

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

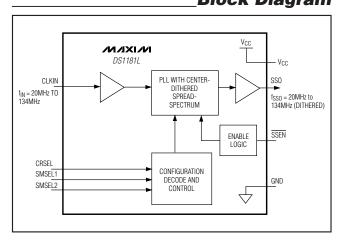
The DS1181L is a spread-spectrum clock modulator IC that reduces EMI in high clock-frequency-based, digital electronic equipment.

Using an integrated phase-locked loop (PLL), the DS1181L accepts an input clock signal in the range of 20MHz to 134MHz and delivers a spread-spectrum modulated output clock signal. The PLL modulates, or dithers, the output clock about the center input frequency at a pin-selectable magnitude, allowing direct EMI control and optimization. In addition, through an enable pin the dithering can be enabled or disabled for easy comparison of system performance during EMI testing. This same input pin also allows the DS1181L output to be three-stated.

By dithering the system clock, all the address, data, and timing signals generated from this signal are also dithered so that the measured EMI at the fundamental and harmonic frequencies is greatly reduced. This is accomplished without changing clock rise/fall times or adding the space, weight, design time, and cost associated with mechanical shielding.

The DS1181L is provided in an 8-pin TSSOP package and operates over a full automotive temperature range of -40°C to +125°C.

Applications


LCD Panels for TVs, Desktop Monitors, and Notebook and Tablet PCs

Automotive Telematics and Infotainment

Printers

Typical Operating Circuit appears at end of data sheet.

Block Diagram

Features

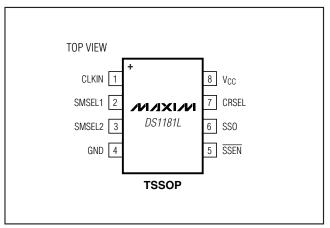
- ♦ Modulates a 20MHz to 134MHz Clock with Center **Spread-Spectrum Dithering**
- **♦** Selectable Spread-Spectrum Modulation Magnitudes of:

±0.5%

±1.0%

±1.5%

±2.0%


- ♦ Low 75ps Cycle-to-Cycle Jitter
- **♦** Spread-Spectrum Disable Mode
- ♦ Pin Compatible with Alliance/PulseCore Semiconductor P2040 Series Devices
- ♦ Clock Output Disable
- **♦ Low Cost**
- **♦ Low Power Consumption**
- ♦ 3.3V Single Voltage Supply
- ♦ -40°C to +125°C Temperature Range
- ♦ Small 8-Pin TSSOP Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DS1181LE+	-40°C to +125°C	8 TSSOP
DS1181LE+T	-40°C to +125°C	8 TSSOP

+Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel.

Pin Configuration

ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

 $(TA = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	Vcc	(Note 1)	3.0		3.6	V
Input Logic 1	VIH		0.8 x V _{CC}		V _{CC} + 0.3	V
Input Logic 0	VIL		-0.3		0.2 x V _C C	V
Input Logic Float (SSEN, CRSEL)	IFLOAT	0V < V _{IN} < V _{CC}			±1	μΑ
SSO Load	C	SSO < 80MHz			15	pF
330 Load	CL	80MHz ≤ SSO < 134MHz			7	рг
CLKIN Frequency	fiN		20		134	MHz
CLKIN Duty Cycle	fINDC		40		60	%

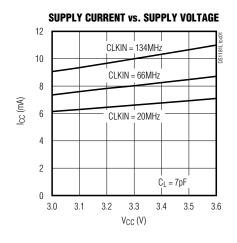
DC ELECTRICAL CHARACTERISTICS

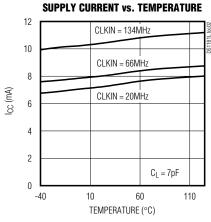
(V_{CC} = +3.0V to +3.6V, T_A = -40°C to +125°C, unless otherwise noted.)

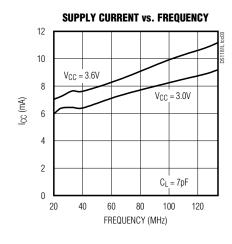
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	Icc	$C_L = 7pF,$ $f_{IN} = 134MHz$			18	mA
SMSEL1/SMSEL2/CLKIN Input Leakage	I _{IL:1}	0V < V _{IN} < V _{CC}	-1		+1	μΑ
CRSEL/SSEN Input Leakage	I _{IL:2}	0V < V _{IN} < V _{CC}	-100		+100	μΑ
Output Leakage (SSO)	loz	SSEN = float	-1		+1	μΑ
Low-Level Output Voltage (SSO)	VoL	I _{OL} = 4mA			0.4	V
High-Level Output Voltage (SSO)	Voh	I _{OH} = -4mA	2.4	·		V

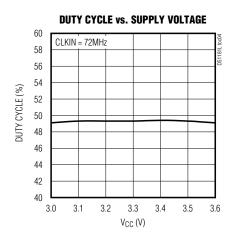
AC ELECTRICAL CHARACTERISTICS

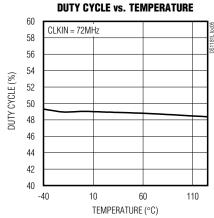
 $(V_{CC} = +3.0V \text{ to } +3.6V, T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}, \text{ unless otherwise noted.})$

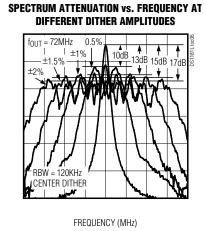

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SSO Duty Cycle	fssodc	Measured at V _{CC} /2	40		60	%
SSO Rise Time	t _R	C _L = 7pF		1		ns
SSO Fall Time	tF	C _L = 7pF		1		ns
Peak Cycle-to-Cycle Jitter	tJ	T _A = -40°C to +85°C, 10,000 cycles		75		ps
Power-Up Time	tpor	(Note 2)			50	ms


Note 1: All voltages referenced to ground. Currents into the IC are positive and out of the IC are negative.


Note 2: Time between power applied to device and stable output.


Typical Operating Characteristics


 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$



ATTENUATION (dB)

Pin Description

PIN	NAME		FUNCTION				
1	CLKIN	Clock Input. 20MHz to 134MHz clock input (f _{IN}).					
2	SMSEL1	Spread-Spectrum Magnitude Select Inputs. These digital inputs select the desired spread-spectrum magnitude as shown in the table below.					
_	0	SMSEL2	SMSEL1	MAGNITUDE SELECTED (%)			
		0	0	±2.0			
		0	1	±1.5			
3	SMSEL2	1	0	±1.0			
		1	1	±0.5			
4	GND	Ground		•			
5	SSEN	Spread-Spectrum Enable. Three-level 0 = Power-up/spread-spectrum ena		ectrum and to three-state the output.			
		Float = SSO three-stated. 1 = Power-up/spread-spectrum disa	abled (not a bypass mode).				
6	SSO	1 = Power-up/spread-spectrum disa	abled (not a bypass mode). puts a center-dithered spread-spec	trum version of the clock input at			
6	SSO	1 = Power-up/spread-spectrum disa Spread-Spectrum Clock Output. Out CLKIN.		· 			
		1 = Power-up/spread-spectrum disa Spread-Spectrum Clock Output. Out CLKIN. Clock Range and Dither Rate Select	puts a center-dithered spread-spec	· 			
6	SSO	Power-up/spread-spectrum disased Spread-Spectrum Clock Output. Out CLKIN. Clock Range and Dither Rate Select Description section for details.	tputs a center-dithered spread-spec	the dither rate. See the <i>Detailed</i>			
		Power-up/spread-spectrum disased-spectrum Clock Output. Out CLKIN. Clock Range and Dither Rate Select Description section for details. CRSEL	puts a center-dithered spread-spec	the dither rate. See the <i>Detailed</i>			
		Power-up/spread-spectrum disased-spectrum Clock Output. Out CLKIN. Clock Range and Dither Rate Select Description section for details. CRSEL 0	tputs a center-dithered spread-spect. Three-level input that determines CLKIN RANGE (MHz) 66 to 134	the dither rate. See the <i>Detailed</i> DITHER RATE			

Detailed Description

The DS1181L modulates an input clock to generate a center-dithered spread-spectrum output. A 20MHz to 134MHz clock is applied to the CLKIN pin. An internal PLL dithers the output clock about its center frequency at a user-selectable magnitude.

Spread-Spectrum Dither Magnitude

The DS1181L can generate dither magnitudes up to ±2%. The desired magnitude is selected using input pins SMSEL1 and SMSEL2 as shown in Table 1.

Table 1. Dither Magnitude

SMSEL2	SMSEL1	MAGNITUDE SELECTED (%)
0	0	±2.0
0	1	±1.5
1	0	±1.0
1	1	±0.5

Spread-Spectrum Dither Rate

The output spread-spectrum dither rate is fixed at $f_{\text{IN}}/832$.

Table 2. Dither Rate

CRSEL	CLKIN RANGE (MHz)	DITHER RATE
0	66 to 134	
Float	33 to 80	f _{IN} /832
1	20 to 38	

Spread-Spectrum Enable

On power-up, the output clock (SSO) remains three-stated until the internal PLL reaches a stable frequency. The SSEN input can be used to disable the spread-spectrum modulation and to three-state the SSO output. If the SSEN pin is pulled high, the spread-spectrum modulation is turned off, but the device still uses the internal PLL to generate the clock signal at SSO. If the SSEN pin is floated, the output is three-stated.

Applications Information

Power-Supply Decoupling

To achieve best results, it is highly recommended that a decoupling capacitor is used on the IC power-supply pins. Typical values of decoupling capacitors are $0.01\mu F$ and $0.1\mu F$. Use a high-quality, ceramic, surface-mount capacitor, and mount it as close as possible to the V_{CC} and GND pins of the IC to minimize lead inductance.

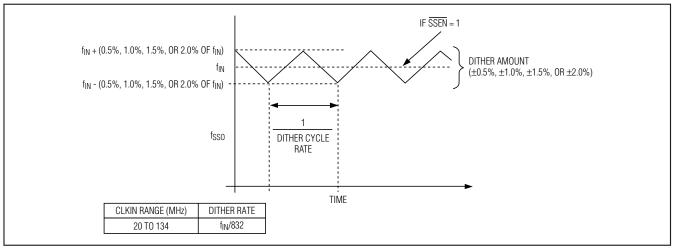
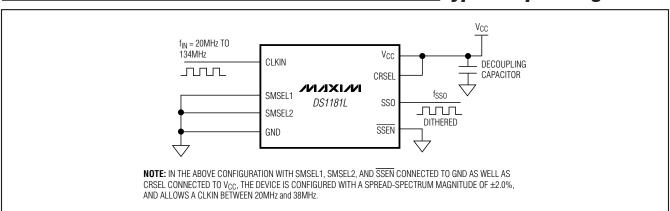



Figure 1. DS1181L Spread-Spectrum Frequency Modulation

Typical Operating Circuit

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
8 TSSOP	H8+3	<u>21-0175</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	11/07	Initial release.	
1	8/08	Increased the absolute maximum ratings range from +3.63V to +4.3V.	2

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.