRX forced low PG 25 10 kOhm Power Good and OK Inputs/Outputs VIL_PG Pull-up current source input forced low PG 25 110 μA VIL_C Pull-up current source input forced low OK 175 725 μA VIL_X LOW level input voltage </td <td>VoL</td> <td>LOW level sink current @ 0.5 V</td> <td>14</td> <td></td> <td>60</td> <td>mA</td>	VoL	LOW level sink current @ 0.5 V	14		60	mA
Pull-up current source at Vsd = 0 V	Tr_sd	Maximum allowed rise time 10/90% VDD			300	ns
Freq_sd Clock frequency of external SD line 475 525 kHz Tsynq Sync pulse duration 22 28 % of clock cycle cycle T0 Data=0 pulse duration 72 78 % of clock cycle Imputs: ADDR0ADDR4, EN, IM ViL_X LOW level input voltage -0.5 0.3 x VDD V VIH_X HIGH level input voltage 0.7 x VDD VDD+0.5 V Vhyst_X Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V Power Good and OK Inputs/Outputs Iup_PG Pull-up current source input forced low PG 25 110 μA Iup_PG Pull-up current source input forced low OK 175 725 μA ViL_X LOW level input voltage -0.5 0.3 x VDD V ViL_X HIGH level input voltage 0.7 x VDD VDD+0.5 V ViL_X Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V ViL_C	Cnode_sd	Added node capacitance		5	10	pF
Tsynq Sync pulse duration 22 28 % of clock cycle cycle cycle T0 Data=0 pulse duration 72 78 % of clock cycle cycle Impulse ADDROADDRA, EN, IM VIL_X LOW level input voltage -0.5 0.3 x VDD V VIH_X HIGH level input voltage 0.7 x VDD VDD+0.5 V Vhyst_X Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V RdnL_ADDR External pull down resistance ADDRX forced low 10 kOhm kOhm Power Good and OK Inputs/Outputs lup_PG Pull-up current source input forced low PG 25 110 μA lup_OK Pull-up current source input forced low OK 175 725 μA ViL_X LOW level input voltage -0.5 0.3 x VDD V ViH_X HIGH level input voltage 0.7 x VDD VDD+0.5 V Vhyst_X Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V Vhyst_CS Pull-up current source at VCS = 0 V	lpu_sd	Pull-up current source at Vsd = 0 V	0.3		1.0	mA
To Note 10 Data = 0 pulse duration 22 Page 10 Coycle	Freq_sd	Clock frequency of external SD line	475		525	
Inputs: ADDR0ADDR4, EN, IM ViL_x LOW level input voltage -0.5 0.3 x VDD V Vil_x HIGH level input voltage 0.7 x VDD VDD+0.5 V Vhyst_x Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V RdnL_ADDR External pull down resistance ADDRX forced low 10 kOhm Power Good and OK Inputs/Outputs lup_PG Pull-up current source input forced low PG 25 110 μA lup_OK Pull-up current source input forced low OK 175 725 μA ViL_x LOW level input voltage -0.5 0.3 x VDD V ViH_x HIGH level input voltage 0.7 x VDD VDD+0.5 V Vhyst_x Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V Vhyst_x Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V Iup_CS Pull-up current source at VCS = 0 V 0.84 3.1 mA ViL_CS LOW level input voltage -0.5 0.3 x VDD V	Tsynq	Sync pulse duration	22		28	cycle
ViL_x LOW level input voltage -0.5 0.3 x VDD V ViH_x HIGH level input voltage 0.7 x VDD VDD+0.5 V Vhyst_x Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V RdnL_ADDR External pull down resistance ADDRX forced low 10 kOhm Power Good and OK Inputs/Outputs lup_PG Pull-up current source input forced low PG 25 110 μA lup_OK Pull-up current source input forced low OK 175 725 μA ViL_x LOW level input voltage -0.5 0.3 x VDD V ViH_X HIGH level input voltage 0.7 x VDD VDD+0.5 V Vhyst_x Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V loL LOW level sink current at 0.5 V 4 20 mA Current Share Bus (CS pin) lup_CS Pull-up current source at VCS = 0 V 0.84 3.1 mA ViL_CS LOW level input voltage -0.5 0.3 x VDD V <	Т0	Data=0 pulse duration	72		78	
ViH_x HIGH level input voltage 0.7 x VDD VDD+0.5 V Vhyst_x Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V RdnL_ADDR External pull down resistance ADDRX forced low 10 kOhm Power Good and OK Inputs/Outputs lup_PG Pull-up current source input forced low PG 25 110 μA lup_OK Pull-up current source input forced low OK 175 725 μA ViL_x LOW level input voltage -0.5 0.3 x VDD V ViH_x HIGH level input voltage 0.7 x VDD VDD+0.5 V Vhyst_x Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V Iup_CS Pull-up current source at VCS = 0 V 4 20 mA Current Share Bus (CS pin) Iup_CS Pull-up current source at VCS = 0 V 0.84 3.1 mA ViL_CS LOW level input voltage -0.5 0.3 x VDD V ViH_CS HIGH level input voltage 0.75 x VDD VDD+0.5 <td< td=""><td>Inputs: ADDR0ADDR4, EN, IM</td><td></td><td></td><td></td><td></td><td></td></td<>	Inputs: ADDR0ADDR4, EN, IM					
Vhyst_X Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V RdnL_ADDR External pull down resistance ADDRX forced low 10 kOhm Power Good and OK Inputs/Outputs lup_PG Pull-up current source input forced low PG 25 110 μA lup_OK Pull-up current source input forced low OK 175 725 μA ViL_x LOW level input voltage -0.5 0.3 x VDD V ViH_x HIGH level input voltage 0.7 x VDD VDD+0.5 V Vhyst_x Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V loL LOW level sink current at 0.5 V 4 20 mA Current Share Bus (CS pin) lup_CS Pull-up current source at VCS = 0 V 0.84 3.1 mA Vil_CS LOW level input voltage -0.5 0.3 x VDD V Vil_CS HIGH level input voltage 0.75 x VDD VDD+0.5 V Vhyst_CS Hysteresis of input Schmitt trigger 0.25 x VDD 0.45 x VDD	ViL_x	LOW level input voltage	-0.5		0.3 x VDD	V
RdnL_ADDRExternal pull down resistance ADDRX forced low10kOhmPower Good and OK Inputs/Outputslup_PGPull-up current source input forced low PG25110μAlup_OKPull-up current source input forced low OK175725μAViL_xLOW level input voltage-0.50.3 x VDDVViH_xHIGH level input voltage0.7 x VDDVDD+0.5VVhyst_xHysteresis of input Schmitt trigger0.1 x VDD0.3 x VDDVloLLOW level sink current at 0.5 V420mACurrent Share Bus (CS pin)lup_CSPull-up current source at VCS = 0 V0.843.1mAViL_CSLOW level input voltage-0.50.3 x VDDVViH_CSHIGH level input voltage0.75 x VDDVDD+0.5VVhyst_CSHysteresis of input Schmitt trigger0.25 x VDD0.45 x VDDVloLLOW level sink current at 0.5V1460mA	ViH_x	HIGH level input voltage	0.7 x VDD		VDD+0.5	V
RanL_ADDR forced low Ronm Power Good and OK Inputs/Outputs lup_PG Pull-up current source input forced low PG 25 110 μA lup_OK Pull-up current source input forced low OK 175 725 μA ViL_x LOW level input voltage -0.5 0.3 x VDD V ViH_x HIGH level input voltage 0.7 x VDD VDD+0.5 V Vhyst_x Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V loL LOW level sink current at 0.5 V 4 20 mA Current Share Bus (CS pin) lup_CS Pull-up current source at VCS = 0 V 0.84 3.1 mA ViL_CS LOW level input voltage -0.5 0.3 x VDD V ViH_CS HIGH level input voltage 0.75 x VDD VDD+0.5 V Vhyst_CS Hysteresis of input Schmitt trigger 0.25 x VDD 0.45 x VDD V loL LOW level sink current at 0.5V 14 60 mA	Vhyst_x		0.1 x VDD		0.3 x VDD	V
lup_PGPull-up current source input forced low PG25110μAlup_OKPull-up current source input forced low OK175725μAVil_xLOW level input voltage-0.5 $0.3 \times VDD$ VViH_xHIGH level input voltage $0.7 \times VDD$ VDD+0.5VVhyst_xHysteresis of input Schmitt trigger $0.1 \times VDD$ $0.3 \times VDD$ VloLLOW level sink current at $0.5 \times V$ 420mACurrent Share Bus (CS pin)lup_CSPull-up current source at VCS = $0 \times V$ 0.84 3.1 mAViL_CSLOW level input voltage -0.5 $0.3 \times VDD$ VViH_CSHIGH level input voltage $0.75 \times VDD$ VDD+0.5VVhyst_CSHysteresis of input Schmitt trigger $0.25 \times VDD$ $0.45 \times VDD$ VloLLOW level sink current at $0.5 \times V$ 14 60 mA	RdnL_ADDR	•			10	kOhm
lup_OK Pull-up current source input forced low OK 175 725 μA ViL_x LOW level input voltage -0.5 0.3 x VDD V ViH_x HIGH level input voltage 0.7 x VDD VDD+0.5 V Vhyst_x Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V loL LOW level sink current at 0.5 V 4 20 mA Current Share Bus (CS pin) lup_CS Pull-up current source at VCS = 0 V 0.84 3.1 mA ViL_CS LOW level input voltage -0.5 0.3 x VDD V ViH_CS HIGH level input voltage 0.75 x VDD VDD+0.5 V Vhyst_CS Hysteresis of input Schmitt trigger 0.25 x VDD 0.45 x VDD V loL LOW level sink current at 0.5V 14 60 mA	Power Good and OK Inputs/Outpu	ts				
ViL_x LOW level input voltage -0.5 0.3 x VDD V ViH_x HIGH level input voltage 0.7 x VDD VDD+0.5 V Vhyst_x Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V IoL LOW level sink current at 0.5 V 4 20 mA Current Share Bus (CS pin) Iup_CS Pull-up current source at VCS = 0 V 0.84 3.1 mA ViL_CS LOW level input voltage -0.5 0.3 x VDD V ViH_CS HIGH level input voltage 0.75 x VDD VDD+0.5 V Vhyst_CS Hysteresis of input Schmitt trigger 0.25 x VDD 0.45 x VDD V IoL LOW level sink current at 0.5V 14 60 mA	lup_PG	Pull-up current source input forced low PG	25		110	μΑ
ViH_x HIGH level input voltage 0.7 x VDD VDD+0.5 V Vhyst_x Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V IoL LOW level sink current at 0.5 V 4 20 mA Current Share Bus (CS pin) Iup_CS Pull-up current source at VCS = 0 V 0.84 3.1 mA ViL_CS LOW level input voltage -0.5 0.3 x VDD V ViH_CS HIGH level input voltage 0.75 x VDD VDD+0.5 V Vhyst_CS Hysteresis of input Schmitt trigger 0.25 x VDD 0.45 x VDD V IoL LOW level sink current at 0.5V 14 60 mA	lup_OK	Pull-up current source input forced low OK	175		725	μΑ
Vhyst_x Hysteresis of input Schmitt trigger 0.1 x VDD 0.3 x VDD V IoL LOW level sink current at 0.5 V 4 20 mA Current Share Bus (CS pin) lup_CS Pull-up current source at VCS = 0 V 0.84 3.1 mA ViL_CS LOW level input voltage -0.5 0.3 x VDD V ViH_CS HIGH level input voltage 0.75 x VDD VDD+0.5 V Vhyst_CS Hysteresis of input Schmitt trigger 0.25 x VDD 0.45 x VDD V IoL LOW level sink current at 0.5V 14 60 mA	ViL_x	LOW level input voltage	-0.5		0.3 x VDD	V
IoL LOW level sink current at 0.5 V 4 20 mA Current Share Bus (CS pin) lup_CS Pull-up current source at VCS = 0 V 0.84 3.1 mA ViL_CS LOW level input voltage -0.5 0.3 x VDD V ViH_CS HIGH level input voltage 0.75 x VDD VDD+0.5 V Vhyst_CS Hysteresis of input Schmitt trigger 0.25 x VDD 0.45 x VDD V loL LOW level sink current at 0.5V 14 60 mA	ViH_x	HIGH level input voltage	0.7 x VDD		VDD+0.5	V
Current Share Bus (CS pin) lup_CS Pull-up current source at VCS = 0 V 0.84 3.1 mA ViL_CS LOW level input voltage -0.5 0.3 x VDD V ViH_CS HIGH level input voltage 0.75 x VDD VDD+0.5 V Vhyst_CS Hysteresis of input Schmitt trigger 0.25 x VDD 0.45 x VDD V loL LOW level sink current at 0.5V 14 60 mA	Vhyst_x	Hysteresis of input Schmitt trigger	0.1 x VDD		0.3 x VDD	V
lup_CS Pull-up current source at VCS = 0 V 0.84 3.1 mA Vil_CS LOW level input voltage -0.5 0.3 x VDD V ViH_CS HIGH level input voltage 0.75 x VDD VDD+0.5 V Vhyst_CS Hysteresis of input Schmitt trigger 0.25 x VDD 0.45 x VDD V loL LOW level sink current at 0.5V 14 60 mA	loL	LOW level sink current at 0.5 V	4		20	mA
ViL_CS LOW level input voltage -0.5 0.3 x VDD V ViH_CS HIGH level input voltage 0.75 x VDD VDD+0.5 V Vhyst_CS Hysteresis of input Schmitt trigger 0.25 x VDD 0.45 x VDD V IoL LOW level sink current at 0.5V 14 60 mA	Current Share Bus (CS pin)					
ViH_CS HIGH level input voltage 0.75 x VDD VDD+0.5 V Vhyst_CS Hysteresis of input Schmitt trigger 0.25 x VDD 0.45 x VDD V IoL LOW level sink current at 0.5V 14 60 mA	lup_CS	Pull-up current source at VCS = 0 V	0.84		3.1	mA
Vhyst_CS Hysteresis of input Schmitt trigger 0.25 x VDD 0.45 x VDD V IoL LOW level sink current at 0.5V 14 60 mA	ViL_CS	LOW level input voltage	-0.5		0.3 x VDD	V
loL LOW level sink current at 0.5V 14 60 mA	ViH_CS	HIGH level input voltage	0.75 x VDD		VDD+0.5	V
	Vhyst_CS	Hysteresis of input Schmitt trigger	0.25 x VDD		0.45 x VDD	V
Tr_CS Maximum allowed rise time 10/90% VDD 100 ns	loL	LOW level sink current at 0.5V	14		60	mA
	Tr_CS	Maximum allowed rise time 10/90% VDD			100	ns

3. PIN ASSIGNMENTS AND DESCRIPTIONS

PIN NAME	PIN NUMBER	PIN TYPE	BUFFER TYPE	PIN DESCRIPTION	NOTES
NC	1			Not Used	Not connected internally
IM	2			Not Used	Leave floating
NC	3			Not Used	Leave floating
NC	4			Not Used	Leave floating
NC	5			Not Used	Leave floating
NC	6			Not Used	Leave floating
NC	7			Not Used	Leave floating
NC	8			Not Used	Leave floating
VREF	9		Α	Not Used	Nominally 2.5 V. Leave floating
EN	10			Not Used	Leave Floating
OK	11	I/O	PU	Fault/Status Condition	Connect to OK pin of the DPM and any other dPOLs of the same group.
SD	12	I/O	PU	Sync/Data Line	Connect to SD pin of DPM
PG	13	I/O	PU	Power Good	Pin state reflected in Status Register.
TRIM	14			Not Used	Leave floating
CS	15	I/O	PU	Current Share	Connect to CS pin of other dPOLs connected in parallel. Leave floating if not in sharing.
ADDR4	16	I	PU	dPOL Address Bit 4	Tie to PGND for 0 or leave floating for 1
ADDR3	17	I	PU	dPOL Address Bit 3	Tie to PGND for 0 or leave floating for 1
ADDR2	18	I	PU	dPOL Address Bit 2	Tie to PGND for 0 or leave floating for 1
ADDR1	19	1	PU	dPOL Address Bit 1	Tie to PGND for 0 or leave floating for 1
ADDR0	20	I	PU	dPOL Address Bit 0	Tie to PGND for 0 or leave floating for 1
-VS	21	1	PU	Negative Voltage Sense	Connect to the negative point close to the load or PGND
+VS	22	I	PU	Positive Voltage Sense	Connect to the positive point close to the load or VOUT
VOUT	23	Р		Output Voltage	
PGND	24	Р		Power Ground	
VIN	25	Р		Input Voltage	

Legend: I = Input, O = Output, I/O = Input/Output, P = Power, A = Analog, PU = Internal Pull-up

4. TYPICAL PERFORMANCE CHARACTERISTICS

4.1 THERMAL DERATING CURVES

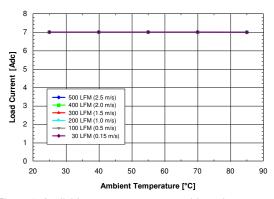


Figure 1. Available output current vs. ambient air temperature and airflow rates for converter DP7010G mounted horizontally with air flowing from input to output, MOSFET temperature 120 C, Vin = 12 V, Vout = 5 V, and Fsw= 500KHz

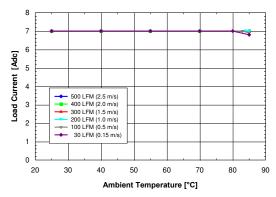


Figure 2. Available output current vs. ambient air temperature and airflow rates for converter DP7010G mounted horizontally with air flowing from input to output, MOSFET temperature 120 C, Vin = 12 V, Vout = 5 V, and Fsw= 1MHz

4.2 EFFICIENCY CURVES

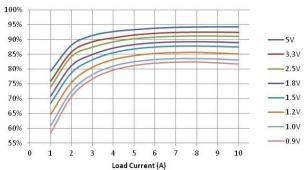


Figure 3. Efficiency vs. Load, Vin = 12 V, Fsw = 500 KHz

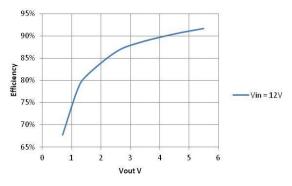


Figure 4. Efficiency vs. Output Voltage, lout = 7 A, Fsw = 500 kHz

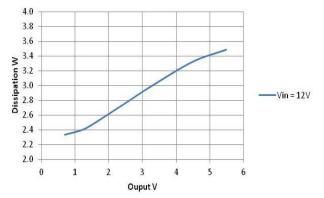


Figure 5. Dissipation vs Voltage. lout = 7 A, Fsw = 500kHz

5. PROGRAMMABLE FEATURES

Performance parameters of DP7010G dPOL converters are programmed by the system DPM over a self-clocking single wire bus as need. Each parameter is stored in FLASH memory in the DPM and loaded into volatile memory registers in the dPOL control chip detailed in Table 1. Setup registers 00h through 14h are programmed at the system power-up. When the input voltage is removed, the dPOL controller's default values are restored.

Name Register Address PC1 Protection Configuration 1 0x00 PC2 Protection Configuration 2 0x01 PC3 Protection Configuration 3 0x02 TC Tracking Configuration 0x03 INT Interleave and Frequency Configuration 0x04 DON Turn-On Delay 0x05 DOF Turn-Off Delay 0x06 VLC Voltage Loop Configuration 0x07 CLS Current Limit Set-point 0x08 DCL Duty Cycle Limit 0x09 PC4 Protection Configuration 4 0x0A V1H Output Voltage Setpoint 1 (Low Byte) 0x0B V1L Output Voltage Setpoint 1 (Low Byte) 0x0B V1L Output Voltage Setpoint 2 (Low Byte) 0x0D V2L Output Voltage Setpoint 3 (Low Byte) 0x0E V3H Output Voltage Setpoint 3 (Low Byte) 0x0F V3L Output Voltage Setpoint 3 (Low Byte) 0x10 CP Controller Integral Coefficient 0x11	CONFIGURATION REGISTERS									
PC2 Protection Configuration 2 PC3 Protection Configuration 3 TC Tracking Configuration INT Interleave and Frequency Configuration DON Turn-On Delay DOF Turn-Off Delay VLC Voltage Loop Configuration OX07 CLS Current Limit Set-point DCL Duty Cycle Limit PC4 Protection Configuration 4 V1H Output Voltage Setpoint 1 (Low Byte) V1L Output Voltage Setpoint 1 (High Byte) V1L Output Voltage Setpoint 2 (Low Byte) V2H Output Voltage Setpoint 2 (Low Byte) V3H Output Voltage Setpoint 3 (Low Byte) V3H Output Voltage Setpoint 3 (Low Byte) V3L Output Voltage Setpoint 3 (Low Byte) V3L Output Voltage Setpoint 3 (High Byte) V3L Output Voltage Setpoint 3 (High Byte) CP Controller Proportional Coefficient CI Controller Integral Coefficient CI Controller Derivative Coefficient DX11 CI Controller Derivative Coefficient STATUS REGISTERS Name Register Address Nonitoring Registers Name Register Address VOH Output Voltage Low Byte (Monitoring) Ox17 VOL Output Voltage Low Byte (Monitoring) Ox18	Name	Register	Address							
PC3 Protection Configuration 3 TC Tracking Configuration INT Interleave and Frequency Configuration DON Turn-On Delay DOF Turn-Off Delay VLC Voltage Loop Configuration CLS Current Limit Set-point DCL Duty Cycle Limit DCL Duty Cycle Limit DCL Duty Unitage Setpoint 1 (Low Byte) V1L Output Voltage Setpoint 1 (High Byte) V1L Output Voltage Setpoint 2 (Low Byte) V2H Output Voltage Setpoint 3 (Low Byte) V3H Output Voltage Setpoint 3 (High Byte) V3L Output Voltage Setpoint 3 (High Byte) V3L Output Voltage Setpoint 3 (High Byte) CP Controller Proportional Coefficient CI Controller Integral Coefficient CI Controller Derivative Coefficient DX12 CD Controller Derivative Roll-Off Coefficient STATUS REGISTERS Name Register Address None None Register Address VOH Output Voltage High Byte (Monitoring) Ox17 VOL Output Voltage Low Byte (Monitoring) Ox18	PC1	Protection Configuration 1	0x00							
TC Tracking Configuration	PC2	Protection Configuration 2	0x01							
INT Interleave and Frequency Configuration DON Turn-On Delay DOF Turn-Off Delay VLC Voltage Loop Configuration CLS Current Limit Set-point DCL Duty Cycle Limit PC4 Protection Configuration 4 V1H Output Voltage Setpoint 1 (Low Byte) V1L Output Voltage Setpoint 1 (High Byte) V2H Output Voltage Setpoint 2 (Low Byte) V2L Output Voltage Setpoint 3 (Low Byte) V3H Output Voltage Setpoint 3 (High Byte) V3H Output Voltage Setpoint 3 (High Byte) V3L Output Voltage Setpoint 3 (High Byte) V3L Output Voltage Setpoint 3 (High Byte) CP Controller Proportional Coefficient CI Controller Integral Coefficient CI Controller Derivative Coefficient STATUS REGISTERS **Register** **Register** **Address** Name** **Register** **Register** **Address** Name** **Register** **Address** **Name** **Register** **Address** **Name** **Register** **Address** **Name** **Register** **Address** **VOH** Output Voltage High Byte (Monitoring) Ox17 VOL Output Voltage Low Byte (Monitoring) Ox18			0x02							
DON Turn-On Delay DOF Turn-Off Delay VLC Voltage Loop Configuration CLS Current Limit Set-point DCL Duty Cycle Limit PC4 Protection Configuration 4 V1H Output Voltage Setpoint 1 (Low Byte) V2H Output Voltage Setpoint 2 (Low Byte) V2H Output Voltage Setpoint 2 (Low Byte) V3H Output Voltage Setpoint 3 (Low Byte) V2L Output Voltage Setpoint 3 (Low Byte) V3H Output Voltage Setpoint 3 (Low Byte) V3H Output Voltage Setpoint 3 (Low Byte) V3H Output Voltage Setpoint 3 (High Byte) V3L Output Voltage Setpoint 3 (High Byte) V3L Output Voltage Setpoint 3 (High Byte) CP Controller Proportional Coefficient CI Controller Integral Coefficient CI Controller Integral Coefficient CI Controller Derivative Coefficient Dx11 CD Controller Derivative Roll-Off Coefficient STATUS REGISTERS Name Register Address RUN Run enable / status Status Nox15 ST Status Ox16 MONITORING REGISTERS Name Register Address VOH Output Voltage High Byte (Monitoring) VOL Output Voltage Low Byte (Monitoring) Ox27 IO Output Current (Monitoring) Ox18			0x03							
DOF Tum-Off Delay VLC Voltage Loop Configuration CLS Current Limit Set-point DCL Duty Cycle Limit PC4 Protection Configuration 4 V1H Output Voltage Setpoint 1 (Low Byte) V1L Output Voltage Setpoint 1 (High Byte) V1L Output Voltage Setpoint 2 (Low Byte) V2H Output Voltage Setpoint 2 (High Byte) V3H Output Voltage Setpoint 3 (Low Byte) V3H Output Voltage Setpoint 3 (Low Byte) V3H Output Voltage Setpoint 3 (High Byte) V3L Output Voltage Setpoint 3 (High Byte) V3L Output Voltage Setpoint 3 (High Byte) CP Controller Proportional Coefficient CI Controller Integral Coefficient CI Controller Derivative Coefficient DX11 CD Controller Derivative Coefficient STATUS REGISTERS Name Register Address RUN Run enable / status ST Status Ox16 MONITORING REGISTERS Name Register Address VOH Output Voltage High Byte (Monitoring) VOL Output Voltage Low Byte (Monitoring) Ox18		Interleave and Frequency Configuration	0x04							
VLC Voltage Loop Configuration CLS Current Limit Set-point DCL Duty Cycle Limit PC4 Protection Configuration 4 V1H Output Voltage Setpoint 1 (Low Byte) V1L Output Voltage Setpoint 1 (High Byte) V2H Output Voltage Setpoint 2 (Low Byte) V2L Output Voltage Setpoint 2 (High Byte) V3H Output Voltage Setpoint 3 (Low Byte) V3H Output Voltage Setpoint 3 (Low Byte) V3H Output Voltage Setpoint 3 (High Byte) V3L Output Voltage Setpoint 3 (High Byte) V3L Output Voltage Setpoint 3 (High Byte) CP Controller Proportional Coefficient CI Controller Integral Coefficient CI Controller Derivative Coefficient STATUS REGISTERS Name Register Address RUN Run enable / status ST Status Nonitoring Registers Name Register Address VOH Output Voltage High Byte (Monitoring) VOL Output Voltage Low Byte (Monitoring) Ox18		Turn-On Delay	0x05							
CLS Current Limit Set-point 0x08 DCL Duty Cycle Limit 0x09 PC4 Protection Configuration 4 0x0A V1H Output Voltage Setpoint 1 (Low Byte) 0x0B V1L Output Voltage Setpoint 2 (Low Byte) 0x0C V2H Output Voltage Setpoint 2 (High Byte) 0x0E V3H Output Voltage Setpoint 3 (Low Byte) 0x0F V3L Output Voltage Setpoint 3 (High Byte) 0x10 CP Controller Proportional Coefficient 0x11 CI Controller Integral Coefficient 0x12 CD Controller Derivative Coefficient 0x13 B1 Controller Derivative Roll-Off Coefficient 0x14 STATUS REGISTERS Name Register Address RUN Run enable / status 0x15 ST Status 0x16 MONITORING REGISTERS Name Register Address VOH Output Voltage High Byte (Monitoring) 0x27 VOL Output Voltage Low Byte (Monitoring) <td>_</td> <td></td> <td>0x06</td>	_		0x06							
DCL Duty Cycle Limit 0x09 PC4 Protection Configuration 4 0x0A V1H Output Voltage Setpoint 1 (Low Byte) 0x0B V1L Output Voltage Setpoint 1 (High Byte) 0x0C V2H Output Voltage Setpoint 2 (Low Byte) 0x0D V2L Output Voltage Setpoint 2 (High Byte) 0x0E V3H Output Voltage Setpoint 3 (Low Byte) 0x0F V3L Output Voltage Setpoint 3 (High Byte) 0x10 CP Controller Proportional Coefficient 0x11 CI Controller Integral Coefficient 0x12 CD Controller Derivative Coefficient 0x13 B1 Controller Derivative Roll-Off Coefficient 0x14 STATUS REGISTERS Name Register Address RUN Run enable / status 0x15 ST Status 0x16 MONITORING REGISTERS Address VOH Output Voltage High Byte (Monitoring) 0x27 VOL Output Voltage Low Byte (Monitoring) 0x27 IO		Voltage Loop Configuration	0x07							
PC4 Protection Configuration 4 V1H Output Voltage Setpoint 1 (Low Byte) V1L Output Voltage Setpoint 1 (High Byte) V2H Output Voltage Setpoint 2 (Low Byte) V2L Output Voltage Setpoint 2 (High Byte) V3H Output Voltage Setpoint 3 (Low Byte) V3H Output Voltage Setpoint 3 (Low Byte) V3L Output Voltage Setpoint 3 (High Byte) V3L Output Voltage Setpoint 3 (High Byte) V3L Output Voltage Setpoint 3 (High Byte) CP Controller Proportional Coefficient CI Controller Integral Coefficient CI Controller Derivative Coefficient Dx11 CI Controller Derivative Coefficient Dx13 B1 Controller Derivative Roll-Off Coefficient STATUS REGISTERS Name Register Address Nonitoring Registers Name Register Address VOH Output Voltage High Byte (Monitoring) VOL Output Voltage Low Byte (Monitoring) Ox18	CLS	Current Limit Set-point	0x08							
V1H Output Voltage Setpoint 1 (Low Byte) 0x0B V1L Output Voltage Setpoint 1 (High Byte) 0x0C V2H Output Voltage Setpoint 2 (Low Byte) 0x0D V2L Output Voltage Setpoint 2 (High Byte) 0x0E V3H Output Voltage Setpoint 3 (Low Byte) 0x0F V3L Output Voltage Setpoint 3 (Low Byte) 0x0F V3L Output Voltage Setpoint 3 (High Byte) 0x10 CP Controller Proportional Coefficient 0x11 CI Controller Integral Coefficient 0x12 CD Controller Derivative Coefficient 0x13 B1 Controller Derivative Roll-Off Coefficient 0x14 STATUS REGISTERS Name Register Address RUN Run enable / status 0x15 ST Status 0x16 MONITORING REGISTERS Name Register Address VOH Output Voltage High Byte (Monitoring) 0x27 VOL Output Voltage Low Byte (Monitoring) 0x18	DCL	Duty Cycle Limit	0x09							
V1L Output Voltage Setpoint 1 (High Byte) 0x0C V2H Output Voltage Setpoint 2 (Low Byte) 0x0D V2L Output Voltage Setpoint 2 (High Byte) 0x0E V3H Output Voltage Setpoint 3 (Low Byte) 0x0F V3L Output Voltage Setpoint 3 (High Byte) 0x10 CP Controller Proportional Coefficient 0x11 CI Controller Integral Coefficient 0x12 CD Controller Derivative Coefficient 0x13 B1 Controller Derivative Roll-Off Coefficient 0x14 STATUS REGISTERS Name Register Address RUN Run enable / status 0x15 ST Status 0x16 MONITORING REGISTERS Name Register Address VOH Output Voltage High Byte (Monitoring) 0x27 VOL Output Voltage Low Byte (Monitoring) 0x18	PC4	Protection Configuration 4	0x0A							
V2H Output Voltage Setpoint 2 (Low Byte) V2L Output Voltage Setpoint 2 (High Byte) V3H Output Voltage Setpoint 3 (Low Byte) V3L Output Voltage Setpoint 3 (High Byte) V3L Output Voltage Setpoint 3 (High Byte) CP Controller Proportional Coefficient CI Controller Integral Coefficient CD Controller Derivative Coefficient Dx11 CD Controller Derivative Coefficient STATUS REGISTERS Name Register Address RUN Run enable / status ST Status Ox16 MONITORING REGISTERS Name Register Address VOH Output Voltage High Byte (Monitoring) VOL Output Voltage Low Byte (Monitoring) Ox18			0x0B							
V2L Output Voltage Setpoint 2 (High Byte) 0x0E V3H Output Voltage Setpoint 3 (Low Byte) 0x0F V3L Output Voltage Setpoint 3 (High Byte) 0x10 CP Controller Proportional Coefficient 0x11 CI Controller Integral Coefficient 0x12 CD Controller Derivative Coefficient 0x13 B1 Controller Derivative Roll-Off Coefficient 0x14 STATUS REGISTERS Name Register Address RUN Run enable / status 0x15 ST Status 0x16 MONITORING REGISTERS VOH Output Voltage High Byte (Monitoring) 0x17 VOL Output Voltage Low Byte (Monitoring) 0x27 IO Output Current (Monitoring) 0x18	V1L	Output Voltage Setpoint 1 (High Byte)	0x0C							
V3H Output Voltage Setpoint 3 (Low Byte) V3L Output Voltage Setpoint 3 (High Byte) CP Controller Proportional Coefficient CI Controller Integral Coefficient CD Controller Derivative Coefficient B1 Controller Derivative Roll-Off Coefficient STATUS REGISTERS Name Register Address RUN Run enable / status ST Status MONITORING REGISTERS Name Register Address VOH Output Voltage High Byte (Monitoring) VOL Output Voltage Low Byte (Monitoring) Ov18	V2H	Output Voltage Setpoint 2 (Low Byte)	0x0D							
V3L Output Voltage Setpoint 3 (High Byte) 0x10 CP Controller Proportional Coefficient 0x11 CI Controller Integral Coefficient 0x12 CD Controller Derivative Coefficient 0x13 B1 Controller Derivative Roll-Off Coefficient 0x14 STATUS REGISTERS Name Register Address RUN Run enable / status 0x15 ST Status 0x16 MONITORING REGISTERS VOH Output Voltage High Byte (Monitoring) 0x27 VOL Output Voltage Low Byte (Monitoring) 0x18	V2L	Output Voltage Setpoint 2 (High Byte)	0x0E							
CP Controller Proportional Coefficient 0x11 CI Controller Integral Coefficient 0x12 CD Controller Derivative Coefficient 0x13 B1 Controller Derivative Roll-Off Coefficient 0x14 STATUS REGISTERS RUN Run enable / status 0x15 ST Status 0x16 MONITORING REGISTERS VOH Output Voltage High Byte (Monitoring) 0x17 VOL Output Voltage Low Byte (Monitoring) 0x27 IO Output Current (Monitoring) 0x18	V3H	Output Voltage Setpoint 3 (Low Byte)	0x0F							
CI Controller Integral Coefficient 0x12 CD Controller Derivative Coefficient 0x13 B1 Controller Derivative Roll-Off Coefficient 0x14 STATUS REGISTERS RUN Run enable / status 0x15 ST Status 0x16 MONITORING REGISTERS VOH Output Voltage High Byte (Monitoring) 0x17 VOL Output Voltage Low Byte (Monitoring) 0x27 IO Output Current (Monitoring) 0x18	V3L	Output Voltage Setpoint 3 (High Byte)	0x10							
CD Controller Derivative Coefficient 0x13 B1 Controller Derivative Roll-Off Coefficient 0x14 STATUS REGISTERS Name Register Address RUN Run enable / status 0x15 ST Status 0x16 MONITORING REGISTERS Name Register Address VOH Output Voltage High Byte (Monitoring) 0x17 VOL Output Voltage Low Byte (Monitoring) 0x27 IO Output Current (Monitoring) 0x18	CP	Controller Proportional Coefficient	0x11							
B1 Controller Derivative Roll-Off Coefficient 0x14 STATUS REGISTERS Name Register Address RUN Run enable / status 0x15 ST Status 0x16 MONITORING REGISTERS Name Register Address VOH Output Voltage High Byte (Monitoring) 0x27 VOL Output Voltage Low Byte (Monitoring) 0x18	.	Controller Integral Coefficient	0x12							
STATUS REGISTERS Name Register Address RUN ST Status 0x15 0x16 MONITORING REGISTERS 0x16 Name Register Address VOH Output Voltage High Byte (Monitoring) 0x17 0x27 0x27 0x27 0x18 IO Output Current (Monitoring) 0x18 0x18	CD	Controller Derivative Coefficient	0x13							
Name Register Address RUN ST Status 0x15 0x16 MONITORING REGISTERS 0x16 VOH Output Voltage High Byte (Monitoring) 0x17 0x27 0x27 0x27 0x27 0x18 IO Output Current (Monitoring) 0x27 0x18	B1	Controller Derivative Roll-Off Coefficient	0x14							
RUN ST Status 0x15 ST Status 0x16 MONITORING REGISTERS Name Register Address VOH Output Voltage High Byte (Monitoring) 0x27 VOL Output Voltage Low Byte (Monitoring) 0x27 IO Output Current (Monitoring) 0x18	STATUS RE	EGISTERS								
ST Status 0x16 MONITORING REGISTERS Register Address VOH Output Voltage High Byte (Monitoring) 0x17 VOL Output Voltage Low Byte (Monitoring) 0x27 IO Output Current (Monitoring) 0x18	Name	Register	Address							
MONITORING REGISTERS Name	RUN	Run enable / status	0x15							
Name Register Address VOH Output Voltage High Byte (Monitoring) 0x17 VOL Output Voltage Low Byte (Monitoring) 0x27 IO Output Current (Monitoring) 0x18	ST	Status	0x16							
VOH Output Voltage High Byte (Monitoring) 0x17 VOL Output Voltage Low Byte (Monitoring) 0x27 IO Output Current (Monitoring) 0x18	MONITORI	NG REGISTERS								
VOL Output Voltage Low Byte (Monitoring) 0x27 IO Output Current (Monitoring) 0x18	Name	Register	Address							
IO Output Current (Monitoring) 0x18	VOH	Output Voltage High Byte (Monitoring)	0x17							
IO Output Current (Monitoring) 0x18	VOL	Output Voltage Low Byte (Monitoring)	0x27							
TMP Temperature (Monitoring) 0x19	IO		0x18							
	TMP	Temperature (Monitoring)	0x19							

Table 1. DP7010 Memory Registers

Setup registers 00h through 14h are programmed at the system power-up. When the user programs new performance parameters, they are stored in the DPM, which overwrites the values in the registers with the new data. Upon removal of the input voltage, the default values are restored.

DP7010G converters can be programmed using the Graphical User Interface or directly via the I²C bus by using high and low level commands as described in the '"DPM Programming Manual".

DP7010G parameters can be reprogrammed at any time during the system operation and service except for the digital filter coefficients, the switching frequency and the duty cycle limit, that can only be changed when the dPOL output is turned off.

5.1 OUTPUT VOLTAGE

The output voltage can be programmed in the GUI Output Configuration window shown in the Figure 6 or directly via the I²C bus by writing into the VOS register shown in Figure 7.

Note that the GUI shows the effect of setting PG, OV and UV limits as both values and graphical limit bars. Vertical hashed lines are error bars for the Overcurrent (OC) limit.

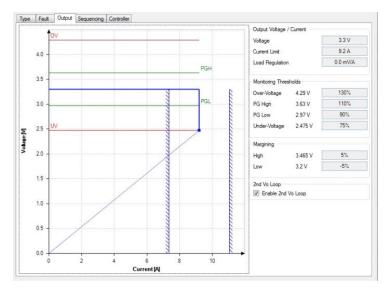


Figure 6. Output Configuration Window

5.1.1 OUTPUT VOLTAGE SETPOINT

The output voltage programming range is from 0.7 V to 5.5 V. The resolution is constant across the range and is 2.5 mV. A Total of 3 registers are provided: one should be used for the normal setpoint voltage; the other two can be used to define a low/high margining voltage setpoint. Note that each register is 16bit wide and that the high byte needs always to be written / read first. The writing of the low byte triggers the refresh of the whole 16bit register (the high byte is written to a shadow register).

VOS: Output Voltage Set-Point Address: 0x0B 0x10									
	Coefficient		Addr	Bits	Default				
V1H	First Vo Setpoint High E	Byte	0x0B	8					
V1L	First Vo Setpoint Low B	Byte	0x0C	8					
V2H	Second Vo Setpoint High	Byte	0x0D	8					
V2L	Second Vo Setpoint Low	Byte	0x0E	8					
V3H	Third Vo Setpoint High E	3yte	0x0F	8					
V3L	Third Vo Setpoint Low E	0x10	8						
Mapping - 12 bit of	data word, left aligned		sters are reac write and rea						

Figure 7. Output Voltage Setpoint Register VOS

Unlike other configuration registers, the dPOL controller's VOS registers are dynamic. Changes to VOS values can be made while the output is enabled over the I2C bus through register bypass commands and the dPOL will change its output immediately.

5.1.2 OUTPUT VOLTAGE MARGINING

If the output voltage needs to be varied by a certain percentage, the margining function can be utilized. The margining can be programmed in the dPOL Configuration window or directly via the I²C bus using high level commands as described in the "DM7300 Digital Power Manager Programming Manual".

In order to properly margin dPOLs that are connected in parallel, the dPOLs must be members of one of the Parallel Buses. Refer to the GUI System Configuration Window shown in Figure 46.

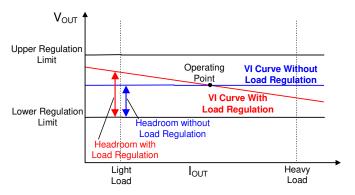
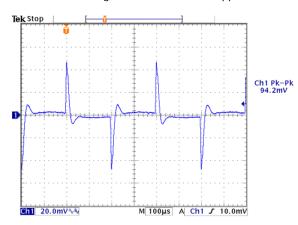



Figure 8. Optimal Voltage Positioning Concept

5.1.3 OUTPUT LOAD REGULATION CONTROL

Load Regulation provides for dynamic output voltage change proportional to load current. This feature helps to improve step load response by changing the VI characteristic slope at the point of regulation. This can be programmed in the GUI Output Configuration window shown in Figure 6 or directly via the I²C bus by writing into the CLS register shown in Figure 24. Load Regulation can be set to one of eight values: 0, 0.74, 1.48, 2.22, 2.96, 3.71, 4.45, or 5.19 mv/A. Figure 9 shows a DP7010G dPOL with 0 mv/A (load current) regulation. Alternating high and low output load currents causes large transients in Vout to appear with each change.

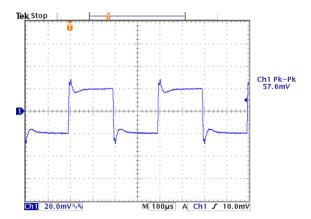


Figure 9. Transient Response with Regulation set to 0 mV/A.

Figure 10. Transient response with non-zero Regulation.

As the Load Regulation parameter is increased, step offsets in output voltage begin to appear, as shown in Figure 10. The Load Regulation parameter is an important part of Current Sharing. It is used to set one dPOL as a "master", by assigning a lower mV/A load regulation than all other dPOLs which share the load as "slaves". The dPOL with the lowest Regulation parameter sets the effective overall regulation. (See Current Sharing elsewhere in this document.)

5.2 SEQUENCING AND TRACKING

Turn-on delay, turn-off delay, and rising and falling output voltage slew rates can be programmed in the dPOL Configure Sequencing window shown in Figure 11 or directly via the I²C bus by writing into the DON, DOF, and TC registers, respectively. The registers are shown in Figure 12, Figure 14 and Figure 15.

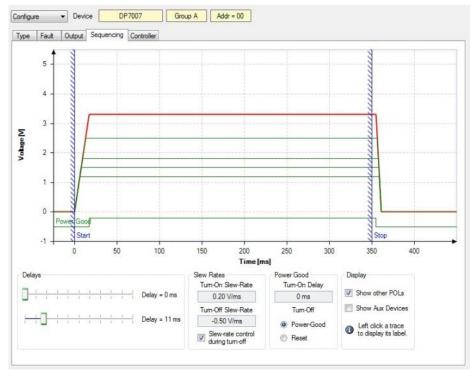


Figure 11. dPOL Configure Sequencing Window

5.2.1 TURN-ON DELAY

Turn-on delay is defined as an interval from the application of the Turn-On command until the output voltage starts ramping up.

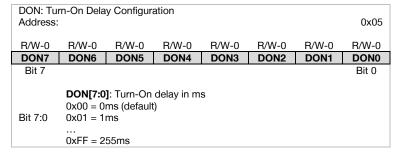


Figure 12. Turn-On Delay Register DON

5.2.2 TURN-OFF DELAY

Turn-off delay is defined as an interval from the application of the Turn-Off command until the output voltage reaches zero (if the falling slew rate is programmed) or until both high side and low side switches are turned off (if the slew rate

is not programmed). Therefore, for the slew rate controlled turn-off the ramp-down time is included in the turn-off delay as shown in Figure 13.

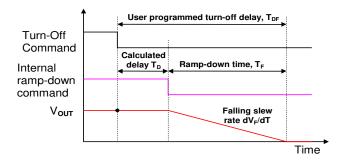


Figure 13. Relationship between Turn-Off Delay and Falling Slew Rate

As it can be seen from the figure, the internally calculated delay TD is determined by the equation below.

calculated delay
$$T_D$$
 is de
$$T_D = T_{DF} - \frac{V_{OUT}}{dV_F} / dT$$

For proper operation T_D shall be greater than zero. The appropriate value of the turn-off delay needs to be programmed to satisfy the condition.

If the falling slew rate control is not utilized, the turn-off delay only determines an interval from the application of the Turn-Off command until both high side and low side switches are turned off. In this case, the output voltage ramp-down process is determined by load parameters.

DOF: Turn-Off Delay Configuration Address: 0x06											
U	U	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1				
		DOF5	DOF4	DOF3	DOF2	DOF1	DOF0				
Bit 7							Bit 0				
Bit 7:6 Bit 5:0	DOF[5:0 0x00 = 0x01 =		delay in m	s							

Figure 14. Turn-Off Delay Register DOF

5.3 TURN-ON/OFF CONTROL

Once delays are accounted for, turn-on and turn-off characteristics are simply a function of slew rates, which are selectable.

5.3.1 RISING AND FALLING SLEW RATES

Output voltage ramp up (and down) control is accomplished by programming the rising and falling slew rates of the output voltage, supported in the GUI as shown in Figure 11, which is implemented by the DPM through writing data to the TC register, Figure 15.

Asia-Pacific +86 755 298 85888 **Europe, Middle East** +353 61 225 977

North America +1 408 785 5200

TC: Trac Address	king Config : 0x03	juration						
U	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	
	R2	R1	R0	SC	F2	F1	F0	
Bit 7							Bit 0	
Bit 7	R[2:0]: V0 0 = 0.05 V1 1 = 0.1 V. 2 = 0.2 V. 3 = 0.25 V1 4 = 0.5 V. 5 = 1.0 V. 6 = 2.0 V. 7 = Reserved	/ms (defau /ms V/ms /ms /ms /ms rved	ew rate ult when ir lt)	n bus termin	nator mode)		
Bit 3	SC: Turn-off slew rate control 0 = disabled 1 = enabled (default) F[2:0]: Vo falling slew rate 0 = -0.05 V/ms 1 = -0.1 V/ms 2 = -0.2 V/ms							
Bit 2:0	3 = -0.25	V/ms (def //ms (defa //ms //ms		n bus term	inator mod	e)		

Figure 15. Tracking Configuration Register TC

To achieve programmed slew rates, the output voltage is being changed in 10mV steps where duration of each step determines the slew rate. For example, ramping up a 1.0V output with a slew rate of 0.5V/ms will require 100 steps duration of $20\mu s$ each.

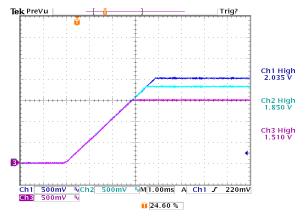
Duration of each voltage step is calculated by dividing the master clock frequency generated by the DPM. Since all dPOLs in the system are synchronized to the master clock, the matching of voltage slew rates of different outputs is very accurate as it can be seen in Figure 16 and Figure 21.

During the turn on process, a dPOL not only delivers current required by the load (ILOAD), but also charges the load capacitance. The charging current can be determined from the equation below:

$$I_{CHG} = C_{LOAD} \times \frac{dV_R}{dt}$$

Where, CLOAD is load capacitance, dVR/dt is rising voltage slew rate, and ICHG is charging current.

When selecting the rising slew rate, a user needs to ensure that


$$I_{LOAD} + I_{CHG} < I_{OCP}$$

Where IOCP is the overcurrent protection threshold of the dPOL. If the condition is not met, then the overcurrent protection will be triggered during the turn-on process. To avoid this, dVR/dt and the overcurrent protection threshold should be programmed to meet the condition above.

5.3.2 DELAY AND SLEW RATE COMBINATION

The effect of setting slew rates and turn on/off delays is illustrated in the following sets of figures.

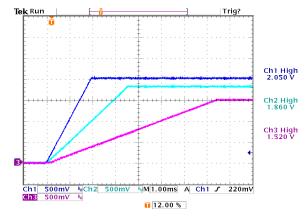
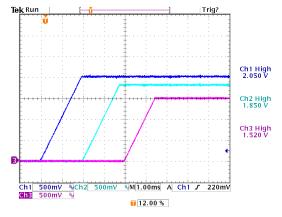



Figure 16. Tracking Turn-On. Rising Slew Rate is programmed at 0.5V/ms for each output.

Figure 17. Turn-On with Different Rising Slew Rates. Rising Slew Rates are V1-1V/ms, V2-0.5V/ms, V3-0.2V/ms.

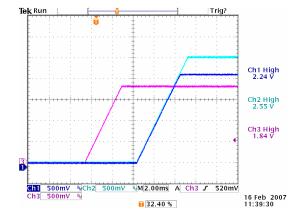


Figure 18. Sequenced Turn-On. Rising Slew Rate is programmed at 1V/ms. V2 Delay is 2ms, V3 delay is 4ms.

Figure 19. Two outputs delayed 5ms. All slew rates at 0.5V/ms.

5.3.3 PRE-BIAS

In some applications, current leaking from a powered circuit to an unpowered bus, typically through ESD protection diodes, will accumulate charge on the unpowered bus filter capacitors. d-pwer® controller in the DP7010G holds off turn on its output until the desired ramp up point crosses the pre-bias point, as seen in Figure 20.

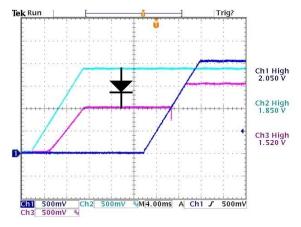


Figure 20. Turn On into Prebiased Load. V3 is Prebiased by V2 via a Diode.

Figure 20 was captured with an actual system where a diode was added to pre-bias a 1.5 V bus from a 1.85 V bus in order to simulate the effect of current leakage through protection circuits of unpowered logic connected to powered logic outputs (a common source of pre-bias in power systems).

5.4 TURN-OFF CHARACTERISTICS

Turn of captures show that combining turn off delays and ramp rates. Note that while turnoff delays have a lower upper time limit as compared to turn on delays, all ramp down rates are available independently to turn on and off.

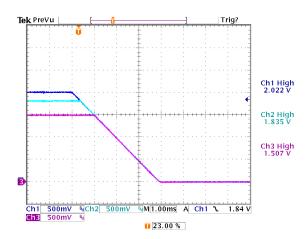


Figure 21. Tracking Turn-Off.
Falling Slew Rate is programmed at 0.5V/ms.

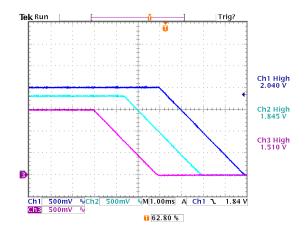


Figure 22. Turn-Off with Tracking and Sequencing. Falling Slew Rate is programmed at 0.5V/ms.

5.5 FAULTS, ERRORS AND WARNINGS

All dPOL series converters have a comprehensive set of programmable fault and error protection functions that can be classified into three groups based on their effect on system operation: warnings, faults, and errors. These are *warnings*, *errors* and *faults*. Warnings include Thermal (Overtemperature limit near) and Power Good (a warning in a negative sense.)

Faults in DP7xxx and DP8xxx series sPOLs include overcurrent protection, overvoltage, overtemperature and tracking failure detection. Errors include only undervoltage. Control of responses to Faults and Errors are distributed between different dPOL registers and are configurable in the GUI.

Thresholds of overcurrent, over- and undervoltage detection, and Power Good limits can be programmed in the GUI Output Configuration window (Figure 6) or directly via the I²C bus by writing into the PC2 registers shown in Figure 23.

PC2: Protection Configuration Register 2 ¹⁾ Address: 0x01												
U	U	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0					
		PGHL	PGLL	OVPL1	OVPL0	UVPL1	UVPL0					
Bit 7							Bit 0					
Bit7:	Unimplemented: read as '0'											
Bit 5	PGHL: Power Good High Level 1 = 105% of Vo 0 = 110% of Vo (default) PGLL: Power Good Low Level											
Bit 4	1 = 95% of Vo											
Bit 3:2	0 = 90% of Vo (default) OVPL: Over Voltage Protection Level 00 = 110% of Vo 01 = 120% of Vo 10 = 130% of Vo (default) 11 = 130% of Vo											
Bit 1:0	UVPL: Under Voltage Protection Level 00 = 75% of Vo (default) 01 = 80% of Vo 10 = 85% of Vo 11 = 90% of Vo register can only be written when PWM is not active (RUN[RUN] is '0')											

Figure 23. Protection Configuration Register PC2

Note that the overvoltage and undervoltage protection thresholds and Power Good limits are defined as percentages of the output voltage. Therefore, the absolute levels of the thresholds change when the output voltage setpoint is changed either by output voltage adjustment or by margining.

Overcurrent limits are set either in the GUI dPOL Output configuration dialog or in the dPOL's CLS register as shown in Figure 24.

Note that the CLS register includes bits which control the Regulation option settings. When writing into this register be careful to not change Regulation by accident.

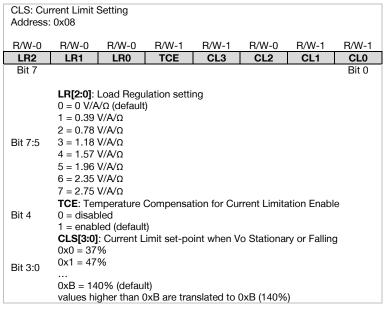


Figure 24. Current Limit Setpoint Register CLS

Asia-Pacific +86 755 298 85888 **Europe, Middle East** +353 61 225 977

North America +1 408 785 5200

5.5.1 WARNINGS

This group includes Overtemperature Warning and Power Good Signal. Warnings do not turn off dPOLs but rather generate signals that can be transmitted to a host controller via the I²C bus.

5.5.1.1 OVERTEMPERATURE WARNING.

The Overtemperature Warning is generated when temperature of the controller exceeds 120°C. The Overtemperature Warning changes the TW bit of the status register ST. When the temperature falls below 117°C, the PT bit is cleared and the Overtemperature Warning is removed.

5.5.1.2 POWER GOOD

Power Good (PG) is an open collector output that is pulled low, if the output voltage is outside of the Power Good window. The window is formed by the Power Good High threshold that is programmable at 105 or 110% of the output voltage and the Power Good Low threshold that can be programmed at 90 or 95% of the output voltage.

Power Good protection is only enabled after the output voltage reaches its steady state level. A programmable delay can be set between 0 and 150ms to delay the release of the PG pin after the voltage has reached the steady state level (see Figure 11). This allows using the PG pin to reset load circuits properly. The Power Good protection remains active during margining voltage transitions. The threshold will vary proportionally to the voltage change (see Figure 25).

The Power Good Warning pulls the PG pin low and changes the PG bit of the status register ST to 0. When the output voltage returns within the Power Good window, the PG pin is released high, the PG bit is cleared and the Power Good Warning is removed. The Power Good pin can also be pulled low by an external circuit to initiate the Power Good Warning.

At turn-off the PG pin can be programmed to either be pulled low immediately following the turn-off command, or then when the voltage actually starts to ramp down (Reset vs. Power Good functionality in Figure 11).

NOTE: To retrieve status information, Status Monitoring in the GUI DPM Configure Devices window should be enabled (refer to Digital Power Manager Data Sheet). The DPM will retrieve the status information from each dPOL on a continuous basis.

5.5.2 FAULTS

This group includes overcurrent, overtemperature, undervoltage, and tracking protections. Triggering any protection in this group will turn off the dPOL

5.5.2.1 OVERCURRENT PROTECTION

Overcurrent protection is active whenever the output voltage of the dPOL exceeds the prebias voltage (if any). When the output current reaches the OC threshold, the POL control chip asserts an OC fault. The dPOL sets the OC bit in the register ST to 0. Both high side and low side switches of the dPOL are turned off instantly (fast turn-off).

Current sensing is across the dPOLs choke. To compensate for copper winding TC, compensation is added to keep the OC threshold approximately constant at temperatures above room temperature. Note that the temperature compensation can be disabled in the dPOL Configure Output window or directly via the I2C by writing into the CLS register. However, it is recommended to keep the temperature compensation enabled.

5.5.2.2 UNDERVOLTAGE PROTECTION

The undervoltage protection is only active during steady state operation of the dPOL to prevent nuisance tripping. If the output voltage decreases below the UV threshold and there is no OC fault, the UV fault signal is generated, the dPOL turns off, and the UV bit in the register ST is changed to 0. The output voltage is ramped down according to sequencing and tracking settings (regular turn-off).

5.5.2.3 OVERTEMPERATURE PROTECTION

Overtemperature protection is active whenever the dPOL is powered up. If temperature of the controller exceeds 130°C, the OT fault is generated, dPOL turns off, and the OT bit in the register ST is changed to 0. The output voltage is ramped down according to sequencing and tracking settings (regular turn-off).

If non-latching OTP is programmed, the dPOL will restart as soon as the temperature of the controller decreases below the Overtemperature Warning threshold of 120°C.

5.5.2.4 TRACKING PROTECTION

Ramp up and down operations are under control by the dPOL. Tracking protection, however, is active only when the output voltage is ramping up. The purpose of the protection is to ensure that the voltage differential between multiple

rails being tracked does not exceed 250mV. This protection eliminates the need for external clamping diodes between different voltage rails which are frequently recommended by ASIC manufacturers.

When the tracking protection is enabled, the dPOL continuously compares actual value of the output voltage to its programmed value as defined by the output voltage and its rising slew rate. If absolute value of the difference exceeds 250mV, the tracking fault signal is generated, the dPOL turns off, and the TR bit in the register ST is changed to 0. Both high side and low side switches of the dPOL are turned off instantly (fast turn-off).

The tracking protection can be disabled, if it contradicts requirements of a particular system (for example turning into high capacitive load where rising slew rate is not important). It can be disabled in the dPOL Configure Fault window or directly via the I²C bus by writing into the PC1 register.

5.5.3 FAULTS AND MARGINING

As noted earlier, UV and OV protection settings are a percentage of Vout. As Vout ramps between nominal, low or high margin values, UVP and OVP limits adjust accordingly. This is illustrated in Figure 25. The middle plot of Vo (Vout) level is the result of a Low Margining command. Note that Tracking is not re-enabled during changes to Vout from margining commands.

Figure 25. Protection Enable Conditions

5.5.4 ERRORS

This group includes only overvoltage protection.

5.5.4.1 OVERVOLTAGE PROTECTION

The overvoltage protection is active whenever the output voltage of the dPOL exceeds the pre-bias voltage (if any). If the output voltage exceeds the overvoltage protection threshold, the overvoltage error signal is generated, the dPOL turns off, and the OV bit in the register ST is changed to 0. The high side switch is turned off instantly, and simultaneously the low side switch is turned on to ensure reliable protection of sensitive loads. The low side switch provides low impedance path to quickly dissipate energy stored in the output filter and achieve effective voltage limitation. The OV threshold can be programmed from 110% to 130% of the output voltage setpoint, but not lower than 0.5V. Also the OV threshold will always be at least 0.25V above the setpoint.

5.5.5 FAULT AND ERROR LATCHING

The user has the option of setting up any protection option as either latching/non-latching and propagating or non-propagating.

Propagation and Latching for each dPOL is set in the GUI (Figure 26 below) or directly via the I²C by writing into the PC1 register shown in Figure 27.

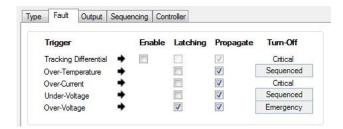


Figure 26 GUI dPOL Fault Propagation Option Window

If the non-latching protection is selected, a dPOL will attempt to restart every 130ms until the condition that triggered the protection is removed. When restarting, the output voltages follow tracking and sequencing settings. If the latching type is selected, a dPOL will turn off and stay off. The dPOL can be turned on after 130ms, if the condition that caused the fault is removed and the respective bit in the ST register was cleared, or the Turn On command was recycled, or the input voltage was recycled.

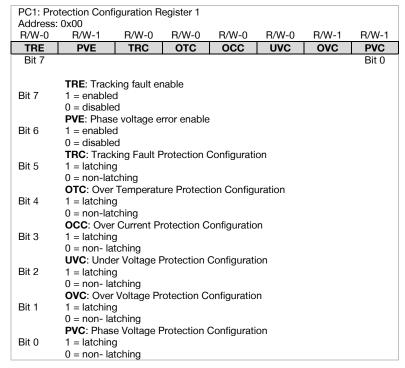


Figure 27 Protection Configuration Register PC1

5.5.6 FAULT AND ERROR TURN OFF CONTROL

In the GUI dPOL Fault dialog is a column of spin controls which set the Turn-Off style OT, UV and OV events. The choices are defined as:

Sequenced: Outputs shut down according to ramp down rate control settings.

Critical: Both high side and low side switches of the dPOL are turned off instantly

Emergency: The high side switch is turned off instantly, and simultaneously the low side switch is turned on to ensure reliable protection of sensitive loads.

5.5.7 FAULT AND ERROR STATUS

Status of dPOL protection logic is stored in the dPOL's ST register shown in Figure 28.

When Status monitoring is enabled for a group, the DPM will read this register and make the information available for uses such as GUI Monitor display.

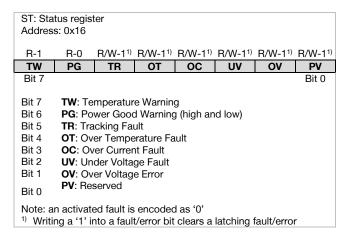


Figure 28. Protection Status Register ST

5.5.8 FAULTS AND ERRORS PROPAGATION

The feature adds flexibility to the fault management scheme by giving users control over propagation of fault signals within and outside of the system. The propagation means that a fault in one dPOL can be programmed to turn off other dPOLs and devices in the system, even if they are not directly affected by the fault.

5.5.8.1 FAULT PROPAGATION

When propagation is enabled, the faulty dPOL pulls its OK pin low. This signals to the DPM and any other dPOL connected to that signal, that the dPOL has a Fault or Error condition. A low OK line initiates turn-off of other dPOLs connected to the same OK line with the same turn-off behavior as the faulty dPOL. The turn-off type is encoded into the OK line when it transitions from high to low.

5.5.8.2 GROUPING OF DPOLS

d-pwer[®] dPOLs can be arranged in groups of up to 4, 8, 16 or 32 dPOLs (depending upon the DPM model used). Membership in a group is set in the GUI in the DPM / Configure / Devices dialog, and implemented in hardware by connecting the OK pins of each dPOL in the group to the matching OK input on the DPM.

In order for a particular Fault or Error to propagate through the OK line, Propagation needs to be checked in the GUI dPOL Configure / Fault Management Window shown in Figure 29.

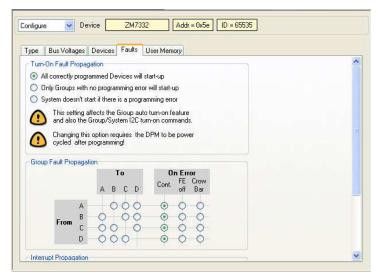


Figure 29. DPM Configure Faults Window

Note that the turn-off type of the fault as it propagates through the DPM will remain unchanged.

Propagation options for dPOLs can be read or set in the dPOL PC3 register shown in Figure 30.

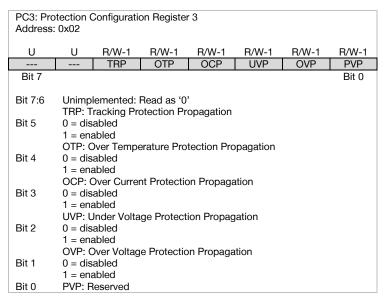
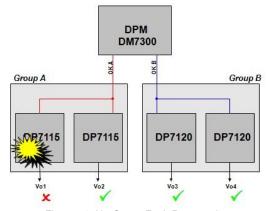
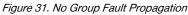


Figure 30. Protection Configuration Register PC3

5.5.9 FRONT END AND CROWBAR


If an error is propagated to at least the Group level, the DPM can also be configured to generate commands to turn off a front end (a DC-DC converter generating the intermediate bus voltage) and to trigger an optional crowbar protection to accelerate removal of the IBV voltage.



5.5.10 PROPAGATION EXAMPLES

Understanding Fault and Error propagation is easier with the following examples.

The First example is of of non-propagation from a dPOL, as shown in Figure 31. An undervoltage error shuts down the Vo, but since propagation was not enabled, OK-A is not pulled down and Vo2 stays up.

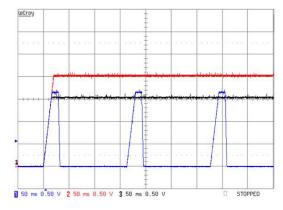


Figure 32. Turn-On into UVP on V3. The UV Fault Is Programmed To Be Non-Latching. Ch1 – Vo1, Ch2 – Vo2 (Group A), Ch3 – Vo3 (Group B) Vo4 not shown.

Figure 32 shows a scope capture an actual system when undervoltage error detection is set to not propagate. In this example, the dPOL connected to scope Ch 1 encounters the undervoltage fault after turn-on. Because fault propagation is not enabled for this dPOL, it alone turns off and generates the UV fault signal. Because a UV fault triggers the sequenced turn-off, the dPOL meets its turn-off delay and falling slew rate settings during the turn-off process as shown in the trace for Ch1. Since the UV fault is programmed to be non-latching, the dPOL will attempt to restart every 130 ms, repeating the process described above until the condition causing the undervoltage is removed. The 130ms hiccup interval is guaranteed regardless of the turn-off delay setting.

The next example is intra-group propagation, the dPOL propagates its fault or error events. Here fault propagation between dPOLs is enabled.

In Figure 33 the dPOL powering output Vo1 again encounters an undervoltage error. It pulls its OK line low. Since the dPOL powering output Vo2 (Ch3 in the picture) belongs to the same group (A in this case), pulling down OK-A tells that dPOL to execute a regular turn-off.

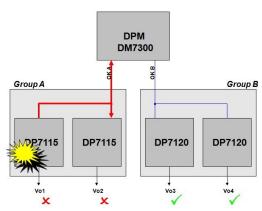


Figure 33. Intra Group Fault Propagation

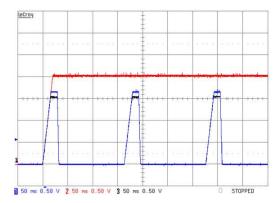


Figure 34. Turn-On into UVP on V3. The UV Fault Is Programmed To Be Non-Latching and Propagate From Group C to Group A.

Ch1 - V3 (Group C), Ch2 - V2, Ch3 - V1 (Group A).

Since both Vo1 and Vo2 have the same delay and slew rate settings they will continue to turn off and on synchronously every 130ms as shown in Figure 34 until the condition causing the undervoltage is removed.

Note that the dPOL powering the output Vo2 (Ch3) actually reaches its voltage set point before the error in Vo1 is detected.

The turn-off type of a dPOL fault/error as propagated by the faulty dPOL via the OK line is propagated through the DPM to other dPOLs connected to other Groups (per configuration in Figure 29) through its connection to their OK line or lines. This behavior assures that all dPOLs configured to be affected through Group linkages will switch off with the same turn-off type.

5.5.11 PROTECTION SUMMARY

A summary of protection support, their parameters and features are shown in Table 2.

CODE	NAME	ТҮРЕ	WHEN ACTIVE	TURN OFF	LOW SIDE SWITCH	PROPAGATION	DISABLE
TW	Temperature Warning	Warning	Whenever V _{IN} is applied	No	N/A	Status Bit	No
PG	Power Good	Warning	During steady state	No	N/A	PG	No
TR	Tracking	Fault	During ramp up	Fast	Off	Critical	Yes
ОТ	Overtemperature	Fault	Whenever V_{IN} is applied	Regular	Off	Sequenced or Critical	No
OC	Overcurrent	Fault	When V _{OUT} exceeds prebias	Fast	Off	Critical	No
UV	Undervoltage	Fault	During steady state	Regular	Off	Sequenced or Critical	No
OV	Overvoltage	Error	When V _{OUT} exceeds prebias	Fast	On	Critical or Emergency	No

Table 2. Summary of Protection Parameters and Features

5.6 OK CODING OF FAULTS AND ERRORS

d-pwer[®] dPOLs have an additional functionality added to the OK line signal. The OK line is used to propagate and receive information from other devices in the power system belonging to the same group as to the kind of turn-off procedure a device has initiated because of a fault.

Figure 35 shows the three types of OK encoding. The bubbles show when the SD and OK line logic levels are sampled by dPOL and the DPM logic.

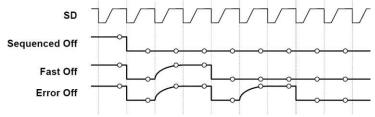


Figure 35. OK Severity Encoding Waveforms

Note that the OK line state changes are always executed by dPOLs at the negative edge of the SD line.

The chart shows shut down response types as the user can select the kind of response desired for each type of Fault or Error (within the limits of choice provided for each type of Fault or Error). All dPOL devices in the same Group are expected to trigger the same turn-off procedure in order to maintain overall tracking of output voltages in the system. And when fault propagation is set to go from one group to another, the encoding is passed along un-changed.

5.7 SWITCHING AND COMPENSATION

d-pwer[®] dPOLs utilize the digital PWM controller. The controller enables users to program most of the PWM performance parameters, such as switching frequency, interleave, duty cycle, and feedback loop compensation.

5.7.1 SWITCHING FREQUENCY

The switching frequency of the DP7010G can be programmed to either 500KHz or 1MHz in the GUI PWM Controller window shown in Figure 36 or directly via the I²C bus by writing into the INT register shown in Figure 37.

Each dPOL is equipped with a PLL that locks to the 500 KHz SD signal which is generated by the DPM. This sets up for switching actions to be synchronous to the falling edge of SD by all dPOLs, which are thereby kept coordinated to each other. Although synchronized to SD, switching frequency selection is independent for each dPOL, with the exception of shared load bus groups, where dPOLs attached to a shared load bus are forced to use the same frequency by the GUI.

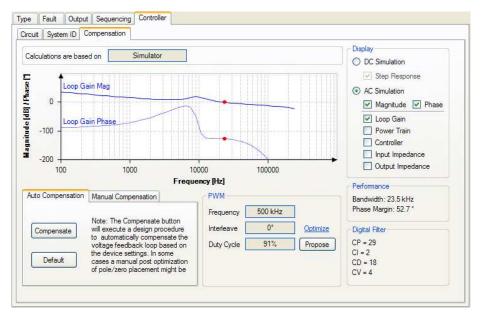


Figure 36. PWM Controller Window

In some applications, switching at higher frequencies is desirable even though efficiency is lower, because it allows for better transient response or lower application system noise.

5.7.2 INTERLEAVE SELECTION

Within the same PWM dialog is the switching Interleave control. Interleave is defined as a phase delay between the synchronizing slope of the master clock on the SD pin and the start of each dPOL PWM cycle. This parameter can be programmed in the dPOL Controller Configure Compensation window or directly via the I²C bus by writing into the INT register in 22.5° steps.

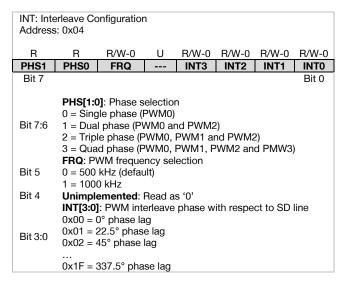


Figure 37. Interleave Configuration Register IN

Asia-Pacific Europe +86 755 298 85888 +35